
Vol.:(0123456789)1 3

Journal of Pest Science (2019) 92:429–441 
https://doi.org/10.1007/s10340-018-1051-4

ORIGINAL PAPER

A computational model to predict the population dynamics 
of Spodoptera frugiperda

Adriano G. Garcia1 · Cláudia P. Ferreira2 · Wesley A. C. Godoy1 · Robert L. Meagher3

Received: 29 May 2018 / Revised: 18 September 2018 / Accepted: 4 October 2018 / Published online: 10 October 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Among lepidopteran insects, the fall armyworm, Spodoptera frugiperda, deserves special attention because of its agricultural 
importance. Different computational approaches have been proposed to clarify the dynamics of fall armyworm populations, 
but most of them have not been tested in the field and do not include one of the most important variables that influence insect 
development: the temperature. In this study, we developed a computational model that is able to represent the spatio-temporal 
dynamics of fall armyworms in agricultural landscapes composed of Bt and non-Bt areas, allowing the user to define differ-
ent input variables, such as the crop area, thermal requirements of S. frugiperda, migration rate, rate of larval movement, 
and insect resistance to transgenic crops. In order to determine the efficiency of the proposed model, we fitted it using a 
4-year (2012–2015) FAW monitoring data for an area located in northern Florida, USA. Simulations were run to predict the 
number of adults in 2016 and examine possible scenarios involving climate change. The model satisfactorily described the 
main outbreaks of fall armyworms, estimating values for parameters associated with insect dynamics, i.e., resistance-allele 
frequency (0.15), migration rate (0.48) and rate of larval movement (0.04). A posterior sensitivity analysis indicated that 
the frequency of the resistance allele most influenced the model, followed by the migration rate. Our simulations indicated 
that an increase of 1 °C in weekly mean temperatures could almost double the levels of fall armyworm populations, drawing 
attention to the possible consequences of temperature rises for pest dynamics.
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Key Message

• Most of the models describing the population dynamics 
of fall armyworms have not been tested in the field.

• We developed a computational model that describes 
the dynamics of S. frugiperda, considering the spatial 
dynamics of the crop, temperature changes and popula-
tion genetics.

• The results were compared with insect-monitoring data 
and the model satisfactorily fitted the main peaks related 
to the population dynamics.

• Considering the spread of fall armyworms in Africa, this 
model can help entomologists to design management 
programs.
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Introduction

The fall armyworm, S. frugiperda (J. E. Smith) (Lepidop-
tera: Noctuidae), is a polyphagous insect pest that occurs 
in the Western Hemisphere (Sparks 1979), attacking sev-
eral crops, including corn (maize), cotton, and soybean 
(Barros et al. 2010). The fall armyworm is a holometabol-
ous insect (complete metamorphosis including egg, larva, 
pupa and adult). Only the larvae damage plants and the 
adults reproduce and migrate. This insect is highly eury-
topic, capable of producing an estimated 12 generations 
per year in tropical climates (Busato et al. 2005). In Bra-
zil, the fall armyworm is one of the main insect pests of 
corn and cotton (Martinelli et al. 2006). In the USA it is 
a serious crop pest, mainly in the southeast (Hogg et al. 
1982). Young larvae are usually found in the whorl in corn 
plants and initiate injury to leaves by scraping the foliar 
limb, eventually destroying the leaves during the last lar-
val instars (Vilarinho et al. 2011; Dos Santos et al. 2004). 
These larvae can damage up to 57% of a corn crop (Cruz 
et al. 1999).

One of the main insect-control strategies is the use of 
transgenic crops, most of which were modified to carry the 
Bt (Bacillus thuringiensis) gene that codes for a particu-
lar endotoxin. However, Bt toxin-resistant fall armyworm 
populations have been documented in Puerto Rico, Brazil 
and the USA (Vélez et al. 2013; Farias et al. 2014; Omoto 
et al. 2016). The frequency of resistance alleles is a major 
variable that influences the development of resistance and 
has been intensively studied (Farias et al. 2016). In order 
to manage the evolution of resistance to transgenic crops, 
the use of refuge areas, consisting of non-Bt crops planted 
to promote the survival of susceptible insects, has been 
recommended (Sisterson et al. 2005).

Because of its agricultural importance, the spatio-
temporal dynamics of the fall armyworm has been inves-
tigated in many different studies, using computational 
models that have proved to be useful tools for Integrated 
Pest Management (IPM) programs, because they consti-
tute a laboratory in silico where experiments can be done 
to predict the effect of a natural or anthropic variable on 
insect dynamics (Ferreira and Godoy 2014). For instance, 
the effects of different refuge proportions and configura-
tions on the evolution of fall armyworm resistance have 
been extensively discussed, using spatial models (Carroll 
et al. 2012; Cerda and Wright 2004; Garcia et al. 2016). 
Labatte (1994) mathematically modeled the larval devel-
opment, considering insect thermal requirements under 
various field conditions (larval damage, host plant resist-
ance, and microbial control). More recently, Malaquias 
et al. (2017) used a spatial model to understand the effect 
of different rates of larval movement affected by a fitness 

cost associated with insect resistance to transgenic crops 
on the distribution of fall armyworm populations. Garcia 
and Godoy (2016) described the spatial patterns (aggre-
gated, uniform or random) of S. frugiperda in different 
crops, using a computational model that represents indi-
vidual insects within a grid of cells.

