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Abstract
The sweet potato (cotton) whitefly Bemisia tabaci is a major agricultural pest in various fields and vegetable crops worldwide. 
It causes extensive damage by direct feeding on plants, reducing quality, secreting honeydew and transmitting plant viruses. 
B. tabaci is known for its genetic diversity and considered a complex of biotypes or, as suggested, a complex of distinct 
cryptic species. Management of whiteflies relies mainly on the use of insecticides; however, its ability to develop resistance 
to major insecticide classes creates a serious challenge to farmers and pest control specialists. Among the cryptic species 
of B. tabaci, MED is considered more resistant than the MEAM1 to insecticides such as pyriproxyfen and neonicotinoids; 
however, in recent years there are other species of B. tabaci including MEAM1, Asia I and Asia II-1 that have developed high 
resistance to various groups of insecticides. Advanced methods based on molecular and gene sequence data obtained from 
resistant and susceptible field-collected B. tabaci populations resulted in a better understanding of resistance mechanisms in 
this pest. Several components of IPM-IRM (Integrated Pest Management-Insecticide Resistance Management) programs such 
as selective and biorational insecticides, insecticide rotation with different modes of action and nonchemical control methods 
are among the countermeasures of insecticide resistance management for this pest. In the current review, we concentrate on 
insecticide resistance and resistance management of B. tabaci, focusing on reports published mainly over the past 10 years.

Keywords Bemisia tabaci biotype/species: insecticide resistance · IPM·IRM strategies

Key message

• Bemisia tabaci is globally considered one of the top agri-
cultural pests.

• Tremendous efforts are invested in developing new insec-
ticides which are highly target-specific in B. tabaci.

• Bemisia tabaci has evolved resistance to insecticides 
from most chemical classes including novel insecticides.

• Advanced methods based on molecular and gene 
sequence data obtained from resistant and susceptible 
field-collected B. tabaci populations resulted in better 
understanding of resistance mechanisms in this pest.

• There are several components of IPM-IRM programs 
such as selective and biorational insecticides, insecticide 
rotation with different modes of action and nonchemical 
control methods.

Introduction—the whitefly Bemisia tabaci

The sweet potato (cotton) whitefly, Bemisia tabaci (Gen-
nadius, 1889) (Hemiptera: Aleyrodidae) is a global, seri-
ous pest of vegetable, field and ornamental crops (Byrne 
and Bellows 1991; Oliveira et al. 2001; Stansly and Naranjo 
2010). This pest directly harms plants by feeding on phloem 
sap and excretes honeydew on leaves and fruits, which forms 

Communicated by N. Desneux.

 * A. Rami Horowitz 
 hrami@volcani.agri.gov.il

1 Department of Entomology, Agricultural Research 
Organization (ARO), Gilat Research Center for Arid & 
Semi-Arid Agricultural Research, 85280 Rishon LeZion, 
Israel

2 Katif Research Center, Sedot Negev; the Ministry of Science, 
Technology & Space, 85200 Netivot, Israel

3 Institute of Olive Tree, Subtropical Crops and Viticulture, 
Hellenic Agricultural Organization – Demeter, 
71307 Heraklion, Greece

4 Crop Science Division R &D - Pest Control, Bayer AG, 
40789 Monheim, Germany

5 Department of Entomology, ARO, The Volcani Center, 
7505101 Rishon LeZion, Israel

http://orcid.org/0000-0002-5994-8395
http://crossmark.crossref.org/dialog/?doi=10.1007/s10340-020-01210-0&domain=pdf


894 Journal of Pest Science (2020) 93:893–910

1 3

a substrate for the growth of black sooty mold that stains 
the leaves, impairs photosynthesis and reduces fruit qual-
ity. In cotton, the honeydew may cause fiber stickiness that 
interferes with the spinning process in the textile mills and 
greatly reduces the product’s value (Ellsworth et al. 1999; 
Hequet et al. 2007). Bemisia tabaci is a vector of more than 
100 plant viruses (Jones 2003; Hogenhout et al. 2008), and 
in some cases, viral diseases are limiting growth factors and 
may cause total crop loss. Cotton leaf curl Virus (CLCV), 
which is transmitted by B. tabaci, is a major disease of cot-
ton in Asia and Africa, and tomato yellow leaf curl virus 
(TYLCV) is among the most damaging viruses that harms 
tomato crops worldwide.

Economic losses due to B. tabaci are enormous; Hen-
neberry and Faust (2008) summarized some reports related 
to economic losses, which estimated approximately 10 billion 
US dollars (USD) during the years 1980 to 2000. Perring et al. 
(1993) estimated the direct losses due to whiteflies outbreaks 
over a half billion USD in the USA during 1991, and in India 
they estimated the losses in 1991 to various bean crops to 
be approximately 300 USD (Henneberry and Faust 2008). 
In Arizona, California and Texas, cotton growers spent 154 
million USD during 1994–1998 to control the whitefly and 
prevent cotton lint stickiness (Ellsworth et al. 1999). However, 
losses due to virus diseases transmitted by B. tabaci were 
considered the most damaging: Briddon (2003) reported that 
cotton leaf curl virus (CLCV) caused 5 billion USD losses to 
cotton in Pakistan from 1992 to 1997, and Legg et al. (2014) 
estimated that cassava mosaic disease (CMD) and cassava 
brown streak disease (CBSD) caused annual production losses 
of more than 1 billion USD in Africa.

