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Abstract Entomopathogenic nematodes (EPNs) play a

role in indirect defenses of plants under attack by root

herbivores. We have tested the chemotactic responses of 4

EPN species (Steinernema feltiae, S. carpocapsae, S.

kraussei, and Heterorhabditis bacteriophora) to 5 com-

pounds ([1] a-Pinene, [2] Terpinolene, [3] Bornyl acetate,
[4] 2-Ethyl-hexanol, and [5] 2, 4-Di-tert-butylphenol)

released by damaged (3, 4, 5) and undamaged (1, 2) carrot

roots. We hypothesized that the EPN directional responses

to the tested volatile compounds (VOCs) could be related

to foraging strategy and would vary among species, VOC,

and VOC concentrations. Our results indicate that all of the

tested EPN species exhibited a weak attraction or repulsion

to volatiles, irrespective of their foraging strategy. Ter-

pinolene was a repellent for EPN species classified in all

three foraging groups. However, such values of chemotaxis

index (CI) were reported with EPN species only when pure

concentration of VOC was used. Based on our current

results, we conclude that responses to distinct volatile cues

are a species-specific characteristic. Our results suggest

that EPNs are able to distinguish herbivore-induced

chemicals from chemicals that are typical for healthy roots.

Keywords Indirect plant defense � Chemosensation �
Entomopathogenic nematodes � Terpinolene

Key message

• VOCs have an important role in the tritrophic system

consisting of a plant, a herbivore, and its natural enemy.

• The chemotactic responses of four EPN species to five

compounds released by damaged and undamaged carrot

roots are reported.

• Our results suggest that responses to distinct volatile

cues are a species-specific characteristic and irrespec-

tive of their foraging strategy.

• Current results suggest that EPNs are able to distin-

guish herbivore-induced chemicals from chemicals that

are typical for healthy roots.

Introduction

Tritrophic interactions involving plants, herbivores, and

parasites have been documented for belowground systems,

where entomopathogenic nematodes (EPNs) can exploit root

herbivore-induced volatile compounds to locate their hosts

(Rasmann et al. 2005; Rasmann and Turlings 2008; Ali et al.

2010). Soil is the natural habitat of EPNs from the families

Steinernematidae and Heterorhabditidae, and their applica-

tion in pest management has been primarily against soil-

dwelling insect pests (Ishibashi and Choi 1991; Kaya and

Gaugler 1993; Koppenhöffer et al. 2004). In both Stein-

ernema and Heterorhabditis, there is a single free-living

stage, the infective juvenile (IJ), that carries in its gut bac-

teria of the genus Xenorhabdus and Photorhabdus, respec-

tively (Boemare et al. 1993). On encountering a

suitable insect, the IJ enters through the mouth, anus, or

spiracles and makes its way to the haemocoel (Eidt and

Thurston 1995). Some species may also penetrate through
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the intersegmental membranes of the insect cuticle (Peters

and Ehlers 1994). In the haemocoel, the IJ releases cells of its

bacterial symbiont. Bacteria multiply rapidly in hemolymph

and produce toxins, which contribute to the weakening of the

host’s defense mechanism. The host attacked by EPN usu-

ally dies because of poisoning or failure of certain organs in

24 to 72 h after the infection (Forst and Clarke 2002).

The behavior of EPN has been intensively studied and

different EPN species behave very differently in terms of

dispersal and host-finding (Lewis 2002; Campbell et al.

2003). The ability of EPN IJ to disperse actively through

soil and locate a host is a key element for the success of

application of certain EPN species in pest management. IJ

host-finding strategies differ from species to species (Lewis

2002; Campbell et al. 2003). Foraging strategies used by

IJs to find a host vary between cruise (Heterorhabditis

bacteriophora, and Steinernema kraussei), intermediate (S.

feltiae), and ambush (S. carpocapsae) (Lewis 2002;

Campbell et al. 2003). However, researches on their

behavior have not considered the natural habitat of these

nematodes. Kruitbos et al. (2009) suggested that EPNs may

be habitat specialists and highlighted the difficulties of

studying soil-transmitted parasites in non-soil media.