Although insects are poikilotherms, most models do not 
include the influence of temperature variation on insect 
development. The importance of including the effect of 
temperature on the development of fall armyworms can be 
illustrated by the migration patterns observed in the USA. 
Because of its tropical origin, the fall armyworm is not able 
to survive extended periods of low temperatures and does not 
have the ability to enter diapause (Luginbill 1928; Barfield 
et al. 1978). Therefore, the geographic distribution of the fall 
armyworm is closely associated with climate conditions. In 
Brazil, the fall armyworm is widely distributed throughout 
the country because of the tropical climate, whereas in the 
USA, insect populations must migrate northward each spring 
from overwintering areas in southern Florida and Texas to 
reinfest the central and eastern USA and parts of southern 
Canada (Snow and Copeland 1969; Rose et al. 1975; Young 
1979). Considering the effects of different temperatures 
on the development of fall armyworms, a grid-based spa-
tial model was able to reproduce the migration pattern in 
the USA, using degree-days accumulated by populations 
throughout the year (Westbrook et al. 2016).

Including the effect of temperature in modeling 
approaches is also important in order to respond to increased 
concerns regarding the impact of climate changes on the 
ecology of insect pests (Cannon 1998). Overwintering areas 
in Florida may be extending northward over the years, allow-
ing fall armyworm populations to cover a wider area dur-
ing the cold season (Wood et al. 1979; Waddill et al. 1982; 
Westbrook et al. 2016).

In addition to climate-related migration, i.e., insects 
moving to climatically suitable areas, understanding the 
movements of larvae and adults helps in designing refuge 
plantings and in understanding fall armyworm behavior and 
ecological interactions. Vilarinho et al. (2011), using the 
mark-recapture technique, reported that adult armyworms 
can travel up to 800 m during their life span, and therefore 
concluded that refuges should be located about every 800 m 
for large corn fields. Extensive dispersal of fall armyworm 
larvae between non-Bt and Bt plants could also favor the 
evolution of insect resistance, as reported by Malaquias et al. 
(2017). Larval movement can expose larvae to sublethal 
doses of Bt toxins, depending on the refuge configuration, 
i.e., the seed mixture, and this exposure increases selection 
for Bt resistance (Garcia et al. 2016).

The present study introduces an individual-based model 
that describes the dynamics of S. frugiperda based on its 
thermal requirements, i.e., cumulative degree-days for insect 
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development and temperature-driven viability. It also includes 
the composition and spatial arrangement of the crop, adult 
and larval movement (proportion of insects moving per day), 
migration rate (mean number of adult insects migrating per 
day), and frequency of the resistance allele (proportion of the 
total number of resistant alleles in a population) to Bt corn. In 
order to test the model, we simulated an area located in Ala-
chua County, Florida, composed of corn plants (Bt and non-Bt) 
in which the presence of S. frugiperda has been monitored for 
many years. Most of the parameters were obtained through 
laboratory experiments, and others were estimated using 
insect-monitoring data in the study area and an optimization 
technique (genetic algorithm). Then, given a set of parameters, 
we ran the model using a temperature database from 2012 to 
2015, and determined if the results obtained (model simula-
tions) corresponded to the insect-monitoring data obtained 
in the study area. Then, we made predictions (not evaluated 
against data), estimating the population dynamics and number 
of generations for 2016 and for two hypothetical situations: 
mean temperatures in 2016 + 1 and + 2 °C.

One novelty of the proposed model is the assumption that 
insect biology (development time, viability, longevity and ovi-
position) is driven by the temperature. This allows us to study 
the effect of climate changes on insect populations and the 
influence of seasonality on population dynamics. Additionally, 
the results provided by the model were compared with data 
from the field, increasing its reliability. We used an individual-
based approach, which is appropriate to estimate the popula-
tion dynamics of fall armyworms, focusing on the variability 
of individual characteristics among the insects in a population 
(allowing a more realistic representation of the population) and 
to represent the design, crop composition and local character-
istics of a small area (Jorgensen and Chon 2009).

The model has the potential to be used for different pur-
poses, such as estimating the population levels in a certain 
area, investigating the effects of temperature changes on the 
dynamics of fall armyworm populations, managing the evo-
lution of insect resistance, and determining the crop calen-
dar, i.e., a timeline that contains recommendation on plant-
ing, sowing and harvesting periods of crops, in IPM plans. 
Considering the rapid spread of this insect pest across the 
African continent since 2016 (Wild 2017), the model can 
play an important role in helping entomologists to under-
stand the factors that lead to invasion and to design con-
trol strategies to manage the population dynamics of fall 
armyworms.

