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Abstract

Walnut genetic improvement and orchard management would significantly benefit from accurate prediction of critical
yield-related traits. In this study, an adaptive neuro-fuzzy interface system (ANFIS) was used to predict walnut kernel
percentage and kernel quality. ANFIS uses principles of artificial neural network (ANN) learning as well as fuzzy principles.
A total of 14 morphological characteristics of 100 walnut genotypes from Golestan province in Iran were used as model
inputs. Correlation analysis and principal component analysis (PCA) were tested for their ability to reduce the model
input numbers needed for accurate output. Eight features (four nut-related traits, four leaf characteristics) were revealed
to be the most useful ANFIS input variables. Modeling data revealed ANFIS could predict walnut kernel percentage with
a coefficient of determination (R?) of 99%. Accuracy in detection of kernel quality was also 99%. These results indicated
that a combination of the fuzzy c-means (FCM) method with the hybrid training algorithm were the most useful when
designing the ANFIS model. Therefore, ANFIS is a highly recommended tool for modeling walnut yield traits.
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Abbreviations F10 Nut length

ANFIS Adaptive neuro-fuzzy interface system Fl11 Shell thickness

ANN  Artificial neural network F12 Shell seal diameter
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K.P. Kernel percentage

MF Membership function
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Introduction

Persian walnut (Juglans regia L.) is one of the most impor-
tant nuts in the world. Domestication of walnut trees be-
gan in Iran and Afghanistan (Arzani et al. 2008; Khadivi-
Khub and Ebrahimi 2015). Iran, with a production exceed-
ing 0.41 million tons of dried walnut, is the third-largest
producer of walnut after China and the United States (Fao-
stat 2018). Traditional walnut seed orchards in Iran are con-
sidered a precious genetic resource. Longstanding orchards
were developed from large non-grafted seedling trees to
ensure genetic diversity, which is easily observable in the
morphological traits of individual trees (Arzani et al. 2008).
Walnut sexual reproduction has also contributed to the sub-
stantial genetic variations in tree growing habits and the
qualitative and quantitative characteristics of nuts (Khadivi-
Khub and Ebrahimi 2015; Shamlu et al. 2018; Khadivi et al.
2019). Today, with the development of new data analysis
methods and the combination of biological data and mathe-
matical modeling (i.e., machine learning), more information
is known about nonlinear relationships between biologi-
cal system traits and their interacting factors (Motta and
Pappalardo 2013; Almudevar et al. 2020). Data obtained
from walnut orchards, with their segregating populations,
could be useful for evaluating new computational methods.
These original approaches can provide a new viewpoint
from which to survey walnut trait relationships. Compu-
tational models can be used universally by growers, the
processing industry, and walnut tree breeders to aid future
genetic diversity and management decisions.

Walnut breeding programs typically seek to confirm
proper overlapping of flowering and fruit harvesting dates,
increase nut yield, certify an easy separation of kernel
and shell during nut-cracking, enhance kernel flavour qual-
ity, and improve resistance to important diseases such as
anthracnose and blight. Nut-related quantitative traits are
also important considerations for walnut breeders (Cos-
mulescu and Botu 2012). For example, consumers expect
large, light amber-coloured kernels that are easily removed
from the shell and are appetizing. An ideal walnut should
weigh 12-18g and have a kernel percentage greater than
50% (Germain et al. 1997; Cosmulescu and Botu 2012;
Ebrahimi Aziz et al. 2015). Improvement of walnut kernel
percentage is a primary walnut breeding goal (Khadivi
et al. 2019). Kernel size directly influences walnut kernel
percentages, with a positive correlation between kernel di-
mensions and kernel percentage being reported (Ebrahimi
Aziz et al. 2015; Khadivi-Khub and Ebrahimi 2015). Wal-
nut trees mature slowly and produce fruit later in life. Early
prediction of nut and kernel properties based on vegetative
features is invaluable for the selection of genotypes for
classical breeding programs. Estimation of walnut kernel
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percentage prior to cracking the nut can also be a significant
achievement for use in the processing industry.