The rhizosphere provides a very attractive environment

for a vast number of organisms (Wenke et al. 2010). Root

exudates are chemically diverse, beginning with compounds

such as amino acids and amides, organic acids, phenols,

sugars, as well as a wide variety of secondary metabolites,

polysaccharides, and proteins of higher molecular mass

(Wenke et al. 2010). However, volatile compounds (VOCs)

can also be detected in the rhizosphere of several plant

species (Bais et al. 2004; Bais et al. 2006; Rasmann et al.

2005; Erb et al. 2013; Hiltpold et al. 2013). Ali et al. (2010)

have demonstrated that citrus roots upon feeding by the root

weevil Diaprepes abbreviatus emit several terpenes in the

surrounding soil. Rasmann and Turlings (2008) reported that

roots of cotton (Gossypium herbaceum) after feeding by the

larvae of the chrysomelid beetle Diabrotica balteata emit

[10 compounds, among which at least seven terpenoid

volatiles were observed. Rasmann et al. (2005) reported that

maize roots damaged by larvae of Diabrotica virgifera vir-

gifera [Coleoptera: Chrysomelidae, known commonly as

western corn rootworm (WCR)] emit a key attractant for

EPNs. The compound in question (E)-b-caryophyllene
proved to be a weak attractant forH.megidis, one of themost

infectious nematode against WCR. Volatile metabolites

emitted underground enable plants to directly and indirectly

influence the community of soil-dwelling organisms (Bais

et al. 2006; Erb et al. 2013). Using volatile metabolites plants

can defend themselves against herbivores and plant patho-

genic fungi and bacteria, support beneficial symbiosis, and

combat competitive plant species (Bais et al. 2006). Che-

motaxis is the main sensory mode nematodes use to orient

themselves to their hosts. IJs have been shown to respond to

both CO2 and other cues (Hallem et al. 2011; Dillman et al.

2012; Turlings et al. 2012). There are reports that IJs move

toward or away from host excretory products, changes in pH,

temperature, bacterial symbionts, electrical fields, and var-

ious plant volatile compounds (Burman and Pye 1980;

Grewal et al. 1993; Rasmann et al. 2005; Shapiro-Ilan et al.

2012).

Wireworms, the soil-dwelling larval stages of the click

beetle (Coleoptera: Elateridae), are a serious pest problem

worldwide (Kuhar and Alvarez 2008). As polyphagous

insects, they attack a number of important crops (e.g.,

potato, carrots, sugar beet, and occasionally cereals) (Par-

ker and Howard 2001). White grubs are the root-feeding

larvae of scarab beetles (Coleoptera: Scarabaeidae), and

they are among the most destructive pests of horticultural

plants, pastures, and turfgrass in many parts of the world

(Laznik and Trdan 2015). Both species damage crops by

feeding on their root systems after planting, which can

significantly reduce crop quality (Jackson and Klein 2006;

Johnson et al. 2008).

Here, we describe our study of the chemotactic behavior

of Steinernema feltiae (Filipjev), Steinernema carpocapsae

Weiser, Steinernema kraussei (Steiner), andHeterorhabditis

bacteriophora Poinar toward a-Pinene, Bornyl acetate, 2,
4-Di-tert-butylphenol, 2-Ethyl-hexanol, and Terpinolene;

VOCs released from insect (wireworms and grubs)-damaged

carrot roots (Weissteiner and Schütz 2006; Weissteiner

2010). The aims of our research were (1) to study the effect

of different EPN foraging strategies (ambush, intermediate,

or cruise) toward the tested VOCs (2) to determine whether

chemotaxis is species specific, and (3) to assess whether the

VOCs from damaged and undamaged carrot roots have any

effect on the tested EPNs behavior, and (4) if these VOCs are

a part of an indirect plant defense.

Materials and methods

Source and maintenance of entomopathogenic

nematodes

Four EPN species were tested in the experiment. The

commercial preparations of Nemasys (a.i. S. feltiae),

Nemasys C (a.i. S. carpocapsae), Nemasys L (a.i. S.

kraussei), and Nemasys G (a.i. H. bacteriophora) were

obtained from Becker Underwood. All EPN species were

reared using the last instar larvae of Galleria mellonella

(L.) (Lepidoptera: Pyralidae) (Bedding and Akhurst 1975).