Modeling process

The overall modeling process comprised three stages. In the 
first stage, the structure of the model was defined, including 
its rules and general structure based on the biology of the 

insect. The second stage involved the use of the model to 
simulate an area in Florida and determine the reliability of 
the results. In this stage, data from a laboratory experiment 
with fall armyworm populations were used in the modeling 
process, and monitoring data from 2012 to 2015 were com-
pared with the model outputs. Finally, in the third stage, after 
the model was validated, the population dynamics of fall 
armyworm adults was estimated for 2016 and for two other, 
hypothetical scenarios, i.e., increasing the temperatures of 
2016 by 1 and 2 °C.

Model building

The proposed model was developed in C programming lan-
guage, using a grid of cells to emulate the crop habitat. Each 
cell represents one plant in the field, which could be either 
empty (absence of insects) or occupied (presence of insects). 
Regarding the immature stage of S. frugiperda, a cell could 
be occupied by one or two individuals, according to Farias 
et al. (2001), who reported a mean number of 1–2 larvae per 
plant. Regarding the adult stage, we set a carrying capacity 
equal to 10 individuals per plant, following a similar method 
to Garcia et al. (2016). A cell can be occupied by multi-
ple stages simultaneously. Each time step t corresponded to 
1 day, and each cell represented 1 × 1 m of the crop system. 
We did not include plant dynamics in our model, and there-
fore we considered that the larvae had unlimited food. We 
also associated an energy-counter with each insect. Since 
insect development is determined by the cumulative energy 
according to temperature variation, the energy-counter rep-
resents the energy accumulated over time. An insect must be 
able to accumulate a certain amount of energy (degree-days) 
to molt to another stage. This amount of energy is called 
the thermal constant (Gallo et al. 2002; Padmavathi et al. 
2013). The thermal constant can be defined as the number 
of degree-days required for a development change to occur. 
Knowing the thermal constant and the degree-days accu-
mulated each day, it is possible to predict the time needed 
to develop to the hatching, larval and pupal stages, and 
adult emergence. Another important parameter related to 
the thermal requirements of insects is the lower temperature 
threshold, i.e., the lowest temperature in which an insect can 
develop (Dixon et al. 2008). Below the lower temperature 
threshold, the insect does not accumulate degree-days; there-
fore, it may die or enter diapause. Unlike some other insect 
species, the fall armyworm does not enter diapause (Sparks 
1979). The energy accumulated during 1 day is calculated 
by subtracting the value of the lower temperature threshold 
from the value of the daily temperature (Gallo et al. 2002; 
Padmavathi et al. 2013).

The rules used in the individual-based model are sum-
marized below and shown in Fig. 1. All parameters and 
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equations are described in Online Resource 1 and Online 
Resource 2, respectively.

(a) Cells occupied by an immature insect. In this case, two 
processes can occur:

 (a1) A cell occupied by an immature insect (egg, larva 
or pupa) can become empty with a daily proba-
bility equal to 1 − d

√
�(T) due to mortality, where 

�(T) is the viability corresponding to the insect 
stage and d is the duration of the insect stage 
(days) (Garcia et al. 2014, 2016). The variable d 
is given by K

(T−Tb)
 , where T is the daily tempera-

ture mean (°C) and Tb (°C) and K (degree-days) 
are the lower threshold temperature and thermal 
constant corresponding to the insect stage, 
respectively (Gallo et al. 2002; Rao et al. 2015) 
(Fig. 1).

 (a2) An egg must accumulate energy equal to K1 
(degree-days) in order to hatch. A larva must 
accumulate energy equal to K2 (degree-days) to 
pupate. A pupa must accumulate energy equal to 
K3 (degree-days) for the adult to emerge (Gallo 
et al. 2002; Rao et al. 2015) (Fig. 1).

(b) Cells occupied by an adult.
 A cell will become empty of adults if all adults die. 

We assumed that an adult dies when it accumulates an 
amount of energy equal to K4 (degree-days). In this 
case, K4 is associated with metabolic acceleration, 
resulting in a negative correlation between tempera-
ture and longevity (Gao et al. 2013; Gunay et al. 2010). 
Higher temperatures, and consequently more energy, 
reduce adult longevity by accelerating the metabolism. 
Either a linear or a polynomial relationship between the 
amount of energy accumulated and the adult longevity 
has been observed in several studies of the biology of 
insects (Joshi 1996; Yadav and Chang 2014).

(c) Empty cells.
 An empty cell can become occupied by an immature 

insect if a female adult lays eggs in it. At each time 
step, a female adult can oviposit in any cell with fewer 
than two immature insects inside a 5 × 5-cell neigh-
borhood. Per-capita oviposition probability per day is 
given by φ(T) and is dependent on the temperature T 
(°C) (Garcia et al. 2016).