Machine learning techniques such as predictive modeling
and neural networking have many applications in various
aspects of biological systems (Almudevar et al. 2020). Sev-
eral modern studies have employed computational software
models to predict plant yield efficiency and genetic value
based on vegetative properties observed in early growth
stages (Azevedo et al. 2015; Rad et al. 2015; Chen et al.
2018; Mochida et al. 2019; Ali and Deo 2020). Most re-
cently, scientists have introduced numerous artificial intelli-
gence methods to model complex and nonlinear phenomena
and analyze these processes (Almudevar et al. 2020). The
adaptive neuro-fuzzy interface system (ANFIS) is one of
the most important of these intelligence methods and is
a neural network and fuzzy inference combination (Jang
1993). An ANFIS is a specific type of artificial neural net-
work (ANN), based on the Takagi—Sugeno fuzzy inference
system (FIS) (Jang 1993). The Takagi—Sugeno FIS model
applies a rule base, a database, and a reasoning mechanism
to the weighted averages of fuzzy inputs to generate crisp
outputs. In other words, the primary network components,
namely the premise and consequence parts, are identified
with the ANFIS model. The successful use of this method
was previously reported by Eski et al. (2018) for the pre-
diction of almond (Amygdalus communis L.) nut physical
properties. The ANFIS model was also used to sort walnut
based on acoustic emissions analysis (Khalifa and Koma-
rizadeh 2012) and kernel color (DemiR 2018).

Although walnut sorting was modeled by machine learn-
ing and evidenced in several studies, no reports were found
regarding the use of this or other soft computing methods
for walnut genetic improvement. In this study, we attempt to
predict walnut kernel percentage from data collected on leaf
characteristics and nut traits aided by an ANN, specifically
ANFIS. The second objective is to evaluate the capability of
ANFIS to classify the four defined classes of walnut kernel
quality, thus allowing prediction of genotypes that produce
desirable, consumer-preferred kernels from characteristics
identifiable in early growth stages.

Material and Methods
Data Set

This study was conducted on 100 walnut genotypes from
North-eastern Iran, a primary walnut production site within
the Golestan province (37.2898°N, 55.1376°E). Trees were
randomly selected from commercial orchards and individ-
ual wild-grown trees. The studied genotypes were num-
bered from 1-100 and labeled according to site and sample
tree number. A total of 14 morphological traits were mea-
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sured based on the International Plant Genetic Resources
Institute (IPGRI) walnut descriptor for each genotype (Mc-
Granahan et al. 1994). Between 80 and 100 walnut fruits
and 15-20 leaves were randomly selected from each tree
for use in data analysis. Walnut fruits were harvested at the
husk cracking stage and after removing the outer husk by
hand, were dried at room temperature for 30days before
kernel and nut traits were measured.

Measured Traits

Leaf morphological traits and tree growing habits of the
selected walnut genotypes were given designations between
F1 and F7 while the seven nut-related features were given
designations between F8 and F14. Full leaf length (F1),
and length (F2) and width (F3) of the largest leaflet were
measured in centimeters with a digital caliper. Number of
leaflets (F4), along with leaf shape (F5), color (F6), and tree
growing habit (F7) were measured and coded according to
published IPGRI descriptions (McGranahan et al. 1994).
Continuously variable characteristics such as nut shape (F8)
and shell texture were recorded on a scale of 1-9 , following
IPGRI guidelines. Diameter (F9) and nut length (F10), shell
thickness (F11), shell seal diameter (F12), fruit width (F13),
and length (F14) were also measured in centimeters with
a digital caliper. Nut and kernel weights were recorded with
a digital scale with £0.01 g accuracy. Kernel fill percentages
(K.P.) resulted from the average of 100 nuts per genotype.
Moreover, genotypes were sorted into kernel quality grades
(1-4) based on kernel characteristics (weight, color, ease of
shell separation, kernel fill percentage) (Table 1).

Modeling and Classification Using an Adaptive
Neuro-fuzzy Inference System (ANFIS)

An ANFIS is a multilayer feed-forward neural network with
fuzzy parameters that was used to predict K.P. and kernel
quality classifications based on data from Table 1. This
network type is used as a confident option when relation-
ships between system variables are very complicated. The
ANFIS model is based on the first-order Sugeno inference
system and results from the merger of an ANN with an
FIS. An ANFIS model with two input variables consists of
five computational layers (Fig. 1). These layers are defined
as: 1. Fuzzification, 2. product, 3. strength normalization,

4. defuzzifier, and 5. summation. Fuzzification is the first
ANFIS step in which membership function (MF) values
are calculated and where the relationship between model
inputs and outputs is established through a set of logical
rules. Defuzzification is final calculation step in the ANFIS
modeling process. In this study, three optimization meth-
ods were used to create the FIS, including grid partition-
ing (GP), subtractive clustering (SC), and fuzzy c-means
clustering (FCM). These three methods are used to op-
timize fuzzy system parameters. GP is most often used
for ANFIS design; however, when model input numbers
are high, the number of rules increases exponentially. The
number of rules equals the number of MFs to the power
of input variable numbers. GP serves to divide input data
sets into high-dimensional fuzzy grids (FG). Compared to
GP, SC produces fewer fuzzy rules. The SC data set is
divided into clusters. Fuzzy IF-THEN Statement rules are
designed based on cluster centers. The value of the cluster
radius influences the number of fuzzy IF-THEN rules. The
FCM method calculates cluster centers based on minimiz-
ing ANFIS training phase error by the K-means method.
Additional details on these methods can be found in (Jang
1993).