G. mellonella was reared in a controlled environment at

28 ± 2 �C, 60 % relative humidity (RH) with a 12-h

photoperiod (Woodring and Kaya 1988; Parra 1998). The

IJs were stored at 4 �C at a density of 2000 IJ ml-1. We
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only used IJs that were less than 2-week old (Laznik and

Trdan 2013). The concentration of the EPN suspension was

calculated according to Laznik et al. (2010). Nematode

viability was determined prior to initiation of the chemo-

taxis experiment (Laznik and Trdan 2013), and only

nematode stocks with [95 % survival were used (De

Nardo and Grewal 2003).

Tested volatile compounds

The choice of VOCs used in our investigation was based on

the research of Weissteiner (2010). Organically cultivated

carrots (Daucus carota ssp. sativus) were used in their

investigation. Larvae of Melolontha hippocastani and

Agriotes sp. were used in their experiment in order to dam-

age carrot roots. Gas chromatography–Mass spectrometry

(GC–MS) analysis of VOCs released by undamaged and

damaged roots was used in order to show different feeding-

induced volatile pattern when infested by Melolontha or

Agriotes larvae. Results of their investigation showed that

undamaged carrot roots release several VOCs and among

them were also (1) a-Pinene and (2) Terpinolene. Wire-

worm-damaged carrot roots release (3) Bornyl acetate and

(4) 2-Ethyl-hexanol. Grub-damaged carrot roots release

VOCs (3), (4), and (5) 2, 4-Di-tert-butylphenol. In order to

perform our investigation, we used synthetic-produced

compounds (Sigma Aldrich). The VOCs in the experiment

were tested at two concentrations: (1) at pure concentration

(O’Halloran and Burnell 2003; Laznik and Trdan 2013) and

(2) at 0.03 ppm (the average concentration of VOCs in soil,

10 cm from the root system) (Weissteiner et al. 2012).

Chemotaxis assay

The chemotaxis assay was based on an assay developed by

Ward (1973) and O’Halloran and Burnell (2003) and

modified by Laznik and Trdan (2013). The assay plates

used were Petri dishes, 9 cm in diameter containing 25 ml

of 1.6 % technical agar (Biolife, Milano, Italy), 5 mM

potassium phosphate (pH 6.0), 1 mM CaCl2, and 1 mM

MgSO4. Three circular marks (1 cm in diameter) were

made on the bottom of the plate: first in the center, then on

the right and lastly on the left side of the Petri dish, 1.5 cm

from its edge. A 10 ll drop of tested substance was placed

on the right side of the agar surface (treated area), and

10 ll of distilled water (control area) (Laznik and Trdan

2013) was placed on the left side of the agar surface (both

parts represent outer circles). The VOCs were immediately

applied to the agar plates before the application of the

nematodes (Bargmann and Horvitz 1991). A 50 ll drop of

100 IJs was placed in the center of the agar surface (inner

circle). In control treatment 10 ll of distilled water was

applied in control and treated area, and a 50 ll drop of 100

IJs was placed in the center of the agar surface. Each

treatment included five replicates. All of the experiments

were repeated 3 times. The Petri dishes were placed in a

rearing chamber (RK-900 CH, Kambič Laboratory equip-

ment, Semič, Slovenia) at 22 �C and 75 % RH, without

light. The nematodes were allowed to move freely for 2 or

24 h, and the Petri dishes were then placed in a freezer at

-20 �C for 3 min to immobilize the nematodes. The

number of nematodes in the treatment and control areas

was counted using a binocular microscope (Nikon C-PS) at

925 magnification. The specific chemotaxis index (CI)

(Bargmann and Horvitz 1991) was calculated as follows:
�
Number of nematodes in the treatment area

� Number of nematodes in the control area
�

= Total number of nematodes in the assay

The CI varied from 1.0 (perfect attraction) to -1.0 (per-

fect repulsion). In the experiments reported here, compounds

with a CI are classified as follows: C0.2, as attractive; from

0.2 to 0.1, as a weak attractant; from 0.1 to -0.1, no effect;

from -0.1 to -0.2, as a weak repellent and B-0.2, as a

repellent to EPNs (Laznik and Trdan 2013).

Statistical analysis

For all of the treatments and controls, preferential movement

of nematodes from the inner to the outer circle of the Petri dish

(i.e., a directional response) was determined using a paired

t test comparing the number of IJs in the inner versus the outer

circle (Statgraphics Plus for Windows 4.0; Shapiro-Ilan et al.

