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Abstract
Solidago gigantea and Solidago canadensis (Asteraceae) are two invasive weeds native to North America and introduced in 
Europe and Asia, where they are spreading quickly threatening the stability of local secondary ecosystems. These two plant 
invaders may represent an ideal bioresource to be exploited for production of green pesticides. Therefore, herein we evaluated 
the efficacy of the essential oils (EOs) obtained from their different parts, i.e. leaves, inflorescences and roots, against Culex 
quinquefasciatus, Spodoptera littoralis and Musca domestica. The essential oil composition was investigated by gas chro-
matographic–mass spectrometry (GC–MS) analysis. S. canadensis leaf EO was the most toxic to C. quinquefasciatus, with 
a  LC50 of 89.3 μl L−1. The two most effective oils against M. domestica adults were S. canadensis leaf and flower EOs, with 
 LD50 values of 206.9 and 207.1 μg adult−1, respectively. Three EOs highly toxic to S. littoralis were also identified, namely 
S. gigantea leaf EO, S. canadensis leaf EO and S. gigantea flower EO, with  LD50 values of 84.5, 98.9 and 107.4 μg larva−1, 
respectively. Since the S. canadensis leaf EO was the only green product effective against all the tested insect pests, we 
selected it for non-target toxicity assays on Eisenia fetida earthworms, along with the leaf EO from S. gigantea. Both the 
S. canadensis and S. gigantea leaf EOs did not led to mortality of E. fetida adult earthworms, at variance with the positive 
control α-cypermethrin, allowing us to propose them for pest control purposes in IPM and organic farming.

Keywords Essential oil · Culex quinquefasciatus · Insect pest · Mosquito vector control · Musca domestica · Spodoptera 
littoralis

Key message

• Solidago invasive species may represent an ideal green 
resource to be exploited for production of green pesti-
cides

• Solidago gigantea and S. canadensis essential oils from 
various plant parts were tested on three insect pests

• Solidago canadensis leaf oil was the most toxic to Culex 
quinquefasciatus and Musca domestica

• Solidago gigantea leaf oil was the most toxic to Spodop-
tera littoralis larvae

• Solidago essential oils were not toxic to non-target earth-
worms, Eisenia fetida
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Introduction

The eco-friendly management of insect pests is a timely 
challenge nowadays (Isman 2006; Desneux et al. 2007; 
Benelli 2015, 2018a, b; Athanassiou et al. 2018). In this 
framework, essential oils extracted from plants may repre-
sent a promising reservoir of effective products for pesticide 
development (Pavela 2016; Stevenson et al. 2017; Benelli 
and Pavela 2018a, b; Pavela et al. 2018), due to a wide num-
ber of favourable characteristics that are compatible with 
Integrated Pest Management (IPM) criteria, including mul-
tiple mechanisms of action and low toxicity to vertebrates 
(Isman 2000, 2015; Pavela and Benelli 2016a, b).

Solidago canadensis L. (Canada goldenrod) and Soli-
dago gigantea Aiton (giant goldenrod) are rhizomatous, 
long-lived, perennial herbs native to North America. When 
introduced to Europe and Asia, they became invasive and, 
by their increased dominance, threatened the stability of 
local secondary ecosystems (Ledger et al. 2015; Pal et al. 
2015). Solidago canadensis and S. gigantea are gener-
ally described as having a broad tolerance with respect to 
soil moisture, light, nutrient contents, temperature or pH 
range, although they prefer ruderal habitats, where they are 
dominant (Werner et al. 1980; Weber and Jakobs 2005). 
However, their ecological needs overlap and regularly 
coexist both in their native and in the introduced range: S. 
canadensis prefers loose and drier soils than S. gigantea; 
hence, S. canadensis occurs near to urban areas, roadsides 
and railways more often and S. gigantea occurs mainly 
on riverside and embankments (Botta-Dukát and Dancza 
2004).

Solidago species (both the two-aforementioned species 
and S. virgaurea L., which is native to Europe) are well 
known for their medicinal use in Europe: they are ingre-
dients of the so-called Herba Solidaginis included in the 
ESCOP publication (Kalemba and Thiem 2004). This prepa-
ration is used to treat disorders of urinary tract, prostate and 
kidney. Regarding the secondary metabolites, several groups 
are reported in the two species, mainly flavonoids, phenolic 
acids, diterpenes, saponosides, and essential oils (Apáti et al. 
2003; Kołodziej et al. 2011; Kraujalienė et al. 2017; Zihare 
and Blumberga 2017). These compounds have been shown 
to exert anti-inflammatory, antimicrobial, antioxidant, anti-
spasmodic and diuretic properties (Liu et al. 2016).

Although these species are close relatives, they have dis-
tinct chemical profiles suggesting a possible influence of 
the geographic origin, genetics (e.g. polyploidy level) and 
plant part investigated (Radusiene et al. 2018; Kalemba and 
Thiem 2004; Gruľová et al. 2016; Shelepova et al. 2018; 
Kalemba et al. 2001; Hull-Sanders et al. 2009a, b).

