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Abstract The brown marmorated stink bug, Halyomorpha

halys (Stål), is a serious invasive pest in the USA. Organic

growers have limited options to effectively manage this

pest. Several organically approved insecticides including

pyrethrins, azadirachtin, spinosad, potassium salts of fatty

acids, sabadilla, extract from Burkholderia sp., and two

combination products were evaluated for toxicity to H.

halys nymphs and adults using laboratory bioassays and

evaluated in field experiments on tomatoes and peppers

using weekly applications of the highest labeled rates of the

products. In submersion bioassays, high mortality ([70%)

of H. halys nymphs was achieved with pyrethrins, azadir-

achtin, azadirachtin ? pyrethrins, potassium salt-

s ? spinosad, and sabadilla alkaloids. Using the same

bioassay for adult H. halys, only pyrethrins, azadir-

achtin ? pyrethrins, and potassium salts resulted in high

mortality. In bean dip bioassays, only pyrethrins resulted in

moderate mortality of nymphs and high mortality of adults.

In field experiments, which included weekly insecticide

applications, none of the insecticides that were tested sig-

nificantly reduced stink bug feeding injury (from all spe-

cies) to tomatoes or peppers with the exception of one

harvest date of peppers in 2014, where pyre-

thrins ? azadirachtin had less injury than the control. Our

results confirm that several organically approved

insecticides may demonstrate a high level of activity on H.

halys in laboratory bioassays, but when applied in the field,

none of the products that we tested appear to be consis-

tently effective at reducing stink bug injury to peppers or

tomatoes.

Keywords Organic insecticides � Biopesticides � Chemical

control � Euschistus servus

Key message

• Halyomorpha halys is an important agricultural pest in

the USA and is particularly damaging to organic pro-

duction systems, which lack effective tools for

managing it.

• A number of organically approved insecticides such as

pyrethrins, azadirachtin, azadirachtin ? pyrethrins,

potassium salts ? spinosad, and sabadilla alkaloids

show promise in laboratory bioassays causing high

levels of mortality to H. halys.

• However, when sprayed weekly on fruiting peppers and

tomatoes in field efficacy experiments, none of the

tested products significantly reduced stink bug feeding

injury compared to the untreated control.

Introduction

The brown marmorated stink bug, H. halys (Stål), is native

to East Asia (Lee et al. 2013) and has recently become a

serious invasive pest in North America and Europe (Leskey

et al. 2012a; Haye et al. 2015). This highly polyphagous

insect attacks a number of agricultural crops in the USA
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including, but not limited to tree fruit (Nielsen and

Hamilton 2009; Leskey et al. 2012a, c), vegetables such as

sweet corn, beans, peppers, tomatoes, eggplant, and okra

(Kuhar et al. 2012a; Cissel et al. 2015), tree nuts (Hedstrom

et al. 2014), grapes (Basnet et al. 2015), berries (Basnet

et al. 2014; Wiman et al. 2015), and soybeans (Nielsen

et al. 2011; Owens et al. 2013). Similar to other stink bugs,

H. halys feeds by inserting its stylets into the fruit, stem, or

leaves and secreting digestive enzymes into the plants,

allowing it to feed on plant fluids (McPherson and

McPherson 2000; Haye et al. 2014). For fruiting vegeta-

bles such as peppers and tomatoes, feeding by H. halys

nymphs and adults on the developing and mature fruit

results in conspicuous feeding injury (Kuhar et al. 2015a)

and often significant economic loss to growers.

Control of this pest has been challenging since its arrival

in the USA (Leskey et al. 2012c). Currently, chemical

control remains the most effective and efficient strategy

(Rice et al. 2014; Kuhar et al. 2015b). Although a number

of insecticides including cyclodienes, pyrethroids,

organophosphates, carbamates, and neonicotinoids have

been shown to be efficacious against H. halys (Nielsen

et al. 2008; Kuhar et al. 2012b, c; 2013a, b, c; Leskey et al.

2012b, 2013; Lee et al. 2013), all of these insecticides are

broad spectrum toxicants that can also be harmful to ben-

eficial organisms such as natural enemies and pollinators

(Rock 1979; Hull and Starner 1983; Desneux et al. 2007).

Moreover, many growers have greatly increased the num-

ber of sprays they apply per year just to deal with H. halys,

as much as four times as many sprays (Leskey et al.