Bemisia tabaci is known for its genetic diversity and is con-
sidered a complex of biotypes (Brown et al. 1995; Perring 
2001; Xu et al. 2010) or, as suggested, a complex of distinct 
cryptic species (De Barro et al. 2011; Boykin et al. 2012; Liu 
et al. 2012; Boykin and De Barro 2014). The biotypes/species 
are largely differentiated based on biochemical or molecular 
polymorphism markers and differ in their biological charac-
teristics such as host plant range, the capacity to cause plant 
disorders, attraction by natural enemies, expression of resist-
ance and plant virus-transmission capabilities (e.g., Bedford 
et al. 1994; Sanchez-Campos et al. 1999; Horowitz et al. 2005; 
Kontsedalov et al. 2008; Watanabe et al. 2019). The B bio-
type is the most widespread biotype on a worldwide scale 
(belongs to the Middle East Asia Minor 1—MEAM1 group) 
and is proposed to be originated from the Middle East–Asia 
Minor region (De Barro et al. 2011). This biotype was identi-
fied in the late 1980s (Costa et al. 1993), following extensive 
outbreaks of B. tabaci in the southwest USA. An additional 
common biotype Q (belongs to the Mediterranean—MED 
group), which possibly originated in the Iberian Peninsula, 
has since spread globally (Horowitz et al. 2003; Boykin et al. 
2007; Chu et al. 2010). So far, the genetic groups of B. tabaci 

are composed of at least 40 morphologically indistinguishable 
species (Dinsdale et al. 2010; De Barro et al. 2011; Boykin 
and De Barro 2014; Hu et al. 2017). In the current review, we 
will use both terminologies (biotype/species), depending on 
the cited literature.

Bemisia tabaci has evolved resistance to insecticides from 
most chemical classes; among the common cryptic spe-
cies, MED (biotype Q) is considered more resistant than the 
MEAM1 (biotype B) to insecticides such as pyriproxyfen and 
neonicotinoids (e.g., Horowitz et al. 2005); however, in recent 
years, there are other species of Bemisia including MEAM1, 
Asia I and Asia II-1 that have developed high resistance levels 
to various groups of insecticides (e.g., Naveen et al. 2017; 
Dângelo et al. 2018).

The dynamics of B. tabaci species and their 
association with insecticide resistance

MEAM1 (B) is considered the most common B. tabaci spe-
cies, and it has probably been dispersed throughout the world 
by international trade mainly with ornamentals. Early reports 
have indicated that an invasion of a new biotype resulted in the 
displacement of indigenous biotypes as a result of competition 
or possibly other reasons (B biotype displaced A biotype in 
the USA, Brown et al. 1995; the displacement of B by non-B 
populations such as Q, Guirao et al. 1997; Q biotype dis-
placed B when insecticide selection occurred, Horowitz et al. 
2005). Since then, many reports have shown similar changes 
in biotypes/species of B. tabaci elsewhere, apparently due to 
frequent use of insecticides and development of insecticide 
resistance. Since 2005, a shift of biotype B to Q occurred 
in many locations of China (e.g., Teng et al. 2010; Li et al. 
2017). An opposite process has been observed in Israel, where 
since 2009, a significant shift in the biotype ratios has been 
observed: the B biotype replaced the Q biotype in most crops. 
At the same time, resistance to pyriproxyfen was reduced con-
siderably. The reason for this phenomenon is not clear, but 
it may relate to using less pyriproxyfen and neonicotinoids 
(Crowder et al. 2011; Horowitz and Ishaaya 2014). In addition, 
biotype Q prefers protected crops (Kontsedalov et al. 2012) as 
also reported from the USA and Italy (Mckenzie et al. 2012; 
Parrella et al. 2012).

This paper reviews insecticide resistance and management 
issues among B. tabaci species with a focus on studies pub-
lished mainly within the past decade.

Insecticide resistance in Bemisia tabaci 
species

Insecticide resistance in B. tabaci is widespread, and it 
has evolved to most of the insecticides used (Basit 2019). 
According to Mota-Sanchez and Wise (2019) (Arthropod 
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Pesticide Resistance Database, Michigan State Univer-
sity), there are so far approximately 650 reported cases of 
insecticide resistance in the genus Bemisia, and resistance 
was detected to more than 60 active ingredients.

The mechanisms of resistance in B. tabaci are similar to 
those described for other pest species, i.e., metabolically 
driven by elevated levels of detoxification enzymes or by 
point mutations resulting in target-site resistance.

Table 1 summarizes the global distribution of resistance 
to insecticides in species/biotypes of B. tabaci according 
to recent reports from various countries. Both MED (Q) 
and MEAM1 (B) species have developed resistance to 
most insecticide classes; however, where both species are 
available side by side, MED has developed higher resist-
ance to many insecticides than MEAM1 (e.g., Yao et al. 
2017; Luo et al. 2010 in China; Kontsedalov et al. 2012; 
Horowitz and Ishaaya 2014 in Israel). In India, the species 
Asia I and Asia II-1 were found more resistant to insecti-
cides than Asia II-7 (Naveen et al. 2017).