Solidago gigantea and S. canadensis are consumed by 
many specialist herbivores in their native range (Pilson and 

Rausher 1995; Carson and Root 2000; Meyer et al. 2005). 
On the other hand, in their introduced ranges there are 
only few generalist insects consuming them (Botta-Dukát 
and Dancza 2004; Jakobs et  al. 2004), suggesting that 
there are no specialist herbivores in the place of introduc-
tion. However, Hull-Sanders et al. (2009a) reported lower 
foliar concentrations of monoterpenes and diterpenes in 
the introduced S. gigantea populations than in the native 
ones. The same authors found a higher growth rate of a 
generalist herbivore, Spodoptera exigua (Hübner), fed on 
introduced plants than on native ones, while the specialist 
Trirhabda virgata LeConte was not influenced (Hull-Sanders 
et al. (2009b). In contrast, in a common garden experiment, 
Nagy et al. (2017) found a higher insect resistance of S. 
gigantea populations introduced in Europe compared with 
native ones. This might support the potential of introduced 
Solidago populations under natural conditions as a source 
of insecticidal compounds.

Since S. gigantea and S. canadensis may represent an 
ideal bioresource to be exploited for production of highly-
valued products, in the present work we evaluated the insec-
ticidal efficacy of the EOs obtained from their different parts 
(i.e. leaves, inflorescences and roots), whose compositions 
were analysed by gas chromatography–mass spectrometry 
(GC–MS). For the purpose, we assayed them on larvae of 
the filariasis and Zika virus vector Culex quinquefasciatus 
Say (Benelli and Romano 2017) and the tobacco cutworm 
Spodoptera littoralis (Boisduval), as well as against adults of 
the housefly, Musca domestica L. The most effective essen-
tial oils were tested to evaluate potential non-target effects 
on adult earthworms, Eisenia fetida (Savigny). The insec-
ticidal effects of Solidago EOs from different plant parts of 
the two studied species were compared, linking their bioac-
tivity against insects to the chemical profiles obtained.

Materials and methods

Plant material and sample preparation

The sample collection was performed in the flowering phe-
nophase of S. canadensis and S. gigantea, during a three-
week period in August 2017 (Fig. 1). Weather conditions 
were sunny and slightly windy, and there was no rainfall 
for 48 h before each sampling day. Sample collection took 
place in the introduced range of both species, i.e. a semi-
humid meadow close to an agricultural field and a canal in 
Szentlőrinc, Hungary (46°02′47.3′′N; 17°58′37.4′′E; eleva-
tion: 114.5 m above sea level). The selection of goldenrod 
populations was based on the high dominance of both spe-
cies (alone or together at least 70% vegetation cover), open, 
unshaded vegetation and the co-occurrence of the investi-
gated species to exclude the effect of different environmental 
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conditions on the overall chemical composition. An area of 
400 × 500 m was sampled randomly throughout its entire 
range. For the analyses, young and intact (without any injury 
or infection) materials were collected from around 50–100 
individuals of both species, which were located at least 5 m 
apart from another, to reduce the risk of resampling the same 
clone. Individuals were removed, using a hand shovel; rhi-
zomes, leaves and inflorescences were separated immedi-
ately with secateurs and placed separately into plastic bags. 
Collection continued until 2 kg fresh mass was reached from 
all organs except for roots of S. canadensis (1 kg). After 
collections, samples were air-dried separately, at 24–28 °C 
in a storage room, without direct light, for 1 month. The 
herbarium specimens of the two species were deposited in 
the Herbarium of the University of Pécs, Hungary, under 
the codes JPU 82/3630 (S. gigantea) and JPU 82/3631 (S. 
canadensis).

Chemicals

Analytical standards of some essential oil constituents 
(Table  1) were purchased from Sigma-Aldrich (Milan, 
Italy) and used for GC–MS peak assignment. Viridiflorol 
was kindly furnished by Michael Russell, Department of Pri-
mary Industries, Industry and Investment NSW, Wollongbar, 
NSW, Australia. A mix of n-alkanes, ranging from octane 
 (C8) to triacontane  (C30), was obtained from Supelco (Belle-
fonte, CA, USA) and injected using the analytical conditions 
reported below to determine the temperature-programmed 
retention index (RI) according to the following formula:

RI
x
= 100

n
+ 100

(

t
x
− t

n

)

∕
(

t
n+1 − t

n

)

,

where n is the number of carbon atoms of the alkane eluting 
before the compound x, tn and tn + 1 are retention times of 
the reference alkanes eluting before and after compound x 
and tx is the retention time of the compound × (Van den Dool 
and Kratz 1963). All compounds were of analytical standard 
grade. Analytical grade n-hexane solvent was bought from 
Carlo Erba (Milan, Italy) and distilled by a Vigreux column 
before use.

Isolation of Solidago essential oils

Different amounts of dry plant organs of S. gigantea and 
S. canadensis, namely roots (700 and 625 g, respectively), 
leaves (650 and 500 g, respectively) and inflorescences (200 
and 300 g, respectively), were reduced into small pieces and 
inserted in 10-L flasks filled with 5–6 L of deionized water, 
then subjected to hydrodistillation using a Clevenger-type 
apparatus for 4 h. The EOs were decanted, separated from 
water and dehydrated using anhydrous  Na2SO4. They were 
stored in amber vials capped with PTFE-faced silicon septa 
at 4 °C until analysed. The yield was calculated as g of 
EO/100 g of dry matter.

