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Abstract
Macrosiphum euphorbiae (aphid) is an important economic pest because it causes significant damage to several crops, notably 
on strawberry. The use of natural enemies, especially predators, is an alternative that is being explored to protect strawberry 
crops against this pest, notably the species Orius laevigatus is a promising predator for biological control. However, the lack 
of suitable habitats and/or food is a constraint to the growth and/or the establishment of the predator populations, reducing 
their effectiveness as control agent against M. euphorbiae. Using additional food resources such as companion plants or 
alternative food sources may support predator population and associated biocontrol services they provide. The objective 
of this study was to evaluate the efficacy of O. laevigatus as biological control agent against M. euphorbiae, mediated by 
the presence of companion plants and alternative prey. We evaluated under greenhouse conditions the effect of Lobularia 
maritima (alyssum) as possible companion plant, as well as Ephestia kuehniella eggs as alternative prey, on O. laevigatus 
populations and biocontrol service in strawberry cropping system. Predators were placed in the presence or absence of 
alyssum and/or E. kuehniella eggs on strawberry plants previously infested with aphids. We showed that the presence of 
alyssum and/or E. kuehniella eggs enhanced O. laevigatus population growth (when compared to a control group). Fur-
thermore, we observed a steady reduction of M. euphorbiae populations when the companion plant was present alone or 
when it was associated with the alternative prey. Finally, the treatment with the combination of alyssum and alternative prey 
resulted in the highest yield (number of fruits per plant). Our study demonstrated that combining alyssum, as a companion 
plant, and E. kuehniella eggs, as an alternative prey, could be an effective option for establishing O. laevigatus populations 
and for controlling aphids in strawberry cropping systems.

Keywords Alternative food sources · Non-prey food · Mixed diets · Predator · Macrosiphum euphorbiae · Biological 
control

Introduction

The development of synthetic insecticides in the mid-
twentieth century made the controlling of herbivorous pests 
quite adequate, and these chemicals are still widely used in 
modern agriculture (Lu et al. 2012; Goulson 2019). How-
ever, long-term and over-dosage applications of chemical 
pesticides lead to food safety concerns, insect pest resist-
ance, and adverse effects on non-target organisms (e.g., see 
Menail et al. 2020; Palma-Onetto et al. 2021; Passos et al. 
2022 and Desneux et al. 2007 for a thorough review). Due 
to these critical limitations, biological control of arthropod 
pest populations by natural enemies has become an essential 
pest management method (Ragsdale et al. 2011; Heimpel 
and Mills 2017; Michaud 2018; Zang et al. 2021) notably in 
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Integrated Pest Management (IPM) packages (Desneux et al. 
2022). Biological control is an environmentally friendly 
technique of using organisms to reduce pests and their 
effects on crops (Heimpel and Mills 2017). Augmentative 
biological control—inundation type—involves the release 
of mass-reared natural enemies, such as predators, in large 
numbers to obtain immediate pest control (Collier and Van 
Steenwyck 2004; Perez-Alvarez et al. 2019; Huang et al. 
2020). Although augmentative biological control is effec-
tive, natural enemies tend to rapidly disappear from crops 
once pest prey resources are mostly consumed, requiring 
frequent and costly reintroductions (Bennison et al. 2011; 
Messelink et al. 2014; Oveja et al. 2016; Labbé et al. 2018). 
To avoid these challenges, providing alternative diets such 
as alternative prey and/or companion plants showed great 
potential for sustaining biocontrol agents and thus to support 
the biocontrol services they provide (Lundgren et al. 2009; 
Messelink et al. 2014; Damien et al. 2020; Li et al. 2021). 
Indeed, food resources from companion plants (e.g., nectar 
or pollen) and alternative prey (e.g., Ephestia kuehniella 
eggs) are used as supplemental food to support beneficial 
arthropods in crops (Messelink et al. 2014).