The movement of an adult inside the simulated area at 
each time step had no preferential direction and was cal-
culated as described in Garcia et al. (2016) (Eq. 3), where 

Fig. 1  Scheme of the general model structure. a Eggs survive accord-
ing to a factor of egg viability, and must accumulate an amount of 
energy equal to K1 to molt to the larval stage. Larvae survive accord-
ing to a factor of larval viability and must accumulate an amount 
of energy equal to K2 to molt to the pupal stage. b Pupae survive 
according to a factor representing pupal viability and must accumu-

late an amount of energy equal to K3 to molt to the adult stage. Adult 
longevity depends on the energy accumulated over time. All adults 
die after accumulating an amount of energy equal to K4 and can lay 
eggs in a cell according to a daily oviposition probability, φ(T). At 
each time step, an adult female can oviposit in any cell with fewer 
than two immature insects inside a 5 × 5-cell neighborhood
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P is the probability that an adult will travel over a distance 
S (meters) per time step.

We also associated a short-scale movement component 
with the larva. Each larva had a probability l of moving to 
an adjacent plant per day, using a Moore neighborhood of 
radius 1, i.e., 3 × 3 cells, per day.

Genetic component

The genotype of each individual regarding its resistance 
to Bt corn (Cry1Fa), i.e., SS—susceptible homozygote, 
SR—susceptible heterozygote, or RR—resistant homozy-
gote (Vélez et al. 2014; Huang et al. 2014), was deter-
mined using the Hardy–Weinberg equation (Hardy 1908), 
given by:

where p is the frequency of the S allele p = 1 − q and q is 
the frequency of the R allele. Knowing the frequency of 
the R allele in the population, the probability of an indi-
vidual showing the genotype SS ( p2 ), SR ( 2pq ) or RR ( q2 ) 
can be determined, using the method described by Garcia 
et al. (2016). Genotype-specific viability values are shown in 
Table 1. Regarding the fitness cost, we assumed a reduction 
of 20% in larval viability and a delay of 4 days in the dura-
tion of the larval stage in the absence of Bt crops, when indi-
viduals carried at least one copy of the resistance allele (RR 
or SR genotype) (Dangal and Huang 2015). We assumed 
that the adults mix sufficiently across Bt and non-Bt areas, 
to make the genotype probability for offspring independent 
of the local corn type. According to Vilarinho et al. (2011), 
adult females can travel up to 600 m from their release site 
during their life span. Therefore, using a rough approxima-
tion, we can ensure that adults are able to mix sufficiently in 
an area measuring up to 1200 m × 1200 m = 144 ha. Since 
we simulated an area much smaller than this (“Model cali-
bration” section), we could make this assumption in our 
modeling process.

(1)

⎧
⎪⎨⎪⎩

P = 1 if S ≤ 5.1

P = − 0.49 ln(S) + 1.8 if 5.1 < S ≤ 35

P = 0 if S > 35

(2)p2 + 2pq + q2 = 1

Model calibration

In order to determine the reliability of the model, we tested it 
for a real area of size 200 × 200 m (4 ha), located at Hague, 
Alachua County (29°46′14″N, 082°25′16″W). In recent years, 
this area has been monitored with two sex pheromone-baited 
Unitraps to assess the presence of fall armyworm adults (Mea-
gher et al. 2013). According to Tingle and Mitchell (1979), two 
pheromone traps catch insects effectively within a range of 
attraction equal to 4 ha. Therefore, the density of insects could 
be calculated from the number of insects trapped, by dividing 
the total number of insects captured by 4 ha. Although this is 
an approximation based on published sources, it allowed us 
to compare the model output and the field data at the same 
scale (number of individuals per hectare). In order to grid the 
particular study area, we used its crop calendar. Assuming that 
each simulation is run during the course of 1 year (0 ≤ t ≤ 365), 
the simulated area could assume different spatial crop configu-
rations: (a) from March to October (60 ≤ t ≤ 300): occupied by 
corn plants in a proportion of 80% transgenic plants and 20% 
non-transgenic plants (refuge) arranged in a block configura-
tion; (b) from November to February (t < 60 and t > 300): no 
crop.

The values corresponding to the thermal constants 
(Table 2), the equations that define the viability of each stage, 
and the oviposition probability per day were chosen based on 
data from S. frugiperda populations reared on corn leaves in 
a thermal-requirement study at five different temperatures 
(14 °C, 18 °C, 22 °C, 26 °C and 30 °C) (Garcia et al. 2018). 
This study was conducted using larval populations collected 
from corn plants at the Plant Science Research and Education 
Unit, Citra, Florida (29°24′42.9″N, 082°6′35.34″W), a com-
munity located 70 km from the monitored area.