GC–MS analysis

Chemical analysis of the EOs from various plant parts of 
the two Solidago species was performed by using an Agilent 
6890 D gas chromatograph coupled to a single-quadrupole 
5973-N mass spectrometer. Separation was achieved on a 
HP-5 MS (5% phenylmethylpolysiloxane, 30 m, 0.25 mm 
i.d., 0.1 μm film thickness; J&W Scientific, Folsom) cap-
illary column. The temperature programme used was as 

Fig. 1  Solidago gigantea (a) 
and S. canadensis (b) in the 
collection site (Szentlőrinc, 
Hungary)
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follows: 5 min at 60 then 4 °C min−1 up to 220 °C, then 
11 °C min−1 up to 280 °C, held for 15 min. Injector and 
detector temperatures: 280 °C; carrier gas: He; flow rate: 
1  ml  min−1; split ratio: 1:50; acquisition mass range: 
29–400 m/z; mode: electron-impact (EI, 70 eV). The EO 
was diluted 1:100 in n-hexane, and 2 µl of the solution was 
injected into the GC–MS system twice. The MSD ChemSta-
tion software (Agilent, Version G1701DA D.01.00) and the 
NIST Mass Spectral Search Program for the NIST/EPA/NIH 
EI and NIST Tandem Mass Spectral Library v. 2.3 were used 
to analyse data. For identification of EO components, co-
injection with the above standards was used, together with 
correspondence of retention indices and mass spectra with 
those of ADAMS, NIST 17 and FFNSC2 libraries (Adams 
2007; NIST 17 2017; FFNSC2 2012). Some oxygenated 
sesquiterpenes were identified by comparison of RI and 
MS with those reported by Kalemba et al. (2001). Semi-
quantification of EO components was made by peak area 
normalization considering the same response factor for all 
volatile components. Percentages values were the mean of 
two independent chromatographic analyses.

Insect and earthworm rearing

Culex quinquefasciatus third-instar larvae and M. domes-
tica adult females were reared as reported by Benelli et al. 
(2018a, b). Spodoptera littoralis early third-instar larvae 
were reared following Sut et al. (2017). Insects were main-
tained at 25 ± 1 °C, 70 ± 3% R.H. and 16:8 h (L:D).

Eisenia fetida adults (weight 350–500 mg) were reared 
as reported by Pavela (2018) in artificial soil (OECD 1984). 
Room temperature was 20 ± 1 °C. Soil maximum water-
holding capacity (35%) was monitored weekly.

Toxicity on Culex quinquefasciatus larvae

In insecticidal assays, we tested the EOs extracted from vari-
ous plant parts of S. canadensis and S. gigantea, except for 
the root EO of S. canadensis, since the yield of this one 
was too scarce to be considered in insecticidal assays (see 
paragraph 3.1). The five Solidago EOs were diluted in dime-
thyl sulfoxide (DMSO), formulated at the concentration of 
100 ml L−1, then tested on C. quinquefasciatus third-instar 
larvae following Benelli et al. (2017). Based on prelimi-
nary assays, we tested dilution series ranging from 50 to 
200 ml L−1 to estimate the EO lethal concentration values. 
For each concentration, we conducted four duplicate trials. 
Negative control was distilled water with the same amount 
of DMSO used testing S. canadensis and S. gigantea EOs. 
α-cypermethrin  (Vaztak®) was tested as positive control 
(Benelli et al. 2018c). Larval mortality was noted after 24 h.

Toxicity on Musca domestica adults

Topical application tests were conducted to evaluate the 
acute toxicity of five EOs extracted from various plant parts 
of S. canadensis and S. gigantea on M. domestica adult 
females (3–6 days old). According to Benelli et al. (2018b), 
1 μL of acetone (Sigma-Aldrich, Germany), carrying a 
given Solidago EO at the dose of 200 μg adult−1 (each rep-
licated at least 4 times), was applied through a microelectric 
applicator on the pronotum of fly adults anesthetized using 
 CO2. Acetone without the Solidago EO served as negative 
control. α-Cypermethrin  (Vaztak®) was tested as positive 
control (Benelli et al. 2018c). Houseflies were then moved 
to a recovery box (10 × 10 × 12 cm, 26 ± 1 °C 16:9 L:D) for 
24 h, before checking mortality rates. The EOs were tested at 
dilution series ranging from 50 to 400 μg adult−1 to estimate 
the lethal doses.

Toxicity on Spodoptera littoralis larvae

Toxicity of the five EOs extracted from various plant parts 
of S. canadensis and S. gigantea on third-instar larvae of S. 
littoralis was evaluated through topical application of the EO 
diluted in acetone, as detailed by Sut et al. (2017). Larvae 
were treated on the dorsum with 1 μL of acetone contain-
ing the selected Solidago EO at dose of 150 μg larva−1. We 
did four duplicate replicates (n = 20 larvae per replicate) for 
each tested Solidago EO concentration. Acetone without EO 
served as negative control. α-Cypermethrin  (Vaztak®) was 
tested as positive control (Benelli et al. 2018c). Then, S. lit-
toralis larvae were moved to a recovery box (10 × 10 × 7 cm, 
with thin holes on each wall to avoid fumigation effects, 
26 ± 1 °C, 70 ± 3% R.H., and 16:8 L:D) for 24 h, before 
checking mortality. The EOs were tested using dilution 
series ranging from 30 to 250 μg larva−1 to estimate the 
lethal doses.