Resistance to different chemical classes 
of insecticides

Organophosphates (OPs) and carbamates

Resistance to organophosphates (OPs) is well established in 
B. tabaci in many countries (Horowitz et al. 2007; Ahmad 
et al. 2010; Naveen et al. 2017). In some cases, levels of 
resistance to OPs and carbamates were unstable and fluctu-
ated from very low to high (Ahmad et al. 2010). In Turkey, 
resistance in biotype B (MEAM1) to OPs ranged between 
20- and 310-fold (Erdogan et al. 2008). In Greece, the resist-
ance level to pirimiphos-methyl was reported to be higher 
in greenhouses compared with open fields (Roditakis et al. 
2009). High resistance to OPs such as acephate and triazo-
phos was detected in Asia 1 whiteflies from India (Roy et al. 
2019). In China, relatively low level of resistance to an OP 
(chlorpyrifos) was detected; however, initial baseline-level 
toxicity was rather high (Wang et al. 2017). Similarly, in the 
Q biotype of B. tabaci, from eastern China, low resistance 
to another OP (dichlorvos) as well as to the carbamate car-
bosulfan was exhibited (Yuan et al. 2012).

Resistance levels to methomyl (a  carbamate)  were 
shown to be low to moderate in MED strains from Spain, 
probably due to less frequent use and the adoption of IPM 
strategies (Fernandez et al. 2009).

The mechanisms of resistance to OPs and carbamates in 
B. tabaci are known for many years and have been stud-
ied since the 1980s; however, no substantially new results 
have been published over the past decade. Altered sensitiv-
ity alleles of acetylcholinesterase, the target site for OPs, 

have been described, and several levels of resistance are 
attributed to varying numbers of such alleles (Byrne and 
Devonshire 1993, 1997; Byrne et al. 1994). The insensitiv-
ity to OPs has also been linked to additional mechanisms of 
resistance such as increased esterase activities (Byrne and 
Devonshire 1991; Denholm et al. 1998) and was correlated 
with the levels of resistance (Dittrich et al. 1990). Alon et al. 
(2008) have shown that altered AChE sensitivity to OPs is 
linked to a F392W mutation in acetylcholinesterase 1 of B. 
tabaci. However, in the same study, overexpression of the 
carboxylesterase 1 gene was also correlated with chlorpyri-
fos resistance, suggesting that both mechanisms are involved 
in resistance to OPs (Alon et al. 2008).

Pyrethroids

Pyrethroid resistance in whiteflies is widespread although 
the magnitude and pattern of resistance and cross-resistance 
vary considerably among countries and cropping systems 
(Cahill et al. 1995, 1996; Denholm et al. 1996; Erdogan 
et al. 2008; Roditakis et al. 2009; Naveen et al. 2017). In 
some cases, very high resistance was detected to pyrethroids 
such as cypermethrin and bifenthrin in populations of B bio-
type from northwestern China (Ma et al. 2007) and Cyprus 
(Vassiliou et al. 2011). In other regions of China, resistance 
levels to pyrethroids, e.g., lambda-cyhalothrin and cyper-
methrin, have been declined also in Biotype Q (Yuan et al. 
2012; Yao et al. 2017).

Pyrethroids target the para-type voltage-gated sodium 
channel (vgsc) in the central nervous system, leading to 
paralysis and rapid death. The two mutations L925I and 
T929V in the IIS4-5 linker of vgsc in B. tabaci were linked 
to pyrethroid resistance (Schuler et al. 1998; Lee et al. 2000; 
Morin et al. 2002; Bass et al. 2004; Roditakis et al. 2006; 
Alon et al. 2008; Farghaly 2010a). DNA microarrays were 
later used for resistance monitoring of field-collected popu-
lations based on the mutations in vgsc as well as acetyl-
cholinesterase (Chung et al. 2011). In this study, high cor-
relation was obtained between the microarray and direct 
sequencing, providing a large-scale tool for resistance moni-
toring in B. tabaci. Such molecular monitoring of resistance 
in B. tabaci has been used by others to detect resistance to 
pyrethroids, carbamates and OPs (Farghaly 2010b). Based 
on the molecular data obtained from resistant and suscep-
tible populations, and the fact that the previously described 
mutations are stable in field populations, a simple PCR–aga-
rose gel visualization-based assay was developed for reli-
ably monitoring the frequency of the mutations known to 
confer resistance to pyrethroids and OPs. Results from larger 
monitoring campaigns revealed that this method is accurate 
and robust to reliably diagnose the spread of the respective 
resistance alleles (Tsagkarakou et al. 2009).
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Resistance to pyriproxyfen and buprofezin

Resistance in B. tabaci to the Insect Growth Regulators 
(IGRs), pyriproxyfen and buprofezin has been reported 
widely from many countries (e.g., Horowitz et al. 2005, 
2007; Erdogan et al. 2008; Crowder et al. 2008; Fernandez 
et al. 2009; Li et al. 2012; Basit et al. 2013; Horowitz and 
Ishaaya 2014; Roy et al. 2019).

Pyriproxyfen is a potent juvenile hormone (JH) mimic 
affecting the hormonal balance in insects, suppressing 
embryogenesis, metamorphosis and adult formation. It has 
been considered a leading insecticide for controlling white-
flies (Ishaaya and Horowitz 1995; Horowitz et al. 2005; 
Crowder et al. 2008; Castle et al. 2010), especially against 
biotype B. Both pyriproxyfen and buprofezin were consid-
ered harmless to natural enemies as compared with con-
ventional insecticides. Naranjo et al. (2004) suggested that 
these selective IGRs can be used in an effective integrated 
control system for B. tabaci. However, its widespread use 
has resulted in resistance development in Israel since the 
1990s (Horowitz et al. 1994; Horowitz et al. 2002, 2005). 
To delay resistance in B. tabaci, the use of pyriproxyfen and 
buprofezin, especially in cotton fields, was restricted to one 
application per a cotton season in most Insecticide Resist-
ance Management (IRM) programs, but resistance to these 
IGRs has evolved and in some cases the use of pyriproxy-
fen and buprofezin was decreased because of the resistance 
(ARH, personal communication). Cases of strong resistance 
to pyriproxyfen have been associated with the Q rather than 
the B biotype (Horowitz et al. 2002, 2005; Dennehy et al. 
2005; Horowitz and Ishaaya 2014). In Israel, since 2009, 
a significant shift in the biotype ratios has been observed: 
the B biotype has become predominate over the Q. At the 
same time, resistance to pyriproxyfen declined considerably 
(Crowder et al. 2011; Horowitz and Ishaaya 2014). How-
ever, simulation models conducted with the B biotype have 
demonstrated that resistance to pyriproxyfen in this biotype 
can be managed through modification of operational and 
environmental factors that can be controlled by the growers 
(Crowder et al. 2008, 2013; Li et al. 2012).