The number of degree-days accumulated on each day in 
our simulations was calculated using a weekly temperature 
database from Hague (Florida Automated Weather Network, 
IFAS, University of Florida 2017) from 2012 to 2015 (the 
same weekly T value was used for each day of the week, since 
the model input is daily temperatures).

For the viability equations, we used quadratic functions 
in order to define the viabilities for temperatures that were 
not evaluated by Garcia et al. (2018), since the relationship 
between insect viability levels and temperature can be satisfac-
torily described by quadratic expressions when viability shows 
a nonlinear increase or decrease with the temperature (Amar-
asekare and Sifuentes 2012). We also assumed that insects are 

Table 1  Assumed values for genotype-specific viability (larval stage) 
according to Garcia et al. (2016)

Susceptible (SS) Susceptible (SR) Resistant (RR)

Refuge Bt Refuge Bt Refuge Bt

�
l
(T) 0 0.8 ∗ �

l
(T) 0 0.8 ∗ �

l
(T) �

l
(T)

Table 2  Values of K1, K2, K3 and K4 (degree-days) used in the mod-
eling process. Garcia et al. (2018)

K1 K2 K3 K4

Garcia et al. (2018) 39.5 250 108.7 180
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not able to survive in temperatures below the lower tempera-
ture threshold. Adults die only after accumulating degree-days 
equal to K4. The viability functions are described in Eqs. (3), 
(4) and (5), corresponding, respectively, to the egg, larval and 
pupal stages. The domain of these functions is the range of 
temperatures used in our simulations, T ∈ [7, 32] . The fits of 
the quadratic curves to the data from Garcia et al. (2018) are 
available in Online Resource 3.

The per capita oviposition probability per day by an adult 
female was defined in Eq. (6) using data from the study pub-
lished by Garcia et al. (2018). In this case, the domain of the 
function is Ed ∈ [70, 180] , based on the energy required to 
initiate the oviposition period.

where E (degrees) is the total energy accumulated (indicated 
by the energy-counter) on days d and d − 1 of adult life.

Another assumption is that the study area is located in a 
region where insects are not able to overwinter, and peri-
odically receives individuals from warmer regions (Barfield 
et al. 1980; Westbrook et al. 2016). According to Meagher 
and Mitchell (2001) and Westbrook et al. (2016), this period 
corresponds approximately to the second half of April and 
the first half of May. Accordingly, in order to represent this 
immigration process, we included a mean migration rate 
higher than 0 (m > 0), occurring during the time interval 
given by 105 ≤ t ≤ 135. Therefore, m can be interpreted as 
the mean number of adult insects arriving inside the lat-
tice of cells per day (time step). The initial position of each 
incoming adult insect was randomly chosen by the computer 
inside the lattice.

Model verification

Genetic algorithm (GA)

Some parameters of the model were not available in the lit-
erature and are difficult to obtain from experimental data. 
Therefore, in order to reproduce the monitoring data set, 
a genetic algorithm was used to find the appropriate set of 

(3)

𝜇e(T) =

{
− 0.0009T2 + 0.0463T + 0.3117 if T > 11.7

𝜇e(T) = 0 if T ≤ 11.7

(4)

𝜇l(T) =

{
− 0.0052T2 + 0.2681T − 2.6848 if T > 12.5

𝜇l(T) = 0 if T ≤ 12.5

(5)

𝜇p(T) =

{
− 0.0099T2 + 0.5073T − 5.7295 if T > 14.1

𝜇p(T) = 0 if T ≤ 14.1

(6)�(E(d)) =
1(

e0.012E(d−1) − 1
) −

1(
e0.012E(d) − 1

)

parameters given by z = [m, f, l], corresponding, respec-
tively, to the migration rate (number of adults migrating in 
each time step), the frequency of the allele for resistance 
to Bt corn in immigrant populations, and the rate of larval 
movement (proportion of larvae moving in each time step), 
that gave the best match between the model and the moni-
toring data.

GA is an optimization method based on the mechanisms 
of natural selection, with the goal of producing new param-
eter sets that are gradually fitted to the present conditions, 
according to some objective function (Mitchell 1999). In 
entomological research, Ren et al. (2016) used a GA to esti-
mate the parameters of a model to simulate swarms of flying 
insects. With this in mind, np is the number of parameter sets 
tested. A score (or fitness) is attributed to each parameter set 
according to a fitness function. At each iteration of the GA 
algorithm, three processes may occur: reproduction, crosso-
ver, and mutation (Fig. 2) (Chambers 2000).