Toxicity on non‑target earthworms

Since the S. canadensis leaf EO was the only tested prod-
uct effective against the three selected insect pests, it was 
selected for non-target tests, along with the leaf EO from 
S. gigantea. The standard OECD (1984) method was fol-
lowed to test the Solidago leaf EO toxicity on E. fetida adult 
earthworms. The artificial soil had the same composition 
and pH as described for E. fetida rearing; the soil was pre-
pared by adding the Solidago EOs at concentrations of 200, 
100 and 50 mg kg−1, mixed with Tween 80 (ratio 1:1 v:v), 
equivalent to 100, 50 and 25 mg EO a.i. per kg of dry weight 
basis soil. α-Cypermethrin at 50.0, 25.0 and 12.5 mg kg−1 
of dry soil [i.e.  Vaztak® at 1000, 500 and 250 μL kg−1 (v/v)] 
was the positive control. Distilled water with Tween 80 at 
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concentration of 100 mg kg−1 of dry soil was used as nega-
tive control. An aqueous formulation containing the leaf 
EO from the two studied Solidago species, pure water or 
α-cypermethrin was mixed with the soil (650 g), and 10 E. 
fetida adults were added. Treated and control soil samples 
were stored in glass pots (1 L) covered with gauze to ensure 
aeration. Eisenia fetida mortality was noted 7 and 14 days 
post-exposure to the treatments at 20 ± 1 °C, R.H. 80–85%, 
16:8 (L:D) and 600 lux (Pavela 2018).

Statistical analysis

If control mortality was > 20%, the treatment mortality 
rates were corrected by the Abbott’s formula (Abbott 1925). 
Lethal dose  LD50(90) or concentration  LC50(90) values, with 
associated 95% LCL and UCL, were estimated by probit 
analysis (Finney 1971) using BioStat version 5.

Results

Chemical analysis of Solidago essential oils

The hydrodistillation of leaves, inflorescences and roots of S. 
gigantea and S. canadensis gave similar EO yields, with leaf 
and flower being richer (0.15–0.16 and 0.18–0.20%, respec-
tively) than root (0.06 and 0.04%, respectively). The GC 
analysis performed by using a combination of MS and RI 
and, whenever possible, co-elution with available standards, 
allowed us to identify 121 volatile compounds in the six 
EOs from the two Solidago species (Table 1). Overall, the 
chemical profiles of leaves of S. gigantea and S. canadensis 
species were quite similar, whereas those of inflorescences 
(Fig. 2a, b) and, to a major extent, roots exhibited notewor-
thy differences (Fig. 2c–f).
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Fig. 2  TIC-GC/MS chromatograms of the essential oils extracted from leaves, inflorescences and roots of Solidago gigantea (a, c, e, respec-
tively) and Solidago canadensis (b, d, f, respectively). Numbers of main peaks refer to those reported in Table 1
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A total of 80 volatile components were identified in the 
leaf EO from S. gigantea, accounting for 83.3% of the total. 
This EO was dominated by oxygenated sesquiterpenes 
(45.1%), followed by sesquiterpene hydrocarbons (19.5%) 
and oxygenated monoterpenes (15.1%), with cyclocolor-
enone (15.6%), bornyl acetate (13.7%) and germacrene D 
(6.3%) as the major compounds. Other components occur-
ring at noteworthy levels were the sesquiterpenes eudesma-
4(15),7-dien-1β-ol (4.4%), spathulenol (4.3%) epoxysal-
vial-4(14)-ene (4.1%) and isospathulenol (3.0%). A total of 
43 compounds were detected in percentages below 1% and 
19 at trace levels (< 0.1%).

Solidago canadensis leaf EO yielded a total of 66 com-
ponents, corresponding to 85.5% of the total composition. 
The oxygenated sesquiterpenes (42.1%) were still the major 
fraction of this oil, along with similar levels of sesquiter-
pene hydrocarbons (17.9%) and oxygenated monoterpenes 
(17.2%), and minor amounts of monoterpene hydrocarbons 
(8.3%). The most abundant components were again bornyl 
acetate (13.4%), germacrene D (11.0%) and cyclocolorenone 
(8.8%), accompanied by minor components like eudesma-
4(15),7-dien-1 β-ol (7.1%), α-pinene (4.6%), torilenol (4.1%) 
and salvial-4(14)-en-1-one (3.0%). Thirty-two compounds 
were present in percentages lower than 1% and 13 at trace 
levels.

The EO from inflorescences of S. gigantea showed a 
chemical profile (84 identified components accounting for 
88.1% of the EO) similar to that of leaf EO of the same 
species, with oxygenated sesquiterpenes (34.5%), sesquit-
erpene hydrocarbons (19.1%) and oxygenated monoterpe-
nes (17.7%), and an additional occurrence of monoterpene 
hydrocarbons (16.0%). Here, the major components were 
bornyl acetate (11.4%), germacrene D (9.0%), α-pinene 
(8.1%) and cyclocolorenone (6.4%). Minor contributions 
derived from eudesma-4(15),7-dien-1 β-ol (4.6%), p-cymene 
(3.5%), spathulenol (3.4%) and epoxysalvial-4(14)-ene 
(3.0%). A total of 56 components were present in percent-
ages below 1% and 6 at trace levels.

A different profile was found in the EO from inflores-
cences of S. canadensis, where a total of 71 compounds, 
accounting for 94.3% of the total, were identified. Here, 
monoterpenoids (monoterpene hydrocarbons 42.3%, oxy-
genated monoterpenes 30.8%) dominated over sesquiter-
penes (oxygenated sesquiterpenes 13.6%, sesquiterpene 
hydrocarbons 5.9%). The major compounds were α-pinene 
(29.5%) and bornyl acetate (12.2%), with minor contri-
butions of limonene (5.1%), trans-verbenol (3.9%) and 
p-mentha-1,5-dien-8-ol (3.8%). Main leaf volatile compo-
nents such as cyclocolorenone and germacrene D were here 
poorer (2.9 and 1.0%, respectively). A total of 34 compo-
nents were present in percentages lower than 1.0% and 14 
at trace levels.