A study conducted in Arizona, where pyriproxyfen served 
as a major compound for controlling B. tabaci in cotton for 
over a decade, showed that resistance to this compound 
increased steadily, and synergism bioassays demonstrated 
that the increasing resistance to pyriproxyfen was correlated 
with elevated levels of cytochrome P450 monooxygenases 
(P450s) and glutathione S-transferases (GSTs) (Ma et al. 
2010).

A study conducted with B. tabaci MED species employed 
the DNA microarray technology to compare gene expression 
levels in pyriproxyfen-resistant and -susceptible populations 
showed that in the resistant strain many genes implicated 

in xenobiotic detoxification are upregulated, such as P450s 
(Ghanim and Kontsedalov 2007), indicating that the resist-
ance to pyriproxyfen could be metabolic. Another study 
using a recombinantly expressed CYP6CM1, a P450 upreg-
ulated in neonicotinoid- and pymetrozine-resistant strains 
of B. tabaci, demonstrated oxidative metabolism by the 
hydroxylation of pyriproxyfen (Nauen et al. 2015b), thus 
confirming the potential involvement of P450s in pyriproxy-
fen resistance.

Resistance to neonicotinoids

Neonicotinoids are among the most effective groups of 
insecticides for whitefly control. They exhibit systemic and 
translaminar properties and high residual activity (Takahashi 
et al. 1992; Elbert et al. 1998; Horowitz et al. 1998). They 
act especially against sucking insects such as whiteflies, 
aphids, leafhoppers and various coleopteran pests.

There have been a few review papers summarizing the 
global aspects of resistance to neonicotinoids (e.g., Nauen 
and Denholm 2005; Bass et al. 2015); hence, just some 
important recent studies will be considered below.

In many cases, resistance to neonicotinoids was associ-
ated with the Q biotype (e.g., Nauen et al. 2002; Horowitz 
et al. 2004; Roditakis et al. 2009; Dennehy et al. 2010; Luo 
et al. 2010), although a few cases of neonicotinoid resistance 
have been described also in B-biotype strains (Byrne et al. 
2003; Schuster et al. 2010; Wang et al. 2010).

Low to moderate levels of resistance to the neonicotinoids 
imidacloprid and thiamethoxam were detected in Brazil 
(Silva et al. 2009), whereas in Florida, USA, high levels of 
resistance to imidacloprid and thiamethoxam were detected 
in biotype B of B. tabaci (Schuster et al. 2010). In Israel, 
resistance level in Q biotype to thiamethoxam was high and 
to imidacloprid and acetamiprid was moderate; Q biotype 
populations have taken over B in crops grown in protected 
conditions, where resistance outbreaks usually develop after 
several insecticide applications (Kontsedalov et al. 2012). In 
Cyprus, moderate to high levels of resistance were detected 
to imidacloprid (77–392-fold) and thiamethoxam (50–164-
fold), but low resistance levels were observed to acetamiprid 
(Vassiliou et al. 2011). In Crete, very high resistance levels 
were detected in various whitefly populations for imidaclo-
prid (38–1958-fold). A strong correlation between resistance 
to imidacloprid and the number of applications with neo-
nicotinoids was observed (Roditakis et al. 2009). Recently, 
most of the B. tabaci populations in Turkey were found to be 
resistant to neonicotinoids with resistance levels up to 2060-
fold for imidacloprid, while resistance to thiamethoxam was 
low (Satar et al. 2018). In Pakistan, neonicotinoid resistance 
increased in B. tabaci (the biotype was not defined) follow-
ing intensive use leading to field failures (Ahmad and Khan 
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2017). In India, high resistance to neonicotinoids in several 
field populations of B. tabaci was detected, especially in 
Asia I and Asia II-1 strains (Naveen et al. 2017). Reports 
from China pointed out that the increase in resistance to 
neonicotinoids was mainly in biotype Q. While biotype B 
remained susceptible to acetamiprid, imidacloprid and thia-
methoxam, field strains of biotype Q expressed moderate 
to high resistance to these insecticides (Luo et al. 2010). 
In southeastern China, moderate to high levels of resist-
ance were detected in both B and Q biotypes to two neoni-
cotinoids (28–1900-fold to imidacloprid, 29–1200-fold to 
thiamethoxam) (Wang et al. 2010). In eastern China, some 
field strains (especially Q biotype) exhibited low to high 
resistance to two neonicotinoids (imidacloprid and nitenp-
yram) (Yuan et al. 2012). A recent study conducted in three 
regions of China with B. tabaci Q collected from vegetables 
in 2011–2013 revealed low to high resistance to neonicoti-
noid insecticides (Wang et al. 2017). In southeast coast of 
China, resistance to neonicotinoids in the Q biotype was 
unstable in open fields, but increased constantly in protected 
areas (Yao et al. 2017).