Companion plants are secondary plants (considering the 
crop plant as the primary one in the agroecosystem) pur-
posely established directly next to individual crop plants in 
order to offer an additional service. For instance, whereas 
crop plants provide food or fiber provision, companion 
plants provide pest regulation (Parolin et al. 2012a, b; Parker 
et al. 2013). Several strategies can provide predatory insects 
with the resources they need (so-called non-prey food or 
banker plants): food sources (e.g., nectar or pollen) and/or 
shelter (refuges, habitats, mating or oviposition sites) (Lun-
dgren et al. 2009; Wäckers and Van Rijn 2012; Gurr et al. 
2016; Lu et al. 2014; Ramsden et al. 2015; Chen et al. 2022). 
Then, companion plants allow natural enemies to survive 
and reproduce within a cropping system which can increase 
their abundance and their capacity to regulate pest popula-
tions (Begum et al. 2006; Frank 2010; Huang et al. 2011; 
Parolin et al. 2012a, b; Parker et al. 2013; Han et al. 2022). 
The flowering plant alyssum Lobularia maritima (Brassi-
caceae) shows several characteristics that could make it an 
excellent candidate as companion plant. For instance, this 
plant has a long flowering period (about 10 months) which 
means it can provide pollen and floral nectar for extended 
periods (Picó and Retana 2000). It attracts several natural 
enemies and enhances their fitness, thus having the potential 
to be an efficient companion plant in various contexts (e.g., 
Berndt and Wratten 2005; Hogg et al. 2011; Pumariño and 
Alomar 2012; Tiwari et al. 2020); this flowering plant may 
sustain natural enemies even when pest populations are low 
(Messelink et al. 2014).

Artificial food sources are foods produced from one or 
more ingredients, that are provided to replace natural food 

(prey or host), and that that are more convenient from a 
technical and/or economic perspectives (Pascacio-Villafán 
et al. 2017). Many artificial food sources, such as alterna-
tive prey, have the potential for enhancing establishment of 
natural enemies (Riddick 2009; Messelink et al. 2014). Due 
to their high percentage of amino acids and lipids, lepidop-
teran eggs, such as those of moth E. kuehniella (Lepidop-
tera: Pyralidae), are commonly used for mass rearing of 
various natural enemies, including predatory heteropterans 
(e.g., Orius spp., Macrolophus pygmaeus Wagner), coccinel-
lid beetles (e.g., Harmonia axyridis Pallas, Adalia bipunc-
tata L.), lacewings (Chrysoperla spp.), and egg-parasitoids 
belonging to the Trichogramma genus (Specty et al. 2003; 
Bonte and De Clercq 2008, 2011; Riddick 2009; St-Onge 
et al. 2014; Pehli ̇van 2021; Zang et al. 2021; Zhang et al. 
2021). Cocuzza et al. (1997) proposed E. kuehniella eggs as 
the most important food source, which resulted in positive 
effects for O. laevigatus fitness parameters such as fecundity, 
oviposition period, and female longevity.

The simultaneous  use of various  alternative food 
resources has been proposed to induce synergistic posi-
tive effects on predator population growth (Pekas and Wäck-
ers 2017); combination of multiple resources for mutualistic 
arthropods can be better than the sum of each reward pro-
vided individually. Likewise, the combination of the com-
panion plant L. maritima  (alyssum thereafter) together with 
the alternative prey Ephestia eggs may have an additive, 
or even so a synergistic, enhancing effect(s) on predator 
population growth.

In this context we  aimed to characterize the effects of 
supplemental food resources on establishing O. laeviga-
tus  populations in strawberry cropping systems. The 
study was designed to (i) determine whether a strawberry 
crop alone can support O. laevigatus population growth, (ii) 
test if the addition of alyssum as an intercrop to strawberry 
can enhance O. laevigatus population growth, (iii) deter-
mine if adding Ephestia eggs can enhance O. laevigatus 
population growth, (iv) assess if alyssum combined with 
Ephestia eggs can support increased O. laevigatus popula-
tion growth, owing to an additive or synergistic effect, (v) 
analyze the effects of these different treatments on the regu-
lation of aphid population on strawberry, and (vi) evaluate 
the potential impact on crop yield.