Fig. 2 provides the formulae required to calculate each
ANFIS layer when assuming two input variables (xi, x»).
Initially, input variables are converted to linguistic vari-
ables (A, B) using membership functions (u). Output of
the second layer is called firing strength, which is obtained
through logical operators (AND/OR). Firing strength is the
weight of each rule. The output of the third layer is called
normalized firing strength. In this layer, normalization oper-
ations are performed. In the fourth layer, which are adaptive
nodes, the total weight of IF-THEN rules (1;) are calculated.
Each rule can be stated as IF (x; is A AND x; is B), THEN
(f=p x1+ gx,+c). The symbols p, g, and c represent the fol-
lowing parameters. Finally, in the fifth layer, the sum of the
output of the fourth layer is presented as the crisp output
value or predicted K.P.. The nodes of the fifth layer are
called fixed nodes. The output of each layer is displayed
Wlth OL.

Optimal values of MF and consequent parameters for
ANFIS model experiences during the training phase are
recorded as a training data set and training algorithms. In
this study, two backpropagation and hybrid algorithms were
used in training the ANFIS model. In the backpropagation

Table 1 Walnut kernel quality characteristics using weight, color, ease of shell separation, and fill percentage

Kernel quality Kernel weight Kernel color Shell separation Kernel fill
(grade) (g) (shade) (easy to difficult) (%)

1 >5.5 Extra light, light Very easy to easy >50

2 4.5-6 Extra light, light, light amber Easy to difficult 45-55

3 3.5-5.5 Light, light amber Easy to difficult 40-50

4 <45 Light amber, amber Easy to difficult <45
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Fig. 1 Adaptive neuro-fuzzy interface system structure
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Fig.2 Formulae indicating the computations required for each adap-
tive neuro-fuzzy interface system layer

algorithm, output errors are calculated for each layer and
used to update layer parameters. The slowness of the train-
ing process and the potential for becoming mired in local
minima are detractors of this training method. The hybrid
training algorithm, named for the use of two gradient de-
scent and least-squares optimization methods, does not have
these two problems.

Evaluation of Model Capability

The ANFIS model capability was evaluated by root means
square error (RMSE) and coefficient of determination (R?)
with a regression line between the real (KePe,) and pre-
dicted (KePe,) data sets. The closer R? is to 1 and RMSE
to zero, the greater likelihood the model will accurately
predict and model K.P.. The objective is to classify walnut
kernel quality into four grading classes based on data from
Table 1 using ANFIS. The accuracy criteria were used to
evaluate this classification (Eq. 3) and optimal results were
achieved at 100% accuracy.

i (KePeg; — KePe:pi)2
n

RMSE =

ey
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TP +TN
Accuracy (%) = TP+TIN +FP+FN x 100 3)

where TP and TN are the number of positive and negative
samples correctly identified and correctly rejected, respec-
tively. FP and FN are the number of negative and positive
samples incorrectly identified and incorrectly rejected.
The existing data set (all 100 genotypes) was randomly
divided into two training data sets, one 80 genotype data
and testing set and one 20 genotype data set. The training
data set was used to adjust and optimize ANFIS model pa-
rameters. Testing data sets were used to assess the model’s
functional capability in new situations. Model generaliz-
ability was also assessed by testing data sets of multiple
sizes. MATLAB R2020a software (MathWorks, Inc., Nat-
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Fig.3 Correlation values between walnut kernel fill percentage (KcPe)
and vegetative growth (blue boxes) and nut features (green boxes). Dot-
ted outlines emphasize features with low correlation coefficients
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Fig.4 Principal component analysis requires fewer nut and vegetative
growth characteristics to explain input variance
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Table2 Model prediction error

FIS generation methods Optimization method PCA Train Test Total
values (root mean square error)

for fuzzy inference system (FIS) Grid partition (GP) Backpropagation No 3.15 4.88 3.89
construction methods used in Yes 5.14 6.47 5.55
KePe estimation Hybrid No 2.05 5.16 3.14
Yes 5.56 6.76 5.23
Subtractive clustering (SC) Backpropagation No 0.3 0.11 0.27
Yes 4.87 4.79 4.85
Hybrid No 0.01 7.51 3.36
Yes 4.51 8.31 5.49
FCM clustering (FCM) Backpropagation No 4.71 4.98 4.76

Yes 53 53 53
Hybrid No 1.66 12.25 8.44
Yes 491 6.54 5.27

PCA principal component analysis

ick, MA, USA) was used to run the ANFIS model of this
study.