2012b). The increased frequency of insecticide applications

suppresses natural enemy populations, which can lead to

secondary pest outbreaks of aphids, scales, and mites in

vegetables and tree fruit (Kuhar et al. 2013a; Leskey et al.

2012a).

Control of H. halys is an even greater challenge for

organic growers, who rely heavily upon alternative

methods such as biological control and cultural control to

prevent damage to crops (Zehnder et al. 2007). One cul-

tural control tactic that has shown promise for managing

stink bugs in general is trap cropping, where highly

attractive plants are grown to draw pest pressure from a

protected crop (Tillman 2006; Mizell et al. 2008;

Wallingford et al. 2013). Researchers have recently

investigated this approach for managing H. halys and

have demonstrated significant behavioral manipulation of

H. halys in the field using border plots of sunflowers or

sorghum millet (Soergel et al. 2015; Nielsen et al. 2016).

However, the overall efficacy of this approach at reducing

stink bug feeding injury to a cash crop such as bell pepper

is lacking mostly because of ‘‘spillover’’ of the pest

population after they are drawn to the trap crop. Inte-

grating the use of organically approved insecticides into

this management strategy may provide growers with an

IPM approach that can significantly reduce crop damage

by this invasive bug.

Some naturally derived insecticides that are organically

certified in the USA include: azadirachtins, which are

derived from the neem tree, Azadirachta indica (Meli-

aceae), and have a wide range of insect growth and

behavioral effects on insects (Schmutterer 1990); pyre-

thrins, which are derived from chrysanthemum flowers,

Chrysanthemum spp., and have neurotoxic effects on many

insects (Casida 1980); sabadilla alkaloids, which are

extracted from the seeds of Schoenocaulon sp., a South

American lily plant, and which have a mode of action

similar to pyrethrins; spinosyns, which are derived from the

fermentation of the soil microbe Saccharapolyspora spi-

nosa, and which act on the nicotinic receptor site of post-

synaptic nerves (Horowitz and Ishaaya 2004); potassium

salts of fatty acids (also known as insecticidal soap), which

affect the insect cuticle; and a relatively new biological

insecticide containing heat-killed cells and fermentation

solids of the bacteria Burkholderia spp. that works by

contact and ingestion to disrupt insect exoskeletons and

interfere with molting (Asolkar et al. 2013).

Most of the aforementioned insecticides have demon-

strated activity against pentatomids or related bugs in

previous studies. For instance, azadiractins have been

shown to impact nymphal development, oviposition, and

feeding on cowpea by the southern green stink bug, Nezara

viridula L. (Seymour et al. 1995; Abudulai et al. 2003;

Durmusoglu et al. 2003; Riba et al. 2003). Pyrethrins and

spinosad each demonstrated high toxicity to the green stink

bug, Chinavia hilaris (Say) and brown stink bug,

Euschistus servus (Say) in the laboratory (Kamminga et al.

2009). Sabadilla has been shown to be efficacious against

milkweed bugs, Oncopeltus fasciatus (Dallas) (Allen et al.

1945) and squash bug, Anasa tristis (DeGeer) (Walton

1946). Potassium salts of fatty acids have been recom-

mended by Trdan et al. (2006) as a control measure for

cabbage stink bug, Eurydema sp. and shown by Durmu-

soglu et al. (2003) to control N. viridula when combined

with azadirachtins. Lee et al. (2014) recently examined the

efficacy of many of the aforementioned certified organic

insecticides in treated glass surface (contact) bioassays

against H. halys and showed significant mortality of

nymphs and adults after a few days of exposure to pyre-

thrins, potassium salts of fatty acids, spinosad, and extracts

of Burkholderia spp.

Herein, we further investigate the potential of several

certified organic insecticides at controlling H. halys

nymphs and adults in different types of bioassays as well as

in the field for protecting tomatoes and peppers from

feeding damage. This information will further help deter-

mine viable H. halys control options for organic growers.
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Materials and methods

Insecticides

All insecticides used in the experiments were commercially

formulated products that were supplied by their manufac-

turers (Table 1). All insecticides were diluted in 1 l of

distilled water proportional to a typical tank mix concen-

tration based on a spray application rate of 355 l/ha and the

highest recommended field application rate listed on the

label (Table 1). The sabadilla alkaloids (Veratran D�)

required a special preparation of placing the ground seeds

in a fine mesh bag that was allowed to seep for[2 h in

water prior to use the bioassays or field application.