“Reproduction” selects the parameter sets to compose the 
next generation according to a fitness function. In the present 
study, the mean square error between the observed and the 
expected results (number of adults) was used as a fitness 
function in order to select the parameter sets that showed 
the smallest differences between the model results and the 
monitoring data. “Crossover”, which exchanges information 
between two parameter sets, occurred according to a prob-
ability set to 0.1. This mimics sexual reproduction; other-
wise, the parents would produce an offspring identical to 
themselves. “Mutation” randomly modifies the value of one 
parameter in the set according to a probability that was set 
to 0.1. It allows the introduction of new values, preventing 
the solution from reaching a local minimum, since we were 
looking for a global minimum. We used a number of param-
eter sets equal to np = 200 and allowed them to evolve over 
100 iterations. The values of the starting sets were drawn 
randomly from a range of values with equal probability of 
being selected. The range of values for m, f and l was [0, 1], 
[0, 0.4] and [0, 0.15], respectively, based on field and com-
putational studies (Huang et al. 2014; Westbrook et al. 2016; 
Garcia et al. 2016; Farias et al. 2016; Malaquias et al. 2017).

Simulations

Initially we ran the model using data collected in 2012 in the 
study area, in order to determine the vector z = [m, f, l]. The 
genetic algorithm found the best match between the model 
prediction and the field data (mean square error = 90.35), 
which was z = [0.48, 0.15, 0.04]. The complete results of 
the genetic algorithm, indicating the global minimum and 
the values of the cost function for each parameter value 
tested, are available in Online Resource 4. Then, using the 
parameter values from the vector z , we ran simulations for 
2013, 2014 and 2015. The goodness of fit of the model to the 
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data was measured by the relative-root-mean-square error, 
RRE = (r.m.s. error) / (r.m.s. count) (Fig. 3). 

The RREs of the fitted curves were 17–27%. Soulsby and 
Thomas (2012) considered that values less than 29% cor-
respond to a good fit.

From 2012 to 2014, five generations of fall armyworms 
per year were predicted by our model. The same number 
was found for the same region by Garcia et al. (2018), where 
thermal requirements and the Geographic Information Sys-
tem (GIS) were used to estimate the number of generations 
of fall armyworms from 2006 to 2016 throughout Florida. 
In 2015 and 2016, our model estimated six generations dur-
ing the year, due to the warmer climate conditions. Garcia 
et al. (2018) estimated seven generations per year for 2015 
and 2016.

Since the model was able to reproduce the monitoring 
data for the three consecutive years with good accuracy, 
using the combination of parameters provided by the GA 
for 2012, a new question was formulated: are the parameters 
obtained by the genetic algorithm not undergoing significant 
variations during the proposed time interval (2012–2015)? 
These questions are interesting for pest management because 
they allow us to detect waves of migration and/or variations 

in the frequency of the allele that confers resistance to Bt 
corn. In order to answer this question, we ran the genetic 
algorithm once more to find the combination of parameters 
that provided the best match of the model for each year from 
2012 to 2015. Then, we calculated the mean values of the 20 
best parameter sets obtained from simulations of the algo-
rithm for each year (Fig. 4). We also ran a local sensitivity 
analysis to assess the importance of the three parameters 
estimated by the GA for insect dynamics. Fixing two of these 
parameters (using the values of the vector z = [0.48, 0.15, 
0.04]) and varying the remainder, we measured how the 
insect population dynamics reacts to it (Saltelli et al. 2004). 
The conclusion was obtained from the variability measured 
at the end of the analysis, repeating the process for each 
parameter, being careful to vary m, f and l on the same scale 
and avoiding biased results, respectively, m ∈ [0.24, 0.96], f 
∈ [0.075, 0.30] and l ∈ [0.02, 0.08] (Fig. 5).

Estimation for 2016 and hypothetical scenarios

In order to investigate the possible effects of increases in 
temperature on the population dynamics of S. frugiperda, 
we tested the model using climate data from 2016, and also 

Fig. 2  Hypothetical examples of the three processes involved in a genetic algorithm. “Reproduction” selects the individuals to reproduce accord-
ing to a fitness function F. “Crossover” exchanges information between two parameter sets. “Mutation” randomly modifies a parameter in a set
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Fig. 3  Field data and model simulations using the parameter set z = [0.48, 0.15, 0.04] and weekly mean temperatures in 2012 (a), 2013 (b), 2014 
(c) and 2015 (d). Ng number of generations, RRE relative-root-mean-square error of fit

Fig. 4  Mean values of f  (resistance-allele frequency in the migrant 
population) (a), m (migration rate) (b) and l (rate of larval movement) 
(c) obtained from simulations of the GA for 2012, 2013, 2014 and 

2015. Error bars represent 95% confidence intervals. Different letters 
above the bars indicate significant differences at 5% (Tukey’s HSD, 
p < 0.05)
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assumed two hypothetical scenarios: increasing the mean tem-
peratures of 2016 by 1 °C and by 2 °C. In this case, predic-
tions were not evaluated against data, since the model was 
previously tested for the period 2012–2015. Also, field data 
were not available for 2016. Using the weekly temperature 
data (Florida Automated Weather Network, IFAS, University 
of Florida 2017) and the combination of parameters z found 
by the GA for 2012, we estimated the population levels for 
2016 and for each of the hypothetical scenarios (Fig. 6). All 
temperature data are available in Online Resource 5.