The chemical profiles of the two Solidago root EOs dif-
fered considerably from each other. In S. gigantea EO, we 
identified 88 compounds accounting for 83.5% of the total 
composition. Sesquiterpene hydrocarbons (29.2%) were the 
most abundant fraction, followed by oxygenated sesquiter-
penes (23.1%), alkenes (14.5%) and monoterpene hydrocar-
bons (12.9%). Germacrene D (14.4%) and 1-nonene (13.1%) 
were the most abundant constituents, with minor amounts of 
β-pinene (4.6%), spathulenol (4.6%), isospathulenol (3.6%), 
limonene (3.1%) and α-gurjunene (3.0%). A total of 53 con-
stituents were present in percentages below 1% and 12 at 
trace levels. Solidago canadensis EO showed a different pro-
file, with a total of 69 constituents, corresponding to 96.2% 
of the oil. The EO was dominated by monoterpene hydro-
carbons accounting for 74.0% of the total composition. The 
remaining compounds comprised sesquiterpene hydrocar-
bons (9.0%), oxygenated monoterpenes (6.2%) and alkenes 
(4.9%). The oil composition was dominated by two com-
ponents, namely limonene (32.7%) and β-pinene (31.3%), 
whereas germacrene D (3.9%), β-elemene (3.4%), methyl-
camphenoate (3.2%) and 2,6-dimethyl-1,3,6-heptatriene 
(3.0%) were present in low concentrations. Thirty-eight 
constituents were below 1% and 19 at trace levels. 1-nonene, 
i.e. one of the major volatile constituents in the roots of S. 
gigantea, was here present at scant amounts (1.6%).

Insecticidal activity and toxicity on non‑target 
earthworms

The acute toxicity of the EOs extracted from various plant 
parts of S. canadensis and S. gigantea varied consistently 
among the tested insect pests. Tables 2, 3 and 4 show the 
bioactivity of the tested five EOs on C. quinquefasciatus, M. 
domestica and S. littoralis, respectively. At the maximum 
tested concentration, i.e. 100 μl L−1, mortality rates on C. 
quinquefasciatus third-instar larvae varied from 22.0% (S. 
gigantea root EO) to 61.0% (S. canadensis leaf EO). Accord-
ing to the criteria exposed by Pavela (2015a, b), Solidago 
EOs achieving mortality rates lower than 50% when tested at 
the highest concentration of 100 μl L−1 were excluded from 
probit analysis. Therefore, the only Solidago EO of interest 
for developing C. quinquefasciatus larvicides was from S. 
canadensis leaves, with a  LC50 of 89.3 μl L−1 and a  LC90 of 
189.6 μl L−1 (Table 2).

Concerning toxicity assays on M. domestica adults, Soli-
dago EOs tested at the maximum dose of 200 μg adult−1 led 
to fly mortality rates ranging from 30% (S. gigantea flower 
EO) to 67.5% (S. canadensis flower EO) (Table 3). The two 
most effective EOs were those from S. canadensis leaf and 
flowers, with  LD50 values of 206.9 and 207.1 μg adult−1, 
respectively.  LD90 values were 355.6 and 426.4 μg adult−1, 
respectively (Table 3).
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Furthermore, three out of the five tested Solidago EOs 
showed relevant toxicity against third-instar larvae of S. 
littoralis. EOs tested at the highest dose of 150 μg larva−1 
led to caterpillar mortality rates ranging from 33.3% (S. 
canadensis flower EO) to 93.5% (S. gigantea leaf EO) 
(Table  4). Three highly effective EOs were identified, 
including S. gigantea leaf EO, S. canadensis leaf EO and 
S. gigantea flower EO, with  LD50 values of 84.5, 98.9 and 

107.4 μg  larva−1, respectively.  LD90 values were 149.4, 
200.4 and 264.6 μg larva−1, respectively (Table 4). For all 
the tested insect pests, the toxicity results achieved testing 
α-cypermethrin as positive control are provided in Tables 2, 
3 and 4.

Since the S. canadensis leaf EO was the only tested bio-
product effective against the three selected tested pests, 
we selected it for non-target toxicity tests on E. fetida 

Table 2  Acute toxicity of the essential oils from various plant parts of Solidago canadensis and Solidago gigantea on Culex quinquefasciatus 
third-instar larvae

ND not determined
ns not significant (P > 0.05)

Treatment Mortality at 100 μl L−1 LC50 μl L−1 CI95 LC90 μl L−1 CI95 Chi square

Solidago gigantea flowers 28.0 ± 3.3 ND – – – –
Solidago gigantea leaves 44.8 ± 3.3 ND – – – –
Solidago gigantea roots 22.0 ± 2.3 ND – – – –
Solidago canadensis flowers 38.9 ± 2.8 ND – – – –
Solidago canadensis leaves 61.0 ± 8.2 89.3 72.9–92.3 189.6 172.3–199.8 3.256 ns
Negative control 0.0 ± 0.0 – – – – –
Positive control, α-cypermethrin 100.0 ± 0.0 0.0005 0.0003–0.0007 0.0018 0.0009–0.0023 2.756 ns

Table 3  Acute toxicity of the essential oils from various plant parts of Solidago canadensis and Solidago gigantea on Musca domestica adult 
females

ND not determined
ns not significant (P > 0.05)