Insects

Adults, nymphs, and egg masses of H. halys were collected

from trees in near Blacksburg, Virginia (USA), from May

to September in 2014 and 2015 in order to start a laboratory

colony at Virginia Tech. Insects were maintained in

0.028 m3 screened cages in a temperature chamber (Per-

cival Scientific Inc., Perry, IA, USA) set at 28 ± 2 �C, a
16:8 h L:D photoperiod, and a 50% relative humidity.

Adults and nymphs were provided a water wick and snap

beans, Phaseolus vulgaris L. (Fabales: Fabaceae); carrots,

Daucus carota L. (Apiales: Apiaceae); and raw unshelled

peanuts, Arachis hypogaea L. (Fabales: Fabaceae).

Nymphs and adults were held in separate

56 9 56 9 56 cm fine mesh insect rearing and observation

cages with vinyl windows (BioQuip Products, Rancho

Dominguez, CA, USA) and were supplemented regularly

with field-collected insects when found. Fresh egg masses

were isolated from the cages and held in small Petri dishes

until 2nd instars appeared, at which time they were

returned to the cages. Isolating eggs and 1st instars from

the rest of the colony minimized cannibalism. Nymphs and

adults were starved for 24 h prior to use in bioassays.

When possible, only 3rd instars were used for the nymph

bioassays. However, because of mortality in the H. halys

colony presumably from humidity dropping below 50%,

not enough healthy 3rd instars were always available at the

time of the bioassays and consequently one or two 2nd or

4th instars per treatment were sometimes included in the

bioassay to keep the numbers tested at 20 per replicate.

When this occurred, the same number of 2nd or 4th instars

was partitioned for each of the treatments to keep unifor-

mity. Data were not separated by instar, but rather lumped

together for a single nymphal mortality assessment.

Submersion (dipped mesh bag) bioassay

The aim of this bioassay was to assess the toxicity of each

of the insecticides when applied directly to the insects. For

each treatment and replication of the bioassay, we placed

20 adult H. halys and 20 nymphs (mostly 3rd instars) each

in a fine mesh polyethylene bag and submerged it in

500 ml of treatment solution for 3–5 s and then allowed it

to air dry at (room temperature). The bugs were provided

with a fresh green bean pod for food and hydration in the

dry treated bag. Percent mortality was recorded at 24 and

48 h. Mortality was counted as dead plus moribund, upside

Table 1 Insecticide treatments used in our bioassays and field experiments for control of H. halys

Active ingredient (a.i.) Product (% a.i.) Manufacturer Recommended field rate:

(g a.i./haa)

Azadirachtin AzaDirect� (1.2%) Gowan Company LLC, Yuma, Arizona

(USA)

28.0

Azadirachtin ? pyrethrins Azera� (1.2% azadirachtins ? 1.4%

pyrethrins)

MGK, Minneapolis, Minnesota (USA) 28.0

30.0

Spinosad Entrust� (22.5%) Dow AgroSciences LLC, Indianapolis,

Indiana (USA)

131.4

Potassium salts of fatty acids M-Pede� SL (49.0%) Gowan Company LLC, Yuma, Arizona

(USA)

183.0

Potassium salts of fatty

acids ? spinosad

Neudorff 1138 (47% potassium salts,

0.1% spinosad)

Neudorff North America 175.6

Brentwood Bay, BC (Canada) 0.3

Pyrethrins Pyganic� (5.0%) MGK, Minneapolis, Minnesota (USA) 65.4

Burkholderia sp. Venerate� (94.4%) Marrone Bio Innovations Inc., Davis,

California (USA)

17,667.0

Sabadilla alkaloids Veratran D� (0.2%) MGK, Minneapolis, Minnesota (USA) 33.6

a Recommended field rates are based on control of stink bug on fruiting vegetables when included on the product label. If not stink bug is not

included, then the highest rate for another pest or on another vegetable crop was used
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down and unable to right themselves, or unable to walk.