Neonicotinoids target the insect nicotinic acetylcholine 
receptor (nAChR) in the central nervous system and disrupt 
nerve transmission leading to paralysis and death within 
short time (Tomizawa and Casida 2005). As the affinity 
of these compounds to mammalian nAChRs is very low, 
and some could be applied and taken up systemically by 
plants such as imidacloprid, or can by directly treated to 
seeds, they became very popular, and management pro-
grams heavily relied on using neonicotinoids (Jeschke et al. 
2011). Enhanced detoxification is reported as the main 
mechanism for conferring resistance against imidacloprid 
in strains of both B. tabaci MEAM1 and MED (Nauen et al. 
2002; Rauch and Nauen 2003). Karunker et al. (2008) have 
shown by measuring the expression of 11 P450 genes that 
CYP6CM1 overexpression was tightly associated with imi-
dacloprid resistance. It was also shown that heterologously 
expressed CYP6CM1 could metabolize imidacloprid and 
other neonicotinoids in vitro (Karunker et al. 2009) and that 
its expression and protein level is correlated with the degree 
of resistance in field-collected populations (Roditakis et al. 
2011). A recent computational study suggested that lower 
levels of dinotefuran resistance in such whitefly strains are 
due to differences in binding to CYP6CM1 (Meng et al. 
2016), a finding validated for the new butenolide insecticide 
flupyradifurone and the sulfoximine insecticide sulfoxaflor, 
both not belonging to the neonicotinoids, but targeting insect 
nAChRs (Jeschke et al. 2015; Nauen et al. 2015a). Neverthe-
less, this enzyme has the potential to be used for the screen-
ing of field populations for resistance against imidacloprid 
using diagnostic tools such as ELISA (Nauen et al. 2015a). 
A predominantly metabolic mechanism of resistance was 
also confirmed by work conducted by Feng et al. (2010) 

in China. In this study, a thiamethoxam-resistant popula-
tion was cross-resistant to other neonicotinoids. Syner-
gism assays revealed that the inhibition of P450s strongly 
synergized neonicotinoid efficacy, a finding supported by 
increased enzyme activity in resistant strains (Feng et al. 
2010). Metabolically based neonicotinoid cross-resistance 
has also been reported from other parts of China (Wang et al. 
2009). Similar results were reported from Turkey, where 
field-collected populations of B. tabaci showed high levels 
of resistance to different neonicotinoids driven by metabolic 
mechanisms (Satar et al. 2018).

Recently, B. tabaci resistance to insecticides, espe-
cially neonicotinoids, has been increasingly investigated 
by employing RNAseq analysis to screen for (less obvious) 
mechanisms of resistance. Such experiments also enrich the 
available datasets of genes, gene expression data and path-
ways involved in resistance. A study conducted on the MED 
species of B. tabaci used RNAseq analyses to profile the 
expression patterns of different detoxification genes includ-
ing P450s, GSTs and carboxylesterases, as potential candi-
date genes contributing to insecticide resistance (Ilias et al. 
2015). The study demonstrated the overexpression of P450s 
from the CYP2, CYP3 and CYP4 clades, with CYP6CM1 
being the major player. Interestingly, in this study, ten uni-
genes-encoding nAChRs subunits were identified, but none 
of those showed polymorphism that could be linked to neo-
nicotinoid resistance when compared to a susceptible refer-
ence strain (Ilias et al. 2015).

Ketoenols

Ketoenols are a relatively new class of insecticides and 
known as derivatives of tetronic acids (spiromesifen) and 
tetramic acids (spirotetramat). Both compounds are active 
against whiteflies and act as inhibitors of lipid biosynthe-
sis by targeting acetyl-CoA carboxylase, thus being par-
ticularly active against juveniles, but also affecting female 
fecundity (Bretschneider et al. 2003; Nauen et al. 2005). 
Several reports have indicated the absence of cross-resist-
ance between spiromesifen and other major commonly used 
insecticides from different chemical groups such as neoni-
cotinoids and pyriproxyfen (Nauen and Konanz 2005; Prab-
haker et al. 2008; Kontsedalov et al. 2009). Spirotetramat 
is a systemic insecticide with phloem and xylem mobility 
for the control of a broader spectrum of sucking insects, 
including aphids, whiteflies, psyllids and scales. Similar 
to spiromesifen, it is particularly effective against juvenile 
stages and it significantly reduces fecundity and fertility of 
B. tabaci females (Brück et al. 2009).

Fernandez et al. (2009) reported low resistance level to 
spiromesifen (1- to sevenfold) in populations of Q biotype 
collected in southeastern Spain, and Roy et al. (2019) found 
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in India low to moderate resistance (8- to 32-fold) to this 
insecticide. However, recently, several field strains that were 
assayed in Spain for resistance to these two insecticides 
exhibited very high resistance to spiromesifen (> 10,000-
fold) and cross-resistance to spirotetramat, but to a much 
lower extent (130-fold) (Bielza et al. 2019).

Diamides

Diamide insecticides represent the most recent class of 
chemistry introduced to the market approximately 13 years 
ago (Nauen and Steinbach 2016). Five diamide insecticides, 
i.e., the phthalic diamide, flubendiamide and the anthranilic 
diamides chlorantraniliprole, cyclaniliprole, tetraniliprole 
and cyantraniliprole, have so far been commercialized. 
Flubendiamide and chlorantraniliprole are potent against 
lepidopteran pests, while cyantraniliprole also targets suck-
ing pests such as whiteflies and aphids (Sattelle et al. 2008; 
Lahm et al. 2009). These compounds act on insect ryanodine 
receptors, large tetrameric calcium release channels located 
in neuromuscular tissues.