These objectives were tested on the cultivated straw-
berry Fragaria x ananassa, an important fruit crop. It has 
grown in popularity in recent decades, as more emphasis 
is placed on the health benefits of eating fruits and berries 
(Aaby and Remberg 2015). Nevertheless, Western Flower 
Thrips (Frankliniella occidentalis) and aphids (e.g., Macro-
siphum euphorbiae) are the two major pests in greenhouse 
strawberry production systems (Solomon et al. 2001; Hulle 
et al. 2020). The minute pirate bug O. laevigatus (Fieber) 
(Hemiptera: Anthocoridae) is the most successful biocontrol 
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species in strawberry cropping systems and it is used in aug-
mentative release programs (Bouagga et al. 2018). Its prey is 
diverse, with a clear preference for pests, including aphids, 
mites, and thrips (Venzon et al. 2002).

Material and methods

Biological material

Strawberry plants (three-month old seedlings, < 7 cm 
height), variety 'Amandine' (Pépinières Martaillac, Saint 
Marthe, France) were planted in 14-cm-diameter pots 
with potting mix (Sphagnum peat moss, Softwood bark 
compost, Brown peat, Horse manure, Sea algae, Earth-
worm Compost) and pine bark. They were placed in 
a greenhouse for three weeks and supplied with water 
three times a week (due to high water retention of the 
potting mix). In addition, a nutrient solution was sup-
plied through capillary systems before and during the 
experiment.

Lobularia maritima (L.) Desv. 1815 (alyssum) seeds 
were planted in 7 × 7 × 6.5 cm pots and placed in a growth 
chamber (25 ± 1 °C, 65 ± 5% RH, and 14:10 L:D). After 
20 days, they were transferred to the greenhouse. They 
were watered and acclimatized for 7 days before being 
transplanted to larger plastic pots (diameter 10 cm, height 
9 cm). The plants had all reached the flowering stage 
before their use in the experiment.

Orius laevigatus colony originated from Biobest, 
France, and was reared in plexiglass cages and fed with 
E. kuehniella eggs on strawberry and alyssum plants. The 
rearing cages were kept in growth chambers (25 ± 1 °C, 
65 ± 5% RH, and 14:10 L:D). The M. euphorbiae colony 
was initiated using individuals naturally infecting tomato 
plants in the INRAE Sophia Antipolis experimental 

station. The aphid colony was reared on tomato plants in 
greenhouse cages covered with mesh. E. kuehniella eggs 
used as alternative prey were refrigerated at 8–10 °C for 
conservation.

Experimental design

Experiments were conducted in an environment-controlled 
greenhouse (T=25 °C and RH=60%) at INRAE Sophia 
Antipolis experimental station in Spring 2021. The experi-
mental design was a randomized block design within four 
compartments comprising four treatments in each compart-
ment (Fig. 1; Suppl. 1). Each of the four distinct compart-
ments in the greenhouse was 40  m2. Treatments in a given 
compartment were isolated from one another by fine mesh 
nylon, which formed tunnels (height: 2 m, width: 1 m, 
length: 5 m) and prevented insect transfer (Jaworski et al. 
2015; Campos et al. 2020). Each tunnel contained one row 
(4.84 m long and 30 cm wide for one row) on which all the 
potted plants were placed about 20 cm from the soil (Suppl. 
1).

The four treatments (A–control; B–alyssum; C–Ephestia 
eggs and D–alyssum + Ephestia eggs) were arranged in a 
randomized complete block design and repeated once in 
each compartment (n = 4; Fig. 1). The strawberry plants 
were selected to obtain the same number of flowers in each 
treatment. Treatments without alyssum had 16 strawberry 
plants with 30 cm between plants, while treatments with 
alyssum had 16 strawberry plants and 8 alyssums, i.e., one 
alyssum between 2 strawberry plants. The spacing between 
strawberry and alyssum plants was 15 cm as recommended 
by Brennan (2016). Ephestia eggs (1 g/plant) were intro-
duced once a week through sprinkling by hand over straw-
berry leaves on treatments containing Ephestia eggs.