Discussion

Simulations

In general, the model satisfactorily predicted the temporal 
course of the adult population from 2012 to 2015, compared 
with the data obtained in the monitored area, and only syn-
chronization delays of less than 5 days were observed. These 
delays can be explained as a response to the intervals of 
observation in the field data, which were longer than 1 week.

The model was able to predict two main periods of out-
break. The first (and smaller) outbreak is derived from eggs 
laid in mid-summer (~ July) by populations from the begin-
ning of this season, when temperatures were highly favora-
ble for fall armyworm development (25 < T < 30 °C) (Hogg 
et al. 1982; Ali et al. 1990). The second and larger outbreak 
would be expected in mid-autumn (~ October) from eggs laid 
at the end of summer, when conditions were still optimal for 
fall armyworm development. In addition to these two pre-
dicted outbreaks, a third occurred during December 2012, 
which was not predicted by the model. This outbreak was 
unexpected, since corn plants were not present in December. 
It may have occurred due to the presence of other host plants 
remaining in the field or an influx of moths returning from 
the north (Pair et al. 1987). In 2014 and 2015, only one, 
larger outbreak was observed, which the model was able 
to reproduce; however, the model also predicted another, 
smaller outbreak that was not observed in the monitoring 
data. Another reason for differences between the expected 
and observed results may be the assumptions in the model. 
The modeling approach assumed that temperature is the 
driving factor governing population dynamics, but other 
factors would also influence it, such as rainfall, corn phe-
nology or other natural phenomena (Barfield and Ashley 
1987). Considering fall armyworm biology, humidity plays 
an important role in the insect dynamics and could be a 
factor to be added (Simmons 1993) to increase the model’s 

Fig. 5  Graphs a, b, c show plots of the observed variation of population density (shaded area) when the migration rate [0.24, 0.96], resistance-
allele frequency [0.075, 0.30] and rate of larval movement [0.02, 0.08] are varied within the proposed range to assess local sensitivity

Fig. 6  Population levels estimated for 2016 and for two hypothetical 
situations (increasing the temperatures by 1 and 2 °C). Ng number of 
generations
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predictive ability. The model’s failures can be also related 
to the absence of plant dynamics in the model. The model 
tended to overestimate the magnitude of major population 
peaks and failed to predict small peaks. Intra-specific com-
petition, considering limited resources, could regulate insect 
population dynamics more effectively. However, many of 
these small peaks depend on random factors (climate and 
human events) and are not represented by the model because 
it attempts to simulate a general pattern, addressing the most 
important elements discussed in the specialized literature, 
such as the role of temperature in insect dynamics, and the 
importance of insect migration for overwintering areas. 
Adding more parameters could excessively complicate the 
computations and produce a very specific model, limiting its 
use for a diverse range of situations.

An important achievement by the model was the repre-
sentation of the intensities of outbreaks. For instance, the 
model was able to represent the large outbreak in 2015 
(exceeding 100 adults/ha). The year 2015 was one of the 
warmest on record in Florida, resulting in an increase in the 
number of fall armyworm generations throughout the state 
(UFWeather 2015; NOAA 2015).

The field data collected in 2012 and 2013 did not show 
a peak during the immigration period (105 ≤ t ≤ 135) as 
observed in the curves provided by the model. This differ-
ence may be related to the methodology used to model the 
immigration period. Because information about the spe-
cific period of immigration was sparse, we assumed that it 
occurred uniformly during a specific time interval based on 
previous observations. However, migration can be driven 
by different factors such as corn phenology, temperature 
and rainfall (Westbrook et al. 2016). The migration process 
could be also density-dependent, and the inclusion of this 
factor could correct the difference between the expected and 
observed number of adult insects.

Realism of parameter estimates and sensitivity analysis

Regarding the parameters found by the GA, we failed to find 
any published study providing rates of migration or larval 
movement in the field to compare with our results. Studies 
suggest that in case of l < 0.1 (our model estimated l= 0.04), 
the seed-mixture refuge strategy could be a better alterna-
tive for insect-resistance management in the field (Garcia 
et al. 2016).

The resistance-allele frequency found in our study 
ranged between 0.12 and 0.18. Different genetic studies 
were conducted using fall armyworm populations from 
counties in southern Florida, and the resistance-allele fre-
quency was estimated: Palm Beach Co. (0.05–0.20), Hen-
dry Co. (0.01–0.12) (Vélez et al. 2013), and Collier Co. 
(0.24–0.35) (Huang et al. 2014). Insects usually arrive in 
the study area from different southern locations during the 

migration period, and therefore the resistance-allele fre-
quency (0.12–0.18) obtained in the current study can be 
interpreted as a mean of the allele-resistance frequency of 
populations from the many counties that provide fall army-
worm moths to the simulation area. It also indicates that 
resistant individuals may be present in the area (Huang et al. 
2014). This information needs to be taken into account in 
future management plans.