Studies on the molecular mechanisms of diamide resist-
ance in lepidopteran pests, especially the diamondback moth 
Plutella xylostella and the tomato leaf miner Tuta absoluta, 
have revealed RyR target-site mutations with strong func-
tional implications for diamide binding, while metabolic 
mechanisms of resistance based on elevated levels of detoxi-
fication enzymes were not sufficiently studied (Nauen and 
Steinbach 2016).

In B. tabaci, a short time after cyantraniliprole use in 
China, low to moderate resistance has evolved to this 
diamide, especially in the Q biotype (MED) of B. tabaci 
(Yao et al. 2017; Wang et al. 2018), whereas in European 
countries such as Spain, Italy and Greece no variation in 
susceptibility to cyantraniliprole was detected yet (Gravalos 
et al. 2015).

Other insecticides

Other important insecticides frequently used to control B. 
tabaci include pymetrozine, a transient receptor protein 
vanillin (TRPV) channel modulator of chordotonal organs. 
However, pymetrozine cross-resistance has been described 
in neonicotinoid-resistant strains of both B and Q biotype 
whiteflies from different regions worldwide (Gorman et al. 
2010). The cross-resistance is mainly driven by the overex-
pression of CYP6CM1 as shown by another study showing 
the hydroxylation of pymetrozine by functionally expressed 
CYP6CM1 (Nauen et al. 2013, 2015b).

Bemisia tabaci resistance management

The most common solutions to control B. tabaci pest attacks 
have been insecticides, because of their efficacy and con-
venience (e.g., Palumbo et al. 2001; Horowitz et al. 2011). 
However, using insecticides alone is harmful to natural ene-
mies and the environment, and in addition, intensive use of 
chemical insecticides results in development of resistance 
with striking phenotypes that may jeopardize pest control 
efficacy.

There are a number of major principles for success-
ful resistance management at a technical level to be fol-
lowed in chemical control, including (a) insecticides 
should be used according to label recommendations; (b) 
select insecticides based on known local efficacy and 
selectivity (IPM); (c) rotate insecticides from different 
Modes of Action (MoAs) employing a ‘MoA treatment 
windows’ approach; and (d) nonchemical control methods 
should be incorporated (IPM). The entire above are essen-
tial for the successful implementation of IRM strategies 
(Table 2). However, a nontechnical parameter that can 
affect the success of resistance management schemes is 
the understanding of the resistance mechanisms to avoid 
cross-resistance issues compromising a developed IRM 
strategy. Ideally, IRM is supported by educational courses 
and communication plans as advocated by the Insecticide 
Resistance Action Committee (IRAC) (Sparks and Nauen 
2015).

“Window” programs—rotation of modes 
of action and insecticide applications

It has been demonstrated that selection pressure enforced 
by the frequent use of insecticides is the main driving force 
for the development of resistance via the gradual selection 
of the individuals carrying the resistant alleles (Georghiou 
and Lagunes-Tejeda 1991; Denholm and Rowland 1992). 
However, applying the same insecticide MoA frequently 
in sequence, within a crop cycle, was a very common prac-
tice, particularly for novel and highly effective products. 
The resistance selection process can be interrupted by using 
insecticides of different MoAs based on IRAC’s MoA clas-
sification scheme (Sparks and Nauen 2015). The rationale 
behind this strategy is that insecticides of different modes 
of action usually select for different resistance mechanisms 
(Sparks and Nauen 2015). Cross-resistance exceptions to 
the aforementioned rule have been demonstrated, e.g., neo-
nicotinoids and pymetrozine (Gorman et al. 2010; Nauen 
et al. 2013). In addition, the development of a multiple 
resistance cannot be excluded if selection pressure is of 
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extreme level (Roditakis et al. 2005). Thus, it is essential to 
take into account all available information when a rotation 
of insecticides of different MoAs is designed. In addition, 
selecting the most appropriate chemical from available, 
officially registered products depends on various param-
eters such as the crop stage, post-harvest interval, use of 
beneficial/pollinators in the crop, the infestation level, the 
presence of other coexisting pests and resistance history in 
the crop. A list of available MoAs and chemicals that could 
be used in rotation schemes for whitefly control is provided 
in Table 3.

The most widely followed MoA rotation approach in IRM 
is that suggested by IRAC (www.irac-onlin e.org), namely 
the ‘MoA treatment windows’ approach, where several 
rules apply for the proper implementation of the particu-
lar rotation scheme. The basic aim of the IRAC strategy 
is to avoid treating consecutive generations of the target 
pest with insecticides of the same MoA. Multiple applica-
tions with chemicals of the same MoA are allowed within 
a generation ‘window.’ As the generation time for B. tabaci 
ranges between 24 and 30 days, a generation ‘window’ is 
set to 30 days for simplicity. Additional required applica-
tions beyond the 30-day window should be performed with 
insecticides of a different MoA. A compound with a spe-
cific MoA should not be reused, unless a 60-day interval is 
allowed (i.e., approximately two generations). In addition, 
all applications should strictly follow the product label with 
regard to the rate, the target pest, the method and number 
of applications.