The predator O. laevigatus and the aphid M. euphorbiae 
were introduced in all treatments. Before inoculation, aphid 

Fig. 1  Greenhouse experimental 
setup
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individuals were collected from the colony on fresh tomato 
leaves. Then, 5 randomly selected individuals were placed in 
every second strawberry plant throughout the four treatments 
in all compartments (Fig. 1). Aphids were released 1 week 
before predators. Four O. laevigatus adults (1 male for 3 
females) were released 3 times (once a week for the first 
three weeks) in each replicate for all the treatments in the 
middle of each row to ensure a homogeneous distribution.

Data recording

Population dynamic of both insect species (O. laevigatus 
and M. euphorbiae) was monitored weekly during 8 weeks 
following the first release of predators. The number of indi-
viduals was counted in the morning (7:00 to 10:00 a.m.) on 
each replicate. For each counting, numbers of O. laeviga-
tus (adults and nymphs), and M. euphorbiae (adults and 
nymphs) per plant (both strawberry and alyssum) were 
assessed in situ by examining the stems, leaves, and flow-
ers of plants. In addition, strawberry flowers were examined 
in situ for O. laevigatus nymphs, particularly between the 
receptacle and the calyx. The number of fruits per straw-
berry plant was also recorded and used as a proxy for straw-
berry yield at the end of the experiment.

Statistical analysis

In order to compare the effect of our four treatments on the 
population dynamic of both the predators and pests, we 
completed a generalized estimating equation (GEE, pack-
age “geepack”) and a Poisson distributed response. The GEE 
was used to account for the effect of time and data inter-
dependence, as well as the option of including the plant’s 
identity number in the formula to specify the presence of 
autocorrelation on the data over time. When significant 
effects were found, the Least Square Means (“lsmeans”) R 
package was used to perform Tukey’s HSD tests for post hoc 
pairwise comparisons. This model enabled us to compare 
the tendency of the complete temporal set of data between 
treatments.

The effect of treatments on fruit mean number per treat-
ment was evaluated using ANOVA, associated with the 
Tukey’s HSD tests for post hoc pairwise comparisons.

All statistical analyses were performed using version 
3.4.2 of the R software program (R core Team, 2013).

Results

Impact of treatments on predator population 
dynamics

The average number of O. laevigatus (nymphs and adults) 
per plant varied over time and according to the treatments 
applied (Table 1, Fig. 2). The evolution of the number of 
predators (nymphs and adults) was almost stable until day 28 
before increasing exponentially for the treatments in which 
alyssum and/or E. kuehniella eggs were included except for 
the control treatment where the population remained very 
low (less than 0.5 individuals/plant) from the beginning to 
the end of the experiment. The presence of alyssum alone 
and its association with the addition of the eggs seemed 
to influence the fluctuation of the predator population in a 
similar way. The number of nymphs was higher when eggs 
were provided as alternative prey on strawberry plants from 
day 42.

Impact of treatments on pest population dynamics

Both treatment and time (and their interaction) have effects 
on the number  of M. euphorbiae individual per  plant 
(Table 1, Fig. 3). The presence of companion plant (alys-
sum) and alternative prey (E. kuehniella eggs) significantly 
decrease the number of pest individuals per plant. Without 
alyssum and E. kuehniella eggs (control treatment), this 
number increased rapidly from less than 1 individual/plant 
to more than 7 individuals/plant. The impact of E. kuehniella 
eggs on M. euphorbiae population was observed only from 
day 21, with a significant and rapid decrease in M. euphor-
biae populations until day 56. On the other hand, in the 
presence of alyssum (with or without eggs), M. euphorbiae 
numbers remained consistently low (< 2 individuals/plant).

Impact of treatments on fruit production

The average number of fruits produced per plant was influ-
enced by the various treatments applied, i.e., the presence 
or not of alyssum, the presence or not of E. kuehniella eggs, 
or the simultaneous presence of both (alyssum + E. kuehn-
iella eggs) (Fig. 4). Analysis of variance indicated signifi-
cant differences between the number of fruits obtained per 
plant according to treatments (df = 3, F = 150, P < 0.001). 
The highest number was obtained when alyssum was associ-
ated with the alternative prey, followed, respectively, by the 
treatments with the presence of alyssum and E. kuehniella 
eggs only, and the lowest number of fruits was obtained in 
the control treatment.
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Discussion

Our study evaluated the importance of providing additional 
and diversified food sources for the establishment of the 
predator O. laevigatus population using alternative prey and/
or companion plants to control population of M. euphorbiae.