Results and Discussion
Modeling Kernel Percentage
Feature Selection and Reduction

Associations between walnut kernel fill percentage (K.P.)
and leaf, nut, and fruit characteristics were determined
(Fig. 3). Correlation to Kc.P. resulted in values <0.1 for
three growth characteristics (F2, F3, F5) and three nut
and fruit traits (F9, F11, F13). Previous studies of walnut
morphological diversity correlating kernel fill percentage
to leaf shape and leaf length and width also noted a lack of
significant correlation (Ebrahimi Aziz et al. 2015; Shamlu
et al. 2018). Similar to our results, Khadivi et al. (2019)
reported a correlation coefficient of r=0.04 between kernel
fill percentage and fruit diameter in walnut. A significant
negative correlation has been described between kernel fill
percentage and fruit diameter (Khadivi-Khub and Ebrahimi
2015). Additionally, kernel fill percentage has no significant
correlation with fruit weight and size in walnut (Ebrahimi
Aziz et al. 2015), although a significant positive correlation
exists between kernel fill percentage and kernel weight
(Sharma and Sharma 2001; Cosmulescu and Botu 2012;
Ebrahimi Aziz et al. 2015; Khadivi-Khub and Ebrahimi
2015). Therefore, for modeling purposes, removing these
six features reduced the total input number for the ANFIS
model from 14 features to eight (Fig. 3).

As evidenced in Fig. 4, principal component analysis
(PCA) reduced model input numbers from 14 features to
nine principal components and could explain 98% of the
total variance of the original inputs. Decreasing the number

of model inputs can reduce the required computing volume
and construct a simpler model.

This study utilized three distinct methods (grid partition,
GP; subtractive clustering, SC; FCM clustering, FCM) to
create the FIS and MF parameters, and rules were adjusted
using backpropagation and hybrid training. Application of
a variety of ANFIS methods with RMSE criteria to the
training, testing, and total stages highlighted marked differ-
ences (Table 2). Features derived from PCA failed to reduce
RMSE,; thus, despite the ability to simplify the model and
reduce required inputs, it is necessary to use all 14 features

RMSE
w

100

80

60

40

Number of rules

20

0

0,1 0,3 0,5 0,7 0,9
Influence Radius

Fig.5 Influence radius and squash factor (SF) effects on adaptive
neuro-fuzzy interface system prediction error and number of rules in
KePe estimation
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Fig.6 Table of rules and working steps for the fuzzy inference system of our adaptive neuro-fuzzy interface system model

to generate the least amount of error. The lowest error rates
were obtained when the FIS was generated with the SC
method and optimized using backpropagation. The resul-
tant RMSE value for K.P. estimation was 0.27. Therefore,
with a mean value for K.P. of 45.66, a RMSE of 0.27 is
acceptable.

Use of the ANFIS model necessitates finding optimal
values for two critical parameters, influence radius (IR)
and squash factor (SF). An increased IR leads to increased
RMSE, while increased SF exacerbates the issue (Fig. 5).
Lowering IR to 0.1 decreased RMSE but led to an increase
in the number of rules to 100, increased computations,
and altered graphed output from a smooth to a rough re-
sponse curve. A combination where IR=0.5 and SF= 1 with
11 rules exhibited the best fit with the least RMSE (Fig. 5).
The working steps of the FIS system along with the MF of
the rules and their relationship to each other are presented

Table 3 Adaptive neuro-fuzzy interface system model features and pa-
rameters

Feature Descriptor
AND method Prod

OR method Probor
Implication method Prod
Aggregation method Sum
Defuzzification method Wtaver
Rules between input variables 45

to show the effect on output (Fig. 6). The settings used in
the design of the ANFIS model, and the rules designed be-
tween input variables and their classification position are
based on Gaussian membership function (Table 3).