Three replicates (n = 3) were conducted for each insecti-

cide treatment over time. We were not able to test every

insecticide treatment at the same time in a given bioassay

due to lack of bugs; however, all treatments were compared

to a water control within a replicate. If control mortality

exceeded 20% ([4 dead out of the 20 individuals tested),

then the bioassay replicate was not used. If control mor-

tality was between 5 and 20%, then Abbott’s formula

(Abbott 1925) was used to correct for control mortality for

the treatments used in that particular replicate (Finney

1971).

Green bean dip assay

The aim of this bioassay was to assess the toxicity of

each of the insecticides via a combination of dermal and

oral exposure. Following Kuhar et al. (2007, 2013a),

green bean dip assays were conducted on nymphs (2nd–

4th instars) and adults. For each bioassay, four green

bean pods were dipped in each selected treatment and

allowed to dry for 30 min under a fume hood, then one

treated bean pod, a filter paper disk, and five insects of

the selected stage were placed in a 9-cm-diameter Petri

dish. Four dishes (20 insects total) were set up per

treatment per replicate. Percent mortality was recorded

48 h after treatment, and data were handled as described

above.

Field efficacy experiments

Small plot field experiments were conducted at Virginia

Tech’s Kentland Farm near Blacksburg, VA, in 2014 and

2015. In 2014, experiments were conducted on ‘‘Baby

Cake’’ tomatoes (Solanum lycopersicum L.) and in 2015,

on the same tomato variety as well as ‘‘Aristotle’’ bell

peppers (Capsicum spp.). Both crops were planted the first

week of June in both years following standard commercial

production practices, including raised beds covered with

black polyethylene mulch and with drip irrigation. Pepper

and tomato plants were spaced 0.3 and 0.5 m, respectively,

within rows. Plots were one row by 6 m long. Each

experiment was set up in a randomized complete block

design with four replicates. Crops were grown and main-

tained without any insecticide applications until fruit began

appearing on plants at which time the treatment applica-

tions were initiated.

All insecticide treatments were applied as foliar sprays

with a CO2 backpack sprayer at 276 kPa delivering 356 l/

Ha through a three-nozzle drop down boom that provided

excellent coverage over the plant. Insecticides were applied

four times in 2014: 19, 25 August and 3, 9 September. In

2015 peppers were treated five times: 27 July; 3, 10, 17, 18,

24 August; and tomatoes were also treated five times: 28

July; 4, 11, 18, 25 August.

One week prior to each of the August insecticide

applications, we inspected the untreated control plots to

confirm stink bug and other pest populations. Sampling

involved five separate 2 min visual samples of the plots

recording all stink bug species observed on both pepper

and tomato. Peppers were harvested twice in 2014: 29

August and 17 September, and twice in 2015: 13 and 26

August. Tomatoes were harvested three times in 2014: 29

August, 8, and 12 September; and two times in 2015: 20

and 31 August. At each harvest, a subsample of 20 or 25

fruit per plot depending on availability were inspected for

stink bug feeding injury, which appeared as characteristic

marks on the fruit (Kuhar et al. 2015a). A single fruit was

classified as ‘‘injured’’ only if it had visibly clear and

distinct stink bug feeding marks. Proportion fruit injury

was calculated as the number of injured fruit divided the

number of fruit harvested per plot.

Data analysis

All data were initially tested for normality using the

NORMAL TEST (Shapiro–Wilk test), and when necessary,

the proportion mortality data from the laboratory bioassays

or the proportion fruit injury data from the field experi-

ments were transformed using an arcsine square root

transformation to normalize the variances (Sokal and Rohlf

1995), and then analyzed using ANOVA, JMP version 10.0

(SAS 2007, SAS Institute, Cary, NC, USA). Bioassay

mortality data were analyzed using one-way ANOVA with

insecticide being the only treatment factor. Fruit injury data

from the field experiments were analyzed using a two-way

ANOVA for randomized complete block designs where

both treatment and block were factors. Means were sepa-

rated using Fisher’s protected LSD at the P\ 0.05 level of

significance. Data are presented as original means.

Results

Submersion bioassays

The mortality of H. halys nymphs was significantly dif-

ferent among treatments (f = 11.67; df = 7; P\ 0.001).