Insecticide mixtures

Application of insecticide mixtures was used extensively 
for controlling whiteflies as a tactic for managing insecti-
cide resistance in B. tabaci. (Horowitz and Ishaaya 1996; 
Denholm et al. 1998; Castle et al. 2002). This approach 
was based on mixing chemicals of different MoAs lacking 
cross-resistance (Denholm and Rowland 1992; Horowitz 
and Ishaaya 1996) that could delay resistance development, 
because mechanisms required to resist both insecticides 
simultaneously commonly exist in scarcity in a pest popu-
lation (Georghiou 1994). Unfortunately, the intensive use of 
synergized insecticides, particularly of OPs and pyrethroids 
for whitefly control (Denholm et al. 1998), resulted in high 
resistance levels to both chemicals and major pest control 
failures (Dennehy and Williams 1997). The insecticide mix-
tures approach has been thoroughly investigated in numerous 
pest systems and still remains controversial since several 
assumptions pertain in each case, dictating the overall suc-
cess of the method (Cloyd 2010; South and Hastings 2018). 
The Insecticide Resistance Action Committee (IRAC) pro-
vides more detailed information on the use of insecticide 
mixtures and their value in IRM and pest control in general 
(refer to www.irac-onlin e.org). Despite the extensive dis-
cussion on this topic, the use of insecticide mixtures is still 
wildly adopted in B. tabaci management.

Sustainable IPM approaches

Whitefly control can rely on various methods alternative 
or complementary to chemical insecticides. Prevention 

Table 2  Current statuses and future prospects of alternative whitefly control methods implemented in integrated and/or biological pest manage-
ment schemes (see text for details)

Strategy Product Current status and prospects

Prevention methods Insect proof netting on ventilation openings Extensively adopted with minor regional exceptions
UV-blocking films Limited use with a stable trend, adopted mainly in crops practic-

ing biological control
Reflective mulches Limited use in greenhouse crops/trend unknown
Ground cover crops Limited use/not applied in greenhouse crops
Use of supplementary UV-radiation Currently at experimental level/not applied

Mass trapping Yellow traps Extensively adopted with minor exceptions
Entomopathogenic fungi Lecanicillium lecanii, Beauveria bassiana Used with IPM schemes/limited adoption
Natural enemies Predators Mainly Amblyseius swirskii and Mirid species, extensively 

adopted with minor regional and crop exceptions
Parasitoids Mainly Eretmocerus sp extensively adopted with minor excep-

tions
Conservation Extensively adopted in open field crop, gradually implemented in 

greenhouse crops with an increasing trend
Essential oils and plant extracts Limited use with an increasing trend supported by novel products 

in the market
Biotechnological insecticides RNAi Currently experimental level/not applied

http://www.irac-online.org
http://www.irac-online.org
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methods such as insect proof netting on greenhouse ven-
tilation openings, UV-blocking films (Monci et al. 2004; 
Chiel et al. 2006; Horowitz et al. 2011; Monci et al. 2019), 
reflective mulches (Greer and Dole 2003; Simmons et al. 
2010; Rajasri et al. 2011) or ground cover crops (Hilje and 
Stansly 2008) have been adopted to varying extent. Novel 
approaches such as the use of supplementary UV radiation 
(Prieto-Ruiz et al. 2019) may also be a promising addition 
in the immediate future. Mass trapping with sticky traps has 
been used extensively, in various forms, having as basis of 
yellow-colored sticky surfaces (Lu et al. 2012); however, 
sticky traps are also important tools for whitefly population 
monitoring (Gerling and Horowitz 1984).

Entomopathogenic fungi have been suggested for 
whitefly control (Lacey et al. 1999; Wraight et al. 2000; 
Cuthbertson and Walters 2005); however, this approach 
was adopted to a limited extent in practice. Nonetheless, 
recent progress may provide novel tools and a larger mar-
ket share (Garrido-Jurado et al. 2017; Anwar et al. 2018; 
Jaber et al. 2018; Santos et al. 2018; do Nascimento Silva 
et al. 2019) without the adverse effect of resistance devel-
opment (Gao et al. 2017). One of the major principles of 
IPM programs is the use of natural enemies, such as preda-
tors and parasitoids (Gerling et al. 2001; Horowitz et al. 
2011). Numerous predators have been reported praying on 
whiteflies, in which the phytoseiid mite Amblyseius swir-
skii (Athias-Henriot) can be considered among the most 
important. Its introduction to the market has changed the 

balance of plant protection practices against B. tabaci in 
favor of IPM (Nomikou et al. 2001; van der Blom et al. 
2008; Calvo et al. 2009, 2012). Mirid bugs like Nesidioco-
ris tenuis (Reuter) and Macrolophus sp have been intro-
duced as generalist predators for many pests including B. 
tabaci (Alomar et al. 2006; Arnó et al. 2010). Parasitoids 
are also key biocontrol agents, playing a major role in 
IPM for whiteflies. Among others, aphelinids Encarisa sp 
and Eretmocerus sp have been successfully incorporated in 
IPM schemes (Foltyn and Gerling 1985; Heinz and Nelson 
1996; Van Lenteren et al. 1997; Qiu et al. 2004).

In field crops, it was demonstrated that the conservation 
of natural enemies is a key element in IPM programs, since 
they serve as efficient factors for the control of B. tabaci 
(Naranjo and Akey 2005; Naranjo and Ellsworth 2009a; 
Vandervoet et al. 2018; Togni et al. 2019). Several years 
back, the cotton crops served as a model, where the concept 
of natural enemies’ conservation was conceived and imple-
mented, altering the pest status of whiteflies in the cotton 
growing system of Arizona (Naranjo et al. 2002; Naranjo 
and Ellsworth 2009b). The idea of conservation was also 
adopted, with modifications, in greenhouse crops, by modi-
fying the flora surrounding greenhouses (Rodríguez et al. 
2018, Roditakis pers. comm.).