Our results have shown that the ANFIS model can pre-
dict the walnut kernel fill percentage with an error rate of
less than 1%. However, the amount of data used in the train-
ing phase can be influenced by model training performance
and testing stage error as a generalization capability. Our
study reported variation in RMSE with changes in training
data set size from 50-90%, but the amount was minimal
(Table 4). Thus, the ANFIS model is a reliable predictor
of walnut kernel fill percentage based on vegetative growth
characteristics and nut features as inputs.

Regression equations for actual and predicted (y = a +
bx, R2, [R2=0.99]) K.P. values at the 50% training data
size indicated a slope and y-intercept close to one and

Table 4 Adaptive neuro-fuzzy interface system root mean square error
response to deviations in training size during the train, test, and total
phases

Training sizes Train Test Total
90/10 0.28 0.09 0.27
80/20 0.3 0.11 0.27
70/30 0.35 0.15 0.21
60740 0.6 0.37 0.52
50/50 0.67 0.38 0.55
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O Train

O Test

Train: y=0.98x+0.58, R2 = 0.99
Test: y=1.01x-0.53, R =0.99
Total: y=0.99x-0.03, R =0.99

28 32 36 40 44 48 52 56 60
Number of Genotypes

64 68 72 76 80 84 88 92

Fig.7 Comparison of actual and 2 L Actual
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50% training set size s b
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timation by the adaptive neuro- |
fuzzy interface system model af- 10 }
ter exclusion of selected features -
8 -
w
S
z°7
4 -
2 -
0

All

F6

zero, respectively (Fig. 7). The ANFIS model facilitated
the highly accurate prediction of K.P. values in the test
stage using only 50% of the total training stage dataset.

A sensitivity analysis was used to measure the effects of
each of the eight features with the higher correlation val-
ues and revealed that removal of any one of these features
from the dataset increased prediction error. The impact of
each trait on RMSE revealed that F12 (shell seal diameter)
had the greatest impact, while F6 (leaf color) was least re-
sponsible for error (Fig. 8). Ordering traits from lowest to
highest showed leaf color, nut length, fruit length, full leaf
length, number of leaflets, tree growing habit, nut shape,

All exclude All exclude All exclude All exclude All exclude All exclude All exclude All exclude
F10

F14 F1 F4 F7 F8 F12

and shell seal diameter (F6, F10, F14, F1, F4, F7, F8, and
F12, respectively) showed RMSE of the final four traits to
be above 9.8 and significantly different from the other traits
in the study (Fig. 8). The substantial difference in RMSE
highlights the considerable contributions of these traits in
predicting the walnut kernel fill percentage. The highest
RMSE, 12, was obtained from the exclusion of shell seal
diameter, while an RMSE of 0.36 was determined from the
exclusion of leaf color.

Table 5 Model prediction error

Generate FIS Optimization method PCA Train Test Total
values (root mean square error) - — _

for fuzzy inference system (FIS) Grid partition (GP) Backpropagation No 56.25 54.16 55.24
construction methods used in Yes 4591 42.88 44.75
kernel quality classification Hybrid No 49.11 48.24 48.85
Yes 47.25 43.14 46.66

Subtractive Backpropagation No 95.1 89.5 94

clustering (SC) Yes 89.95 88.91 89
Hybrid No 100 36.74 88.02

Yes 100 42.1 89
FCM clustering Backpropagation No 40.7 52.61 43.05

(FCM) Yes 40.36 31.62 39

Hybrid No 90.5 10.1 75

Yes 100 31.6 87

PCA principal component analysis
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Fig.9 Influence radius and squash factor (SF) effects on adaptive
neuro-fuzzy interface system prediction error and number of rules in
kernel quality classification

Classification

Walnut kernel quality was determined using a classifier.
Similar to K.P. modeling, classifier prediction accuracy is
dependent on the FIS construction method, the model train-
ing algorithm, and the nature of features. Consumers and
the kernel packaging industry desire large, brightly colored
kernels that are appetizing and separate easily from the
nut shell. The ANFIS classifier was used to predict walnut
kernel quality and divide them into groups designated 1-4.
Greater classification accuracy was reported for the training
(95%) and testing (89%) stages using the SC method for
FIS construction with a backpropagation training algorithm
and eight selected features as ANFIS classifier inputs (Ta-

ble 5). A similar improvement in accuracy was discovered
when modeling K.P. using these methods.

ANFIS classification accuracy is contingent upon IR and
SF (See Fig. 7 results). A total of 14 walnut genotype traits
were evaluated, and eight features, four vegetative growth
traits, and four nut related traits were used as model vari-
ables similar to those observed during K.P. modeling.