Pyrethrins, azadirachtin ? pyrethrins, and potassium salt-

s ? spinosad each resulted in the highest mortality

([90%), which was significantly higher than that of

Burkholderia sp., spinosad, and potassium salts alone

(P\ 0.05; Table 2). There also was a significant treatment

effect on mortality of adults (f = 5.68; df = 7; P\ 0.002),

with pyrethrins and azadirachtin ? pyrethrins causing the

highest mortality ([95%), which was greater than most of
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the other treatments (Table 2). The Burkholderia sp.

treatment caused little to no mortality of H. halys after 48 h

in this bioassay.

Bean dip bioassays

Compared to the submersion bioassay, the overall mortality

of H. halys nymphs was relatively low (\50%) in the bean

dip bioassays; however, there was a significant treatment

effect (f = 3.17; df = 7; P\ 0.026). Sabadilla, pyrethrins,

and azadirachtin ? pyrethrins resulted in the highest

mortality of nymphs (38–41%), which was significantly

higher than that of Burkholderia sp. and potassium salts

alone, which caused 0.0 and 3.3% mortality, respectively

(Table 3). Overall adult mortality was numerically higher

than nymphal mortality and there was a significant treat-

ment effect (f = 2.62; df = 7; P\ 0.05). Pyrethrins, once

again, caused the highest mortality (80%), which was

significantly higher than azadirachtins, potassium salts with

and without spinosad, and Burkholderia sp. (Table 3).

Field experiments

Stink bug pest pressure was generally higher in tomatoes

(Table 4) than peppers (Table 5) and higher in 2015 than

2014. In both years, H. halys was the only stink bug species

found in peppers. However, in tomatoes, E. servus was the

dominant species in both years comprising about 75% of

the stink bug species found with H. halys comprising the

remaining species.

In the untreated control plots in 2014, an average of 31

and 39% of tomato fruit, in the first and second harvest,

respectively, had stink bug injury. In 2015, the untreated

control plots had an average of 28, 65, and 65% stink bug

injured fruit in three harvests, respectively (Table 4).

There was no significant effect of treatment on stink bug

Table 2 Mean (±SE)%

mortality of H. halys nymphs

and adults 48 h after

submersion in field rate

concentrations of various

organic insecticides

Treatment Concentration (g a.i./l) Mean ± SE % mortality at 48 h

Nymphs (n = 20) Adults (n = 20)

Azadirachtin 3.0 78.5 ± 22.3 ab 55.0 ± 49.2 b

Azadirachtin ? pyrethrins 3.0 ? 3.2 95.5 ± 7.9 a 95.0 ± 8.7 a

Spinosad 14.1 19.4 ± 20.0 cd 40.0 ± 36.1 bc

Potassium salts 19.6 18.2 ± 31.5 d 73.3 ± 12.6 ab

Potassium salts ? spinosad 18.8 ? 0.1 96.4 ± 3.1 a 36.1 ± 3.4 bc

Pyrethrins 7.0 100.0 ± 0.0 a 100.0 ± 0.0 a

Burkholderia sp. 1891.6 0.0 ± 0.0 d 8.3 ± 14.4 c

Sabadilla alkaloids 3.6 55.1 ± 39.5 bc 26.7 ± 12.6 bc

Data are corrected for control mortality between 5 and 20% with Abbott’s formula, and corrected values are

shown. Bioassays were replicated three times for each treatment

Means within a column with a letter in common are not significantly different according to Fisher’s

protected LSD (P[ 0.05)

Table 3 Mean (±SE) %

mortality of H. halys nymphs

and adults 48 h after exposure

to a bean pod that was dipped in

field rate concentrations of

various organic insecticides

Treatment Concentration (g a.i./l) Mean ± SD% mortality at 48 h

Nymphs Adults

Azadirachtin 3.0 7.3 ± 6.4 abc 1.8 ± 3.0 c

Azadirachtin ? pyrethrins 3.0 ? 3.2 38.3 ± 17.6 a 55.2 ± 39.4 ab

Spinosad 14.1 24.0 ± 11.5 ab 44.6 ± 29.3 abc

Potassium salts 19.6 3.3 ± 5.8 bc 13.3 ± 12.6 bc

Potassium salts ? spinosad 18.8 ? 0.1 20.0 ± 21.8 abc 20.0 ± 5.0 bc

Pyrethrins 7.0 40.0 ± 26.5 a 80.0 ± 18.0 a

Burkholderia sp. 1891.6 0.0 ± 0.0 c 15.0 ± 21.8 bc

Sabadilla alkaloids 3.6 41.0 ± 44.0 a 40.0 ± 52.2 abc

Data are corrected for control mortality between 5 and 20% with Abbott’s formula and corrected values are

shown

Means within a column with a letter in common are not significantly different according to Fisher’s

protected LSD (P[ 0.05)
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injury to tomato fruit on any harvest date in either year