2012; a = 0.05). Additionally, to compare response levels

among the foraging strategies, the average number of IJs that

moved to the outer circle or stayed in the inner circle was

calculated for each dish, and average numberswere compared

through an analysis of variance (ANOVA, a = 0.05). Addi-

tionally, an analysis of variance (ANOVA) was performed on

the CI to compare the level of response to the tested volatile

compounds among the different EPN species depending on

the exposure time and concentration, the means were sepa-

rated by Duncan’s multiple range test with a significant level

of p\ 0.05. The data are presented as the mean ± SE. All of

the statistical analyses were performed using Statgraphics

Plus for Windows 4.0 (Statistical Graphics Corp., Manugis-

tics, Inc., Rockville, MD, USA).

Results

Diversity of movement among EPN species and their

foraging strategies

Analysis of the results showed that directional movement

in response to volatile compounds from the inner (central
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part of the petri dish) to outer test circles (control and

treated area) was influenced by different factors and their

interactions (Table 1). Based on the t test results (t = 56,

73; p\ 0.0001; a = 0.05), statistically significant differ-

ences were observed among the average number of IJs in

the inner (83.0 ± 1.2) and outer (17.0 ± 0.6) circles after

24 h. There were significant differences in the average

number of IJs in the outer circles among ambushers

(12.9 ± 1.4), intermediates (16.4 ± 1.3), and cruisers

(23.1 ± 0.9). Furthermore, after only 2 hours, an average

of 3.1 ± 1.0 IJs moved to the outer circle, whereas after

24 h an average of 31.8 ± 2.1 IJs moved. Among the

tested concentrations, there was a significantly higher

number of IJs in the outer circles at pure concentration

(23.5 ± 1.3) while an average of only 11.4 ± 0.8 IJs

moved at 0.03 ppm. In the terpinolene treatment, we found

a significantly higher number of EPNs in the outer circles

(16.3 ± 1.2). There were also differences among cruisers

(21.5 ± 1.0), intermediates (14.9 ± 0.5), and ambushers

(12.6 ± 0.7) in movement toward the outer circles in the

Terpinolene treatment. Foraging strategy did not affect the

movement of IJs toward the other tested volatile com-

pounds or the control. Among the tested EPN species, a

significantly higher number of IJs in the outer circles was

confirmed for S. kraussei (29.4 ± 0.2) and H. bacterio-

phora (29.2 ± 1.3). The number of IJs in the outer circles

was significantly lower for S. feltiae (20.8 ± 2.4) and S.

carpocapsae (16.3 ± 3.0).

Chemotaxis index

The analyses of the results showed that CI values were

influenced by the species of EPN (F = 3.62; df = 3, 478;

p = 0.0131), concentration of the volatile compound

(F = 6.84; df = 1, 478; p = 0.0092), volatile compound

(F = 2.58; df = 6, 478; p = 0.0183), time of exposure

(F = 12.62; df = 1, 478; p = 0.0004), and interaction

between EPN species and time of exposure (F = 9.21;

df = 7, 478; p\ 0.0001). Foraging strategy (F = 0.50;

df = 2, 478; p = 0.6055); interaction between volatile

compounds and foraging strategy (F = 0.79; df = 12, 478;

p = 0.6571); interaction between volatile compounds and

time of exposure (F = 1.03; df = 6, 478; p = 0.4071); and

interaction between volatile compounds, foraging strategy,

and time of exposure (F = 0.90; df = 12, 478;

p = 0.5462) did not have a statistically significant influ-

ence on the CI values.