The parameters producing the least RMSE and lowest
number of rules was the combination of IR=0.6 and SF=1
with 50 rules (Fig. 9). Kernel quality classification accu-
racy was 99% based on eight selected traits. Therefore,
the ANFIS model can discern kernel quality based on the
changes in inputs.

Eight selected features were examined using a sensitivity
analysis to evaluate how the exclusion of each influenced
the accuracy of the ANFIS model (Fig. 10). If the exclusion
of a feature decreases the accuracy of the model classifier,
then that feature is more significant than the combination
of the other traits. Presenting the traits in order from those
deemed least to most important for accuracy of the ANFIS
model, it was established that nut shape (F8) was the pri-
mary influence on model accuracy. The remaining traits,
tree growing habit, number of leaflets, nut length, shell seal
diameter, full leaf length, fruit length, and leaf color (F7,
F4, F10, F12, F1, F14, and F6, respectively) influenced ac-
curacy to a continuously lesser degree with leaf color (F6)
again having the least influence on the model.

Comparison of sensitivity analyses for K.P. modeling
and kernel quality classification indicated selected traits af-
fected the model differently depending on ANFIS model
purpose. While shell seal diameter (F12) was the most im-
portant for walnut kernel fill percentage, nut shape (F8) was
the most important in kernel grading. As such, the RMSE
associated with the prediction of kernel fill percentage in-
creased from 0.31-12 after exclusion of shell seal diameter
(F12), while the exclusion of nut shape (F8) reduced clas-
sifier accuracy >50% (Fig. 10).

Research studies of walnut morphological diversity have
shown nut shape to be a highly diverse trait (Arzani et al.
2008; Shamlu et al. 2018; Khadivi et al. 2019). Ebrahimi A.
et al. (2009). Ebrahimi et al. (2009), in a study on the

Fig. 10 Effectiveness of kernel 100
color quality classification by the

adaptive neuro-fuzzy interface 80
system model after exclusion of

selected features X 60

g

< 40

20

0

All exclude All exclude All exclude All exclude All exclude All exclude All
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Table 6 Assessment of accuracy of kernel quality classification to
adaptive neuro-fuzzy interface system model deviations in training
size during the train, test, and total phases

Training sizes Train Test Total
90/10 98.89 100.00 99.00
80/20 98.70 100.00 99.00
70/30 93.33 95.00 94.00
60/40 92.86 93.33 93.00
50/50 82.40 93.90 88.00

physical characteristics of walnut genotypes reported that
a coefficient of variance in the nut shape was >51%. Most
walnuts produced in Iran are from orchards with seedling
trees, where each tree has a particular nut shape. This al-
lows walnut shape to be a distinctive physical trait that the
packaging and grading industry can use for screening.

To further examine the ability of ANFIS to be used as
an accurate classifier for walnut kernel grading based on
growth and nut characteristics, the size of the model training
set was reduced from 90 to 50% of the total patterns. Results
indicated accuracy in kernel quality classification decreased
as training data set size decreased. Thus, these data show
that ANFIS has less generalizability in the kernel quality
classification than K.P. modeling (see Table 6).

Conclusion

This study sought to present an accurate prediction model
for walnut kernel fill percentage and classification of ker-
nel quality using ANN principles and fuzzy system benefits
acquired by using ANFIS. Seven growth- and seven nut-re-
lated traits were selected as independent variables for the
ANFIS model. Correlation analyses confirmed that a fuzzy
neural relationship existed between eight of the 14 features
(F1, F4, F6, F7, F8, F10, F12, and F14) and that they could
reliably be used in the ANFIS model to predict kernel fill
percentage and kernel quality. PCA was used in an attempt
to decrease the required number of input variables; how-
ever, model accuracy decreased, and the method was used
only for comparison. Use of the ANFIS model to estimate
kernel fill percentage resulted in 0.27% RMSE with a 99%
correlation between actual and predicted data. The percent
accuracy of the model in kernel classification was also 99%.
Both uses for the ANFIS model were promising; however,
the generalizability of ANFIS in modeling was superior
to classification. A global model of ANFIS structure, or
any model based on soft computing, can be developed with
the addition of more complete and universal data sets. At
that point, proposed models can be applied universally for
walnut genetic improvement or other walnut orchard man-
agement issues.

Conflict of interest M. Rezaei, A. Rohani, and S.S. Lawson declare
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