The sensitivity analysis showed that the frequency of the 
resistance allele most influenced the population dynamics, 
followed by the migration rate. This result was expected, 
since Bt crops are widely used in agricultural systems and 
therefore it is essential that insect populations possess 
some level of resistance in order to establish in these areas. 
Regarding the importance of the migration rate, we are 
representing an overwintering area and therefore the pres-
ence of fall armyworm moths depends on a periodic influx 
of insects. On the other hand, the model was little affected 
by the rate of larval movement, which occurs on a small 
scale (larvae move only between neighboring plants). How-
ever, maintaining this parameter in the model is important 
because of resistance management. Depending on the refuge 
configuration, larval movement may influence the evolution 
of resistance. The seed-mixture configuration, for instance, 
adopts a random configuration instead of a structured ref-
uge as a block. Different investigators have noted that in a 
seed mixture, larval movement can increase selection for Bt 
resistance because it can expose larvae to sublethal doses of 
Bt toxin as the larvae move between Bt and non-Bt plants 
(Head et al. 2014; Garcia et al. 2016; Malaquias et al. 2017). 
Since we constructed the model to allow users to change the 
refuge configuration, we decided to maintain this variable 
because it becomes important when the refuge configuration 
is modified.

The differences between the number of generations esti-
mated by our model and the number estimated by Garcia 
et al. (2018) for 2015 and 2016 are probably related to the 
different approaches used in the two studies. Garcia et al. 
(2018) used a GIS-based analysis, including only degree-
days accumulated during the egg-adult period, whereas the 
current study used a computational model that covered a 
wider range of parameters related to temperature, such as 
viability and fecundity. Additionally, the previous study did 
not include parameters such as migration rate, resistance-
allele frequency and larval movement. In spite of these dif-
ferences, the values were very similar in the two studies.

As indicated in Fig. 4, the frequency of the resistance 
allele did not differ significantly among years. We found 
no differences among the years because we were assessing 
possible changes in the population over a short time inter-
val. We also did not observe significant variations in the 
rate of larval movement and migration rate (except in 2014). 
These results indicate that neither of these two parameters, 
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i.e., migration rate and larval movement rate, are affected 
by small variations in temperature, and only drastic climate 
changes may affect them. They could also be more closely 
related to other variables that were not studied here, such 
as crop neighborhood, crop calendar, etc. A more-detailed 
study focusing on the variables that affect both parameters 
would be necessary to test this hypothesis.

Estimation for 2016 and hypothetical scenarios

The model result for 2016 was very similar to 2015, but it 
showed a larger insect outbreak that reached ~ 150 adults/
ha. The year 2015 was the warmest summer in Florida’s 
recorded history up to that time. However, the record was 
broken in 2016, with temperatures reaching 30 °C on some 
summer days (NOAA 2016). The gradual increase in mean 
temperatures has raised concern that the number of insects 
in the field is increasing (Liebhold and Bentz 2011). The 
simulations for 2015 and 2016 indicated the addition of one 
generation compared to 2012, 2013 and 2014. Additionally, 
our simulations for the hypothetical scenarios indicated 
that an increase of only 1 °C in weekly mean temperatures 
could produce an outbreak 1.7 times more intense than in 
2016, reaching ~ 250 adults/ha. This increase in the number 
of insects is not indefinitely proportional to the increase in 
temperatures, as observed when weekly mean temperatures 
were increased by 2 °C. The simulated outbreak did not 
show a large difference compared to the simulation corre-
sponding to an increase of 1 °C. Insect viability is affected 
by extreme temperatures, and the optimal temperature 
for fall armyworm development is around 26 °C (Garcia 
et al. 2018). It is expected that fall armyworm viability will 
decrease as temperatures rise above the optimal temperature, 
but that some insects will still be able to survive. Therefore, 
the intensity of outbreaks is proportional to the frequency 
of days with mean temperatures close to 26 °C during the 
period evaluated (Hogg et al. 1982; Ali et al. 1990).

Final considerations

This model may constitute an important tool for integrated 
pest management programs, since the model can be used 
to predict both the effects of the implementation of a new 
approach for pest control, and the influence of global warm-
ing on insect dynamics. The results provided by the model 
also constitute a warning about the effects of a gradual 
increase in mean temperatures on the density of fall army-
worms in the field.

African countries have recently faced severe infestations 
of S. frugiperda populations, with significant crop losses. 
The model could be used to predict the population dynam-
ics of fall armyworms in affected areas, providing tools for 

researchers to design IPM programs to manage this pest. 
The computational code is available and explained in Online 
Resources 6 and 7 and can be easily modified to represent 
different conditions. A future study in Africa, involving the 
use of field data, will be a future opportunity for the use of 
this model.
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