Treatment Mortality at 
200 μg adult−1

LC50 μg adult−1 CI95 LC90 μg adult−1 CI95 Chi square

Solidago gigantea flowers 32.5 ± 2.5 ND – – – –
Solidago gigantea leaves 42.5 ± 7.5 ND – – – –
Solidago gigantea roots 30.0 ± 0.0 ND – – – –
Solidago canadensis flowers 67.5 ± 12.5 207.1 191.3–226.2 355.6 310.1–369.8 1.718 ns
Solidago canadensis leaves 57.8 ± 12.5 206.9 187.5–232.4 426.4 401.8–471.5 5.246 ns
Negative control 0.0 ± 0.0 – – – – –
Positive control, α-cypermethrin 100.0 ± 0.0 0.19 0.16–0.35 0.85 0.78–1.15 3.121 ns

Table 4  Acute toxicity of the essential oils from various plant parts of Solidago canadensis and Solidago gigantea on Spodoptera littoralis third-
instar larvae

ND not determined
ns not significant (P > 0.05)

Treatment Mortality at 
150 μg larva−1

LC50 μg larva−1 CI95 LC90 μg larva−1 CI95 Chi square

Solidago gigantea flowers 60.0 ± 8.2 107.4 94.6–118.9 264.6 173.7–316.1 0.044 ns
Solidago gigantea leaves 93.5 ± 2.5 84.5 72.9–89.5 149.4 122.7–178.5 1.787 ns
Solidago gigantea roots 40.8 ± 8.2 ND – – – –
Solidago canadensis flowers 33.3 ± 12.5 ND – – – –
Solidago canadensis leaves 73.3 ± 2.5 98.9 83.4–124.1 200.4 180.4–256.7 2.517 ns
Negative control 0.0 ± 0.0 – – – – –
Positive control, α-cypermethrin – 0.0032 0.0022–0.0039 0.0082 0.0057–0.0105 2.482 ns
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earthworms, along with the leaf EO from S. gigantea. 
Results, given in comparison with the positive control 
α-cypermethrin, are provided in Table 5. Notably, neither of 
the EOs produced any earthworm mortality on adults of the 
E. fetida earthworms, at variance with the positive control 
α-cypermethrin, which led to 100% mortality when applied 
at 25 and 50 mg kg−1 in the soil (Table 5).

Discussion

Chemical analysis of Solidago essential oils

Results highlighted a chemical polymorphism in the vege-
tative and reproductive organs of the two Solidago species, 
with bornyl acetate, germacrene D and cyclocolorenone 
as marker compounds of the leaf EOs, α-pinene, bornyl 
acetate and germacrene D characterizing the inflorescence 
EOs, and 1-nonene, germacrene D, β-pinene and limonene 
as markers of the root EOs (Fig. 3).

Germacrene D is a ubiquitous sesquiterpene occurring 
in many plant EOs (Casiglia et al. 2017). It is a chiral 
compound arising from the methylerythritol phosphate 
pathway and playing an important role in the plant cell 
metabolism as the precursor of many sesquiterpenes (Ste-
liopoulos et al. 2002). In addition, it has been recognized 
as an important sex stimulant for the males of Periplaneta 
americana L. (Kitamura et al. 1976) and has been indi-
cated as a useful compound for pest control (Stranden 
et al. 2002; Zihare and Blumberga 2017). Bornyl acetate 
is an ester of the monoterpenoid borneol having camphora-
ceous smell and occurring in many EOs such as those of 

conifers and valerian (Matsubara et al. 2011). This com-
pound has been proved to exert anti-inflammatory activity 
(Tung et al. 2008). Interestingly, bornyl acetate is used 
by some insects, such as Corythucha marmorata (Uhler) 
(Hemiptera: Tingidae), as a source of sex pheromones 
(Watanabe and Shimizu 2017). 1-Nonene is a linear alkene 
occurring in the defensive secretions of tenebrionid bee-
tles (Tschinkel 1975). Cyclocolorenone is a tricyclic ses-
quiterpene ketone occurring also in other species, namely 
Pseudowintera colorata (Raoul) Dandy, Ledum palustre 
L., Magnolia grandiflora L. and S. canadensis (Kalemba 
et al. 2001). This compound has been also reported as an 
allopathic and antimicrobial agent (Jacyno et al. 1991).

When comparing our data on Hungarian Solidago spe-
cies with those of previously published reports, we found 
both similarities and differences. For instance, Kalemba 
et al. (2001) examined a population of S. gigantea growing 
in Poland and reported germacrene D (23.5%) and cyclo-
colorenone (32.4%) as the major essential oil constituents 
of aerial parts. The same authors examined the chemical 
profile of the EO from inflorescences of Polish S. canaden-
sis and reported α-pinene (13.0%), limonene (12.0%) and 
γ-cadinene (27.1%) as the most abundant constituents 
(Kalemba et al. 1990). The same group also analysed the 
volatile fraction of micropropagated plants of S. gigantea 
and S. canadensis and found α-gurjunene (16.6%), ger-
macrene D (12.8%) and cyclocolorenone (32.8%) as the 
major compounds in the former, and α-pinene (59.5%), 
limonene (9.7%) and germacrene D (15.2%) in the latter 
(Kalemba and Thiem 2004). Fujita (1980) reported germa-
crene D (66–77%) and bornyl acetate (5–7%) as the major 
components of S. gigantea EO. Weyerstahl et al. (1993) 
studied the chemical profile of the EO from S. canaden-
sis growing in Poland and found α-pinene (14.7%), ger-
macrene D (19.8%) and β-sesquiphellandrene (10.4%) as 
the most abundant constituents. Synowiec et al. (2017) 
reported α-pinene (26.0%), limonene (11.5%) and ger-
macrene D (27.5%) as the major EO constituents of Pol-
ish S. canadensis. Gruľová et al. (2016) analysed Slovak 
populations of S. gigantea and S. canadensis and found 
a significant chemical polymorphism depending on the 
collection site and species. S. gigantea was found rich in 
sesquiterpenes, namely curlone (14.4%), tumerone (14.0%) 
and δ-cadinene (5.4%); on the other hand, S. canadensis 
contained α-pinene (36.3%), limonene (7.8%) and germa-
crene D (9.9%) as the main EO constituents. Shelepova 
et al. (2018) studied different populations of S. canadensis 
growing in Europe (i.e. Austria, Ukraine, Kazakhstan and 
Russia) and found α-pinene (12.6–52.4%), germacrene D 
(2.9–36.2%), bornyl acetate (3.4–26.3%) and limonene 
(6.4–22.5%) as the major EO components. Watanabe 
and Shimizu (2017) reported bornyl acetate (20.2%) and 
germacrene D (54.0%) as the major EO components of 