None of tested EPNs in our investigation showed any

behavior response to tested VOCs at a concentration of

0.03 ppm after 2 h (Table 2). IJs of S. feltiae, S. carpocapsae

did not show any behavior response to tested VOCs at a

concentration of 0.03 ppm after 24 h (Table 3). The analysis

of the CI values of different VOCs after 24 h at a concen-

tration of 0.03 ppm showed that 2, 4-Di-tert butylphenol was

a weak repellent (CI = -0.15 ± 0.03) for S. kraussei

(Table 3). For other cruisers nematode species in our inves-

tigation (H. bacteriophora), the same VOC proved to be a

Table 1 ANOVA results for

the directional movement of IJs

from the inner to the outer circle

Source F df p

Foraging strategy 19.71 2 \0.0001a

Species 37.41 3 \0.0001a

VOC 2.13 5 0.0407a

Time of exposure 357.47 1 \0.0001a

Concentration of VOC 68.76 1 \0.0001a

Temporal replication 0.42 4 0.9041

Spatial replication 0.48 2 0.8221

Foraging strategy 9 VOC 0.78 10 0.6692

Foraging strategy 9 time of exposure 5.94 2 0.0029a

Foraging strategy 9 concentration of VOC 43.51 2 \0.0001a

VOC 9 time of exposure 2.53 5 0.0204a

VOC 9 concentration of VOC 0.98 5 0.4457

VOC 9 species 1.08 15 0.3777

Species 9 time of exposure 0.76 3 0.6874

Species 9 concentration of VOC 2.01 3 0.0578

Foraging strategy 9 VOC 9 concentration of VOC 1.18 10 0.3002

Foraging strategy 9 VOC 9 time of exposure 1.04 10 0.4065

Species 9 VOC 9 concentration of VOC 0.91 15 0.6100

Species 9 VOC 9 time of exposure 0.77 15 0.6821

a The source of variation was significant at a = 0.05
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weak attractant (CI = 0.17 ± 0.07). Similar findings were

confirmed also in response of H. bacteriophora to a-Pinene
(CI = 0.18 ± 0.07) (Table 3). Terpinolene proved to be a

weak repellent (CI = -0.17 ± 0.07) of H. bacteriophora

after 24 h, at a concentration of 0.03 ppm (Table 3). IJs of S.

feltiae, S. carpocapsae, and H. bacteriophora did not show

any behavior response to tested VOCs at pure concentration

after 2 h (Table 4). The analysis of the CI values of different

VOCs after 2 h at pure concentration showed thatTerpinolene

was a repellent (CI = -0.21 ± 0.02) for S. kraussei

(Table 4). VOC a-Pinene, at a pure concentration after 24 h,

proved to be a weak repellent for S. carpocapsae

(CI = -0.11 ± 0.03), S. kraussei (CI = -0.14 ± 0.02),

and H. bacteriophora (CI = -0.10 ± 0.02) (Table 5). Fur-

thermore, VOCs 2-Ethyl-1-hexanol (CI = -0.11 ± 0.06)

andBornyl acetate (CI = -0.16 ± 0.04) proved to be aweak

repellents for S. carpocapsae in our investigation (Table 5). In

a contrast, VOC Bornyl acetate was a weak attractant

(CI = 0.13 ± 0.05) for S. kraussei in our investigation at a

pure concentration after 24 h (Table 5). The analysis of the CI

values of different VOCs after 24 h at a pure concentration

showed that Terpinolene was a repellent for S. carpocapsae

(CI = -0.23 ± 0.04) and S. feltiae (CI = -0.23 ± 0.03)

(Table 5).

Discussion

Our results show that the chemosensation of IJs toward and

away from insect-induced carrot root volatile compounds

(Weissteiner and Schütz 2006; Weissteiner 2010) varied

depending on the EPN species, volatile compound, con-

centration of volatile compound, time of exposure, and

interaction between EPN species and time of exposure. Our

results indicate that all tested EPN species exhibited very

low chemotaxis to volatiles irrespective of their foraging

strategy. The highest value of CI -0.23 ± 0.03) was in our

investigation reported when the IJs of S. feltiae were

exposed to Terpinolene. In several related studies

(O’Halloran and Burnell 2003; Hallem et al. 2011; Dillman

et al. 2012), authors report many CIs above 0.5 for H.

bacteriophora and S. carpocapsae, species which were

included also in our investigation. In a related research

(Laznik and Trdan 2013), authors used the same strain of

EPN species as in our current investigation. The values of

CI of EPNs toward b-caryophyllene, linalool, and a-
caryophyllene were similar low as in our current investi-

gation toward other VOCs. One possible explanation of

low chemotaxis to volatiles can be a strain-specific char-

acteristic of EPNs. Laznik and Trdan (2013) suggested that

the response to different volatile cues is more a strain-

specific characteristic than a different host-searching

strategy. Since the strains used in other related studies

(O’Halloran and Burnell 2003; Hallem et al. 2011; Dillman

et al. 2012) were different to ours, we could confirm our

previous results. The second possible explanation of low

chemotaxis to volatiles in our investigation in comparison

with related studies can be explained with the use of dif-

ferent VOCs as were used in our current study. Anyway,

our results demonstrate that EPNs have evolved specialized

olfactory system that is able to distinguish herbivore-in-

duced chemicals from chemicals that are typical for healthy

carrot roots. Similar conclusions were also reported in the

recent research from Ali et al. (2011), in which the cruiser

Heterorhabditis indica (Lewis 2002), the ambusher S.