O. laevigatus population was not able to establish on 
strawberry alone (control); such low level observed could 
be explained by the fact that the presence of prey (aphids) 
only on strawberry is not qualitatively and/or quantitatively 

sufficient to allow the predator establishment and growth 
(Desneux et al. 2019). This could also be due to this spe-
cies’ difficulty or slowness in establishing and multiplying 
on strawberry. Indeed, Bennison et al. (2011) asserted that 
O. laevigatus established slowly on strawberry, especially 
when flowers are scarce. Regarding M. euphorbiae (aphid) 
population dynamic in the control treatment, the rapid and 
continuous increase in aphid number per plant could be 
related to the low number of predators in this treatment. 
Indeed, the establishment and very slow growth of predators 

Table 1  Number of Orius laevigatus adults and nymphs,  as well as 
Macrosiphum euphorbiae  (adults + nymphs), per plant (means and 
SE),  according to the treatments and the times (days) as well as all 
the pairwise interaction (a - GEE: generalized estimating equation, b 

- Tukey’s HSD post hoc test). For a given group (i.e. O. laevigatus 
nymphs, O. laevigatus adults, and M. euphorbiae) letters indicate sig-
nificant differences among treatments and among sampling days (at P 
< 0.05).

(a)

Explanatory variables Number of Orius laevigatus adults Number of Orius laevigatus nymphs Number of Macrosiphum 
euphorbiae

df �
2 P value df �

2 P value df �
2 P value

Treatment 3 153  < 0.001 3 103  < 0.001 3 269.8  < 0.001
Time 7 1335  < 0.001 7 909  < 0.001 7 6.3 0.012
Treatment: Time 3 8 0.049 3 9 0.034 3 74.1  < 0.001

(b)

Species Days Nb of individuals per plant

Strawberry Strawberry + Alyssum Strawberry + Ephestia Strawberry + Alys-
sum + Ephestia eggs

Orius laevigatus (nymphs) 7 0.00 ± 0.00 d 0.00 ± 0.00 d 0.00 ± 0.00 d 0.00 ± 0.00 d
14 0.00 ± 0.00 d 0.00 ± 0.00 d 0.00 ± 0.00 d 0.00 ± 0.00 d
21 0.03 ± 0.03 d 0.03 ± 0.03 d 0.06 ± 0.04 d 0.13 ± 0.06 d
28 0.02 ± 0.02 d 0.13 ± 0.06 d 0.11 ± 0.05 d 0.13 ± 0.04 d
35 0.00 ± 0.00 d 0.14 ± 0.04 d 0.45 ± 0.11 cd 0.23 ± 0.08 d
42 0.02 ± 0.02 d 0.58 ± 0.16 cd 2.58 ± 0.35 ab 1.02 ± 0.15 c
49 0.39 ± 0.14 cd 2.15 ± 0.30 b 2.53 ± 0.35 ab 2.30 ± 0.30 b
56 0.17 ± 0.04 cd 2.23 ± 0.22 b 3.19 ± 0.31 a 3.13 ± 0.31 a

Orius laevigatus (adults) 7 0.00 ± 0.00 g 0.00 ± 0.00 g 0.00 ± 0.00 g 0.00 ± 0.00 g
14 0.08 ± 0.04 g 0.06 ± 0.03 g 0.11 ± 0.05 g 0.10 ± 0.03 g
21 0.14 ± 0.06 g 0.17 ± 0.53 g 0.25 ± 0.12 g 0.18 ± 0.06 g
28 0.11 ± 0.04 g 0.45 ± 0.09 fg 0.38 ± 0.08 fg 0.59 ± 0.09 fg
35 0.20 ± 0.08 g 0.69 ± 0.12 efg 1.44 ± 0.18 def 1.39 ± 0.18 def
42 0.20 ± 0.78 g 1.57 ± 0.19 de 1.72 ± 0.24 de 1.69 ± 0.22 d
49 0.67 ± 0.17 defg 3.09 ± 0.30 bc 4.72 ± 0.53 a 3.26 ± 0.39 bc
56 0.45 ± 0.13 fg 2.80 ± 0.26 c 4.03 ± 0.35 ab 3.54 ± 0.32 bc