Table 5  Toxicity of the essential oils extracted from Solidago 
canadensis and Solidago gigantea leaves, and α-cypermethrin on 
Eisenia fetida earthworms

Herein, the S. canadensis leaf essential oil was the only tested product 
effective against the three selected tested pests; therefore, it was selected 
for non-target tests, along with the leaf essential oil from S. gigantea
*E. fetida mortality (± SD) achieved on the 7th and 14th day post-
application of Solidago canadensis and Solidago gigantea essential oils
Numbers within a column follower by the same letter do not differ 
significantly according to ANOVA, Tukey’s HSD test at P < 0.05

Concentration (mg kg−1) 7th day* (% ±SD) 14th day* (% ±SD)

Solidago canadensis 200.0 0.0 ± 0.0a 0.0 ± 0.0b

Solidago gigantea 200.0 0.0 ± 0.0a 0.0 ± 0.0a

α-Cypermethrin 50.0 100.0 ± 0.0c 100.0 ± 0.0c

α-Cypermethrin 25.0 100.0 ± 0.0c 100.0 ± 0.0c

α-Cypermethrin 12.5 75.5 ± 2.5b 95.5 ± 2.5b

Control 0.0 ± 0.0a 5.0 ± 2.5a

ANOVA F5,18, P 358.15; 0.001 459.22; 0.001
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S. canadensis growing in Japan. This oil was slightly 
phytotoxic against four common weeds (Synowiec et al. 
2017). Chanotiya and Yadav (2008) analysed Indian S. 
canadensis and found limonene (0.2–12.5%) and germa-
crene D (56.7–75.5%) as the main EO constituents. Liu 
et al. (2016) examined the EO from leaves of Chinese S. 
canadensis and found α-pinene (53.6%) as the major com-
pound followed by germacrene D, limonene and β-pinene.

In conclusion, EOs from these two invasive species 
show significant variability that can be linked to several 
factors, such as the geographic origin of samples, together 
with the cytotype, phenological stage and part studied (see 
also Pavela and Benelli 2016b).

Insecticidal activity and toxicity on non‑target 
earthworms

The insecticidal efficacy of botanical insecticides based on 
EOs depends on multiple factors, such as the size and spe-
cies of target organisms, mode of application, post-applica-
tion temperature and, in particular, chemical composition 
and mutual ratios of major substances, which may exhibit 
both synergistic and antagonistic relationships (Pavela 
2015a, b; Pavela and Benelli 2016b; Pavela and Sedlák 
2018). Herein, the efficacies of the five tested Solidago EOs 
were different. Solidago canadensis leaf EO was most toxic 
to C. quinquefasciatus, with an  LC50 of 89.3 μl  L−1. There-
fore, it can be viewed as promising for the development of 
botanical larvicides, given that EOs are generally considered 
as prospective if their  LC50 is lower than 100 ppm (Pavela 

Fig. 3  Marker volatile compounds in the essential oils extracted from different plant parts of Solidago gigantea and Solidago canadensis 
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2015a). The two most effective EOs against M. domestica 
adults were S. canadensis leaf and S. canadensis flower EOs, 
with  LD50 values of 206.9 and 207.1 μg adult−1, respectively. 
Three EOs highly toxic to S. littoralis were also identified, 
namely S. gigantea leaf EO, S. canadensis leaf EO and S. 
gigantea flower EO, with  LD50 values of 84.5, 98.9 and 
107.4 μg larva−1, respectively.

Although these lethal concentrations were relatively 
higher compared to other EOs or plant extracts (Pavela et al. 
2008, 2017; Benelli et al. 2018b), they can still be consid-
ered as suitable for the development of botanical insecti-
cides, particularly the S. canadensis leaf EO, which showed 
efficacy against all three tested insect species.

The Solidago EOs studied here contained a high number 
of various substances of which none exhibited a major share 
exceeding 50% (Table 1). No major constituents can thus 
be identified, which could be believed to be responsible for 
the insecticidal efficacy. However, it can be noted that the 
efficacy was related to the overall amount of oxygenated 
sesquiterpenes, where the EO efficacy rose correspond-
ingly with increasing amounts of these substances. The 
closest relationship between oxygenated sesquiterpenes and 
achieved mortality rate was found for the EOs applied in the 
dose of 150 μg larva−1 against S. littoralis larvae, while a 
significant linear relationship was observed (Fig. 4). Based 
on this finding, it is likely that oxygenated terpenes are 
substances with a significantly higher insecticidal efficacy 
compared to non-oxygenated terpenes, which agrees with 
earlier research (Bakkali et al. 2008; Pavela 2014, 2015b). 
The position of the functional group in the molecule and 
the shape of the molecule both result in diverse mechanisms 
of action. The compounds exert their activities on insects 
through neurotoxic effects involving several mechanisms, 
notably through GABA, octopamine synapses, and the 

inhibition of acetylcholinesterase (Pavela and Benelli 2016a, 
b; Jankowska et al. 2017).