carpocapsae (Lewis 2002), and the intermediate S. dia-

prepesi and S. riobrave (Lewis 2002) were all attracted to

root weevil Diaprepes abbreviatus-damaged roots of the

Swingle rootstock. Our current results suggest that

responsiveness to different volatile cues is a species-

specific characteristic.

In our investigation, Terpinolene was a repellent for

EPN species classified in all three foraging groups. How-

ever, such values of CI were reported with the EPN species

S. feltiae, S. kraussei, and S. carpocapsae only when pure

concentration of VOC was used. Off course, such high

concentration of VOCs is unrealistic (Köllner et al. 2004)

and probably toxic to the EPNs. With lower concentration

of VOCs (0.03 ppm), which is the average concentration of

VOCs found in soil, 10 cm away from the root system

Table 2 Effect of different VOCs on the chemotactic response of the EPN species, at a concentration of 0.03 ppm after 2 h

2-Ethyl-1-hexanol Bornyl acetate 2, 4-Di-tert-butylphenol Terpinolene a-Pinene Control

Sc 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa

Sf 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa

Sk 0 ± 0Ab -0.01 ± 0.01Ab -0.01 ± 0.03Aab -0.03 ± 0.02Ba 0 ± 0Ab 0 ± 0Ab

Hb 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa 0 ± 0Aa

Each data point represents the mean CI ± SE. Each data with the same letter are not significantly different (p[ 0.05). The capital letters indicate

statistically significant differences among different EPN species and same VOC. The small letters indicate statistically significant differences

among different VOCs within the same EPN species

Sc, Steinernema carpocapsae; Sf, Steinernema feltiae; Sk, Steinernema kraussei; Hb, Heterorhabditis bacteriophora; Ambusher, S. carpocapsae;

Cruiser, S. kraussei and H. bacteriophora; Intermediate, S. feltiae
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(Weissteiner et al. 2012), only nematode species H. bac-

teriophora responded to Terpinolene (as a weak repellent).

Terpinolene is a VOC, which is released by undamaged

carrot roots (Weissteiner 2010). Our results suggest that

EPN are able to distinguish herbivore-induced chemicals

from chemicals that are typical for healthy roots.

In our investigation, two distinct VOCs concentrations

were used. A pure concentration, which does not reflect a

concentration found near plant roots (Köllner et al. 2004),

had a bigger influence on IJ movement than a concentration

of 0.03 ppm. However, we are aware that such laboratory

studies do not reflect a nematode’s true behavior in nature

because of exposure to different conflicting chemical sig-

nals (Bais et al. 2006). Kruitbos et al. (2009) suggested that

EPNs may be habitat specialists and highlighted the diffi-

culties of studying soil-transmitted parasites in non-soil

media.

Plant roots emit an incredible variety of compounds,

which are known to affect interactions between plants (Erb

et al. 2013; Hiltpold et al. 2013) and other organisms

(Bonkowski et al. 2009). The active role plants play in

recruiting natural enemies, like belowground herbivores,

Table 3 Effect of different VOCs on the chemotactic response of the EPN species, at a concentration of 0.03 ppm after 24 h

2-Ethyl-1-hexanol Bornyl acetate 2,4-Di-tert-butylphenol Terpinolene a-Pinene Control

Sc 0.04 ± 0.02Bb 0.05 ± 0.0 Bb 0.04 ± 0.02Cb 0 ± 0Ca 0 ± 0.03Aab -0.02 ± 0.03Aa

Sf -0.05 ± 0.03Aa 0 ± 0Ab -0.09 ± 0.02Ba -0.04 ± 0.02Ba -0.02 ± 0.02Aab -0.06 ± 0.02Aa

Sk 0.06 ± 0.04Bc -0.1 ± 0.02Aab -0.15 ± 0.03Aa 0.03 ± 0.02Dc -0.06 ± 0.03Ab -0.07 ± 0.02Ab