(P[ 0.05). Stink bug injury to pepper fruit averaged from

10 to 18% in the untreated control plots in 2014 and 47%

in 2015 (Table 5). There was no significant effect of

treatment on stink bug injury to pepper fruit on any har-

vest date (P[ 0.05) except on 17 September 2014

(f = 2.42; df = 8, 24; P\ 0.045), when peppers treated

with azadirachtin ? pyrethrins had less injury than the

control.

Discussion

An effective insecticide for control of H. hays in certified

organic agricultural systems is badly needed. In our

experiments, several insecticides including pyrethrins,

azadirachtins, sabadilla, spinosad, and potassium salts of

fatty acids demonstrated at least some toxicity to H. halys

nymphs and adults in submersion and bean dip laboratory

bioassays. In both types of bioassays, pyrethrins resulted in

Table 4 Field evaluation of organic insecticides for the control of stink bugs in tomatoes, Kentland Research Farm, Whitethorne, VA, in

summer 2014 and 2015

Treatment Rate (g a.i./ha) Mean ± SD% of harvested fruit with stink bug injury

2014 2015

29 August 8 September 12 September 20 August 31 August

Water control 0 31.3 ± 7.6 39.0 ± 15.3 28.0 ± 19.8 65.0 ± 16.2 65.0 ± 12.4

Azadirachtin 28.0 23.8 ± 8.6 40.0 ± 13.8 26.0 ± 11.1 58.0 ± 7.2 44.0 ± 8.7

Azadirachtin/pyrethrins 28.0 ? 30.0 22.5 ± 6.4 26.0 ± 23.9 24.0 ± 9.2 60.0 ± 5.0 49.0 ± 18.0

Spinosad 131.4 42.5 ± 18.4 33.0 ± 16.2 16.0 ± 15.2 35.0 ± 5.7 46.0 ± 23.4

Potassium salts 183.0 23.8 ± 14.4 32.0 ± 15.8 8.0 ± 7.8 59.0 ± 19.9 70.0 ± 14.0

Potassium salts/spinosad 175.6 ? 0.3 25.0 ± 4.0 25.0 ± 17.1 20.0 ± 11.6 62.0 ± 11.1 55.0 ± 9.6

Pyrethrins 65.4 20.0 ± 0.0 37.0 ± 8.6 35.0 ± 20.3 56.0 ± 21.5 57.0 ± 10.6

Burkholderia sp. 17,667.0 25.0 ± 9.2 21.0 ± 6.5 21.0 ± 5.0 59.0 ± 14.1 58.0 ± 13.1

Sabadilla alkaloids 33.6 30.0 ± 17.4 21.0 ± 3.8 20.0 ± 19.6 61.0 ± 16.8 59.0 ± 28.0

The effect of treatment was not significant on any harvest date for either crop (P[ 0.05)

Insecticides were applied four times (19, 25 August; 3 and 9 September) in 2014 and five times (28 July; 4, 11, 18, 25 August) in 2015

Means within a column with a letter in common are not significantly different according to Fisher’s protected LSD (P[ 0.05)

Table 5 Field evaluation of

organic insecticides for the

control of stink bugs in bell

peppers, Kentland Research

Farm, Whitethorne, VA, in 2014

and 2015

Treatment Rate (g a.i./ha) Mean ± SD% of harvested fruit with stink bug injury

2014 2015

29 August 17 September 13 August 26 August

Water control 0 10.0 ± 9.2 17.1 ± 7.0 a 47.0 ± 23.4 47.0 ± 19.7

Azadirachtin 48.4 13.8 ± 14.8 3.8 ± 5.2 ab 22.0 ± 13.8 46.0 ± 3.2

Azadirachtin/pyrethrins 49.0 ? 53.9 15.0 ± 15.8 0.0 ± 2.3 b 19.0 ± 23.5 33.0 ± 20.9