Developing eco-friendly pesticides is important in (IPM) 
(Isman 2017; Lucchi and Benelli 2018), as well as a One 
Health perspective (Benelli and Duggan 2018). Herein, since 
the S. canadensis leaf EO was the only tested bioproduct 
effective against the three selected tested pests, we selected 
it for non-target toxicity tests on E. fetida earthworms, along 
with the leaf EO from S. gigantea. Both the S. canaden-
sis and S. gigantea leaf EOs did not led to mortality when 
used to treat E. fetida adult earthworms, at variance with the 
positive control α-cypermethrin. This fact is very important, 
given that earthworms rank among significant soil organ-
isms. Earthworms are necessary for the development and 
maintenance of the nutritional value and structure of soil 
(Datta et al. 2016), and they play an important role in the 
conversion of biodegradable materials and organic waste to 
vermicast, which is rich in nutrients (Jansirani et al. 2012). 
Protection of these organisms is thus clearly important.

Even though earthworms can consume a wide range of 
contaminated organic materials including sewage sludge and 
industrial waste (Lim et al. 2016), they are very sensitive to 
insecticides (Datta et al. 2016; Vasantha-Srinivasan et al. 
2017). Generally, insecticides exhibit a negative effect on 
the survival of earthworms, especially in concentrations over 
25 mg kg−1 (Datta et al. 2016).

More in general, it is expected that S. gigantea and S. 
canadensis EOs are harmless against pollinators and natural 
predators such as honeybees and ladybird beetles, respec-
tively. In this regard, it has been reported that goldenrod 
is an important source of nectar for honeybees (Stefanic 
et al. 2003). Besides, the fact that some major leaf volatile 
constituents of S. gigantea and S. canadensis EOs, such as 
germacrene D and bornyl acetate, are sex stimulants or pher-
omones within species belonging to cockroaches and lace-
wings (Kitamura et al. 1976; Watanabe and Shimizu 2017), 
should give a low risk from an ecotoxicological standpoint. 
Notably, Solidago spp. have used as feed for cattle and other 
mammalian herbivores (Botta-Dukát and Dancza 2004; 
Werner et al. 1980). Furthermore, Solidago spp. host ben-
eficial invertebrates, such as aphid predators, e.g. Harmonia 
axyridis (Pallas) (Genung et al. 2012; Kamo et al. 2010). 
Regarding the impact on aquatic ecosystems, it has been 
reported that the S. canadensis extracts exert low toxicity on 
Daphnia magna Straus and zebrafish, Danio rerio Hamilton 
(Huang et al. 2014).

In a broader perspective, the relatively high tolerance 
of insect pollinators, including social bees, to plant EOs 
used for pest management purposes has been confirmed 
by several researches (Umpierrez et al, 2017; Ribeiro et al. 
2018; Palmer-Young et al. 2018). In addition, this is also 
substantiated by the fact that EOs are used at relatively high 
concentrations to protect bees against Varroa destructor 
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Fig. 4  A relationship between Spodoptera littoralis larval mortal-
ity and the oxygenated sesquiterpene content characterizing the five 
tested Solidago essential oils (all at 150 μg larva−1) was observed. A 
significant linear relationship was noted (P = 0.001). The same was 
not observed analysing C. quinquefasciatus data



819Journal of Pest Science (2019) 92:805–821 

1 3

(Andreson and Trueman) (Acari: Varroidae) (Ramzi et al., 
2017). Besides, the selectivity of EOs was also determined 
against other non-target organisms including native preda-
tors of pests (Castilhos et al 2018; Pavela 2018) or larvivo-
rous fish (Govindarajan et al. 2016a, b; AlShebly et al. 2017; 
Pavela and Govindarajan 2017).

It has been earlier noted that S. gigantea and S. canaden-
sis can represent a serious threat for the preservation of local 
secondary ecosystems. However, the high biomass produced 
by them may be a resource to be exploited for fair purposes. 
Indeed, they are extremely common in Europe, North Amer-
ica and Asia so that they can satisfy a huge demand for the 
manufacture of insecticides. In this regard, their distribution 
throughout several regions, namely British Isles, Germany, 
North America and Europe, is mapped on several websites 
(http://www.flora web.de/webka rten/karte .html?taxnr =5680; 
http://www.brc.ac.uk/plant atlas /plant /solid ago-gigan tea; 
http://www.brc.ac.uk/plant atlas /plant /solid ago-canad ensis ; 
https ://www.cabi.org/isc/datas heet/50575 #toDis tribu tionM 
aps; https ://www.cabi.org/isc/datas heet/50599 ). Therefore, 
we believe that the production of botanical insecticides from 
these two plant invaders may be scalable since both species 
are renewable resources being able to easily regenerate from 
their rhizomes. Cooperation among agrochemical industry 
and landscape managers will be a key point to make the pro-
duction of botanical insecticides from goldenrod sustainable 
through a correct management of mowing.

Overall, from a natural product research standpoint, 
herein we have succeeded in finding these two Solidago EOs 
as prospective, environmentally acceptable and active ingre-
dients utilizable in botanical insecticides to be employed in 
IPM.
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