Essential oils and plant extracts have been extensively 
investigated for their activity on B. tabaci (Kim et al. 2011; 
Baldin et al. 2013; Deletre et al. 2016; Vite-Vallejo et al. 
2018; Wagan et al. 2018; Cruz-Estrada et al. 2019); however, 

Table 3  Insecticide modes of action and chemical classes for whitefly resistance management; the availability of different chemical classes 
depends on regional registrations and therefore varies (MoA classification according to IRAC (Sparks and Nauen 2015)

IRAC group Mode of action IRAC subgroup Chemical class/Chemicals

1 Acetylcholinesterase inhibitors A Carbamates
B Organophosphates

3 Sodium channel modulators A Pyrethroids
4 nAChR competitive modulators A Neonicotinoids

C Sulfoxaflor
D Flupyradifurone

7 Juvenile hormone mimics C Pyriproxyfen
9 TRPV channel modulators B Pymetrozine

D Afidopyropen
12 Inhibitors of mitochondrial ATP synthase A Diafenthiuron
15 Inhibitors of chitin biosynthesis affecting CHS1 None Benzoylureas
16 Inhibitors of chitin biosynthesis, type 1 None Buprofezin
21 Mitochondrial complex I inhibitors A METI’s
23 Inhibitors of acetyl-CoA carboxylase None Spirotetramat
28 Ryanodine receptor modulators None Cyantraniliprole
29 Chordotonal organ modulators, undefined None Flonicamid
UN Compounds of unknown MoA None Azadirachtin
UNF Fungal agents of unknown or uncertain MoA None e.g., Beauveria bassiana
UNE Botanical essence None e.g., fatty acids
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their use is currently limited. Biotechnological insecticides 
based on RNA interference (RNAi) that specifically silence 
the function of vital genes can serve as potential novel 
pest management tools, though not yet technically feasi-
ble (Ghanim et al. 2007; Upadhyay et al. 2011). However, 
the proof of concept has been provided (Malik et al. 2016; 
Luo et al. 2017) and several studies demonstrate promising 
results (Raza et al. 2016; Vyas et al. 2017).

Many of the aforementioned approaches are key element 
of sustainable IPM schemes that promote alternative pest 
management tactics and result in substantial reduction of 
pest pressure and subsequent reduction of insecticide appli-
cations making implementation of rational IRM possible.

Farmer education

Scientific evidence of insecticide resistance and IRM 
schemes can only be useful and contribute to changes in 
the actual agricultural practice if socioeconomic factors that 
are occasionally ignored are wisely managed (FAO 2012). 
These factors include concerns about the cost, the neces-
sity of suggested alterations, the feasibility from a technical 
perspective and overall a thorough education on resistance 
management tactics along with its implications in crop pro-
tection (FAO 2012). An exceptional example of farmer-level 
adoption of an IPM program for whiteflies is the case of 
Arizona. The initiative was driven by governmental officials 
and academia with great agroecological and financial ben-
efits for the agricultural industry (Naranjo and Ellsworth 
2009b). Resistance monitoring is essential for early detec-
tion of incipient resistance cases (Ellsworth et al. 2013); of 
course, this information alone cannot reverse the increasing 
trend of resistance. The resistance monitoring data should 
serve as a basis to develop a sustainable resistance manage-
ment strategy followed by all stakeholders. It is more than 
evident that acceptance of any IRM strategy at the farmer 
level is essential for its successful implementation in the 
management of any pest, including B. tabaci.

Conclusion

This paper reviews insecticide resistance and management 
issues among species of the serious crop pest, B. tabaci, 
focusing mainly on studies published in the past decade. 
At present, the use of insecticides is the main approach 
employed to manage B. tabaci populations because of their 
efficacy and convenience. This practice is considered prob-
lematic due to both environmental concerns and the wide-
spread insecticide resistance that B. tabaci has developed.

Bemisia tabaci has evolved resistance to insecticides from 
most chemical classes including new insecticides. Among 

the common cryptic species, MED is considered more resist-
ant than the MEAM1 to insecticides such as pyriproxyfen 
and neonicotinoids; however, in recent years there are other 
species of B. tabaci including MEAM1, Asia I and Asia 
II-1 that have developed high resistance levels to various 
groups of insecticides. The mechanisms of resistance in B. 
tabaci are similar to those that have been described from 
many other pest species, and they are generally classified 
as metabolic, involving esterase-, glutathione S transferase 
(GST)- or P450 monooxygenase-based detoxification, or 
point mutations in the target site. Advanced methods based 
on the molecular and gene sequence data obtained from 
resistant and susceptible field-collected B. tabaci popula-
tions resulted in a better understanding of resistance mecha-
nisms in this pest.

There are several components of IPM-IRM programs 
applicable to managing the resistance in B. tabaci, namely 
chemical control with selective insecticides, rotation of 
MoAs, insecticide mixtures, reducing chemical insecticide 
applications and nonchemical control methods using IPM 
practices (e.g., biological control, crop plant resistance and 
physical/mechanical methods). It is hoped that the integra-
tion of these methods will contribute to improving the man-
agement of the pest, thus helping to guarantee sustainable 
yields in the future.
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