Macrosiphum euphorbiae 7 0.00 ± 0.00 g 0.00 ± 0.00 g 0.00 ± 0.00 g 0.00 ± 0.00 g
14 3.11 ± 0.71 def 1.05 ± 0.33 fg 2.63 ± 0.63defg 1.29 ± 0.51 fg
21 5.02 ± 0.83 bcd 1.75 ± 0.51 fg 6.05 ± 1.06 abc 1.56 ± 0.45 fg
28 5.00 ± 0.85 bcd 1.83 ± 0.40 efg 5.00 ± 0.83 bcd 1.34 ± 0.33 fg
35 7.33 ± 0.92 ab 1.45 ± 0.34 fg 4.44 ± 0.71 cde 1.28 ± 0.29 fg
42 7.92 ± 1.08 a 1.89 ± 0.37 efg 1.91 ± 0.42 efg 0.71 ± 0.22 fg
49 5.09 ± 0.49 abcd 0.03 ± 0.03 g 0.09 ± 0.07 g 0.04 ± 0.03 g
56 7.32 ± 1.04 ab 0.08 ± 0.04 g 1.06 ± 0.34f g 0.08 ± 0.05 g
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Fig. 2  Evolution of O. laevigatus nymphs (a) and adults (b) populations (means and SE) according to the treatments and the times (days)
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on strawberry in the absence of alyssum and E. kuehniella 
eggs could favor the development of aphid populations. 
Finally, our study's evolution of the number of fruits per 
plant was inversely related to the number of aphids. When 
there are more aphids per plant, there are fewer fruits per 
plant. This result is in line with Paranjpe et al. (2003) where 
the cultivar with the highest number of fruits showed the 
lowest number of aphids. Indeed, aphids are known to affect 
crop yield through the transmission of viruses and/or by 

sucking out plant sap (Rabasse et al. 2001; Martin and Tzan-
etakis 2006). However, it should be noted that the conditions 
for fruit development are not optimal in this experimental 
design because the strawberry plants were inserted in tun-
nels closed off by insect-proof nets preventing the monitored 
insects from getting out but also the external insects, thus the 
pollinators, from getting in.

The supplementation with Ephestia eggs (Straw-
berry + Ephestia eggs) increased fecundity and established 

Fig. 3  Evolution of M. euphorbiae (adults + nymphs; mean ± SE) population according to the treatments and the time (days)

Fig. 4  The average number 
of fruits per strawberry plant 
(mean ± SE) according to the 
treatments. Different letters 
indicate significant difference at 
P < 0.05 (ANOVA followed by 
Tukey’s HSD post hoc test)
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the highest O. laevigatus population which is in line with 
a previous laboratory experiment, where we reported an 
increased number of O. laevigatus nymphs on strawberry 
supplemented with Ephestia  eggs (Suppl. 2). Pumarino 
and Alomar (2012) also observed a strong positive effect of 
Ephestia eggs input to another Orius species in laboratory 
conditions. Providing diets of only plant parts to omnivorous 
predators is insufficient to maintain a good fitness and the 
presence of a prey (targeted pest or others) is a necessity for 
predator fecundity (Vacante et al. 1997; Cocuzza et al. 1997; 
Pumariño and Alomar 2012; Suppl. 2). Ephestia eggs are 
also successfully used for mass rearing of O. laevigatus as 
they have been shown to be nutritionally superior to other 
natural and artificial foods increasing longevity, especially 
for the genus Orius (Cocuzza et al. 1997; Pehli ̇van 2021; 
Gallego et al. 2022). Specty et al. (2003) also showed that 
the predator Harmonia axyridis had a good developmental 
capacity when fed with E. kuehniella eggs than with aphids 
as prey but Sylla et al. (2016) showed equivalent effect of 
both Ephestia and aphid prey on several traits (including 
fertility) of the mirid predator Macrolophus pygmaeus. On 
the other hand, the number of aphids in the presence of E. 
kuehniella eggs dropped later, compared to the control treat-
ment, probably due to the preference of predators to feed first 
on E. kuehniella eggs which is a better food source (Pehliv̇an 
2021) before attacking aphids. In a similar experiment on 
pepper plants, Messelink et al. (2015) also showed that the 
most efficient control of the aphid population was achieved 
with Macrolophus pygmaeus as predator in combination 
with a weekly application of supplemental food including 
E. kuehniella eggs.