Spinosad 175.1 6.3 ± 6.2 5.0 ± 7.7 ab 31.0 ± 19.4 62.0 ± 24.5

Potassium salts 2861.7 15.0 ± 17.8 2.5 ± 2.8 ab 19.0 ± 5.2 51.0 ± 10.8

Potassium salts/spinosad 2721.1 ? 6.8 17.5 ± 10.4 1.3 ± 3.9 ab 32.0 ± 12.1 56.0 ± 10.9

Pyrethrins 58.1 5.0 ± 7.0 2.5 ± 4.7 ab 26.0 ± 21.0 40.0 ± 5.2

Burkholderia sp. 14,230.3 26.3 ± 24.0 3.8 ± 8.4 ab 41.0 ± 26.2 56.0 ± 19.8

Sabadilla alkaloids 33.6 7.5 ± 8.6 1.3 ± 4.1 ab 20.0 ± 12.0 34.0 ± 26.9

The effect of treatment was not significant on any harvest date for either crop (P[ 0.05)

Insecticides were applied four times (19, 25 August; 3 and 9 September) in 2014 and five times (27 July; 3,

10, 17, 24 August) in 2015

Means within a column with a letter in common are not significantly different according to Fisher’s

protected LSD (P[ 0.05)
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the highest percent mortality at 48 h after treatment. It is

not surprising that pyrethrins performed well in these

bioassays as they are fast acting contact insecticides (Isman

2006), whereas most of the other products that affect insect

growth and development may have required additional

time to exhibit their full toxicity. Using a treated glass

surface bioassay, Lee et al. (2014) demonstrated significant

H. halys nymphal and adult mortality after 4–5 d of

exposure to either pyrethrins, spinosad, potassium salts, or

Burkholderia sp.

Field evaluations of insecticide efficacy are essential as

some of the insecticides may be more effective in the field

when repellency and antifeedancy responses to the chem-

icals also may occur in addition to direct toxicity. For

instance, stink bugs may be repelled by pyrethrins or other

insecticides at certain concentrations (Kamminga et al.

2009). Azadirachtins also have a number of behavioral

effects on insects including antifeedancy (Seymour et al.

1995; Abudulai et al. 2003), ovipositional deterrence as

well as growth regulation (Durmusoglu et al. 2003; Riba

et al. 2003). In the laboratory, Kamminga et al. (2009)

observed significantly fewer stylet sheaths from either E.

servus or C. hilaris, on azadirachtin-treated tomato fruit

compared to water-treated fruit, illustrating the efficacy of

this insecticide as an antifeedant. Efficacy of insecticides

also may be substantially reduced in the field due to pho-

todegradation or treatment wash off or dilution following

precipitation events (Schmutterer 1990; Zehnder et al.

2007).

In our field experiments, which included four or five

weekly applications of the products during the fruiting

stage of peppers and tomatoes, none of the insecticides

significantly reduced stink bug feeding injury with the

exception of one harvest date of peppers in 2014, where the

pyrethrins ? azadirachtin combination product (Azera�)

had less injury than the control. These results are consistent

with others who have evaluated the field efficacy of some

of these insecticides against stink bugs. Kamminga et al.

(2009) did not observe differences in stink bug injury to

tomatoes in the field from applications of pyrethrins, spi-

nosad, azadirachtin, or combinations of the aforementioned

insecticides. Carson et al. (2014) also found that foliar

applications of Burkholderia sp. did not reduce stink bug

and other heteropteran feeding injury to tomatoes in

California.

In conclusion, several natural insecticides appear to

have toxic activity on H. halys based on their performance

in laboratory bioassays. However, in the field, we were not

able to significantly reduce stink bug injury to fruiting

vegetables with any of the natural insecticide treatments.

There may still be useful applications for some of these

products in H. halys management programs. For instance,

pyrethrins have been shown to be effective at removing H.

halys adults from wine grape clusters at harvest to prevent

them from being crushed with the clusters (Pfeiffer et al.

2010). Also, Trope (2016) reported that applications of

pyrethrins ? azadirachtin were effective for killing H.

halys in sorghum and sunflower trap crops. It is important

that we keep exploring biorational and certified organic

insecticide options for stink bugs in agricultural crop sys-

tems as this is a serious pest management concern with

little to no effective control solutions currently (Lee et al.

2014; Rice et al. 2014).
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