Alyssum could be considered a companion plant of 
choice in maintaining and growing O. laevigatus populations 
because it flowers prolifically and continuously provides pol-
len and nectar for predators, then O. laevigatus could repro-
duce, even without prey (Bennison et al. 2011; Ribeiro and 
Gontijo 2017). Alyssum might provide resource subsidies 
during times of prey scarcity as omnivorous predators may 
profit from a combination of plant components (particularly 
pollen; Vacante et al. 1997; Pumariño and Alomar 2012). 
Furthermore, the reduction of pests over time in the presence 
of alyssum only or alyssum + E. kuehniella eggs would thus 
be explained by the negative impact of predator population 
growth on their growth. In other words, the more O. laeviga-
tus multiplies, the less the number of aphids increases. In 
effect, once established on alyssum, predators would then 
disperse on strawberry plants to attack the pests reducing 
the number of pests, as Bennison et al. (2011) observed in 
their study on western flower thrips.

A synergistic impact of multiple resources on the pop-
ulation dynamics of predatory mites for better pest con-
trol has been demonstrated in citrus (Pekas and Wäckers 
2017). In the present  study, we expected the treatment 

[strawberry + alyssum + Ephestia eggs] would provide a 
more well-balanced and nutrient-rich diet to support Orius 
populations, as suggested by Vacante et al. (1997) or Puma-
rino and Alomar (2012) results in laboratory conditions. In 
addition to benefit from the presence of prey (aphids and/or 
E. kuehniella eggs), predators also benefit from the presence 
of pollen from strawberry and alyssum flowers. However the 
presence of multiple resources was not synergistic even so 
additive in establishing Orius population when compared to 
the treatment with alyssum only. Also, as the number of off-
spring is limited by the initial number of individuals intro-
duced, it is possible that synergistic and/or additional effects 
of nutrient resources cannot be observed in our conditions. 
Then to confirm the absence/presence of a synergistic effect, 
we should redo the experiments by testing higher initial 
predator density. Interestingly, the highest fruit number was 
reached in the treatment [strawberry + alyssum + Ephestia 
eggs] suggesting that pest control could improve strawberry 
yield, even though this experiment does not demonstrate 
the effects of aphids on fruit quality (Van Oystaeyen et al. 
2022). Indeed, the increase in O. laevigatus populations due 
to alyssum and E. kuehniella eggs would have reduced aphid 
damages on strawberry plants by reducing their populations.

The establishment of O. laevigatus populations appears 
to be a critical factor in their practical use as a biological 
control agent in strawberry crops. The use of alternative 
prey and/or companion plant in IPM is being increasingly 
studied (Letourneau et al. 2011; Biondi et al. 2016; Konan 
et  al. 2021). Moreover, our study provided evidence of 
the beneficial effects of their use on O. laevigatus and the 
biological control of M. euphorbiae. Thus, alyssum plants 
used alone or combined with E. kuehniella eggs-maintained 
predator populations and reduced M. euphorbiae damage 
on strawberry plants. These resources, besides providing 
quality food sources, did not interfere with the control of 
M. euphorbiae by O. laevigatus and could therefore be con-
sidered essential elements in implementing IPM systems for 
strawberry. Furthermore, the use of alyssum could provide 
an additional service to the agrosystem, by also attracting 
pollinators and thus promoting the pollination of strawberry 
plants (Hodgkiss et al. 2019). With the establishment of the 
predator population achieved, it is now necessary to question 
the possibility of maintaining the predator in the system, 
especially after the collapse of the pest population (Symond-
son et al. 2002; Messelink et al. 2014). Are these proposed 
alternative feeds sufficient to maintain the predator popula-
tion, even in the complete absence of prey?
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