Hb -0.09 ± 0.06Aab 0.01 ± 0.07ABb 0.17 ± 0.07Dc -0.17 ± 0.07Aa 0.18 ± 0.07Bc -0.01 ± 0.04Ab

Each data point represents the mean CI ± S.E. Each data with the same letter are not significantly different (p[ 0.05). The capital letters

indicate statistically significant differences among different EPN species and same VOC. The small letters indicate statistically significant

differences among different VOCs within the same EPN species

Sc, Steinernema carpocapsae; Sf, Steinernema feltiae; Sk, Steinernema kraussei; Hb, Heterorhabditis bacteriophora; Ambusher, S. carpocapsae;

Cruiser, S. kraussei and H. bacteriophora; Intermediate, S. feltiae

Table 4 Effect of different VOCs on the chemotactic response of the EPN species, at pure concentration after 2 h

2-Ethyl-1-hexanol Bornyl acetate 2,4-Di-tert-butylphenol Terpinolene a-Pinene Control

Sc 0 ± 0Ba 0 ± 0Ba 0 ± 0Aa 0 ± 0Ba 0 ± 0Ba 0 ± 0Aa

Sf 0 ± 0Ba 0.05 ± 0.02Cb 0.01 ± 0.01Aa 0 ± 0Ba 0.02 ± 0.02Bab 0 ± 0Aa

Sk -0.08 ± 0.03Abc -0.03 ± 0.02Ac -0.02 ± 0.03Ac -0.21 ± 0.02Aa -0.09 ± 0.01Ab 0 ± 0Ac

Hb 0 ± 0Ba 0 ± 0Ba 0 ± 0Aa 0 ± 0Ba 0 ± 0Ba 0 ± 0Aa

Each data point represents the mean CI ± S.E. Each data with the same letter are not significantly different (p[ 0.05). The capital letters

indicate statistically significant differences among different EPN species and same VOC. The small letters indicate statistically significant

differences among different VOCs within the same EPN species

Sc, Steinernema carpocapsae; Sf, Steinernema feltiae; Sk, Steinernema kraussei; Hb, Heterorhabditis bacteriophora; Ambusher, S. carpocapsae;

Cruiser, S. kraussei and H. bacteriophora; Intermediate, S. feltiae

Table 5 Effect of different VOCs on the chemotactic response of the EPN species, at pure concentration after 24 h

2-Ethyl-1-hexanol Bornyl acetate 2,4-Di-tert-butylphenol Terpinolene a-Pinene Control

Sc -0.11 ± 0.06Aabc -0.16 ± 0.04Aab 0.05 ± 0.02Cd -0.23 ± 0.04Aa -0.11 ± 0.03Ab -0.02 ± 0.03Ac

Sf -0.04 ± 0.06ABbc 0.04 ± 0.1Bd 0.02 ± 0.02BCcd -0.23 ± 0.03Aa -0.08 ± 0.04Ab -0.06 ± 0.01Ab

Sk 0.09 ± 0.01Cc 0.13 ± 0.05Cc -0.02 ± 0.03ABb -0.05 ± 0.04Bb -0.14 ± 0.02Aa -0.07 ± 0.02Ab

Hb 0.01 ± 0.01Bc 0.04 ± 0.04BCc -0.03 ± 0.02Ab 0 ± 0Cc -0.1 ± 0.02Aa -0.01 ± 0.04Abc

Each data point represents the mean CI ± S.E. Each data with the same letter are not significantly different (p[ 0.05). The capital letters

indicate statistically significant differences among different EPN species and same VOC. The small letters indicate statistically significant

differences among different VOCs within the same EPN species

Sc, Steinernema carpocapsae; Sf, Steinernema feltiae; Sk, Steinernema kraussei; Hb, Heterorhabditis bacteriophora; Ambusher, S. carpocapsae;

Cruiser, S. kraussei and H. bacteriophora; Intermediate, S. feltiae
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has been recently demonstrated in a few plant species

(Rasmann et al. 2012). EPN host-finding is mediated by

both long-range cues that facilitate root zone finding, as

well as shorter-range cues, that facilitate host localization

within the root zone (Hiltpold et al. 2011; Turlings et al.

2012; Demarta et al. 2014). Recently, Hallem et al. (2011)

reported positive chemotaxis of the two EPN species H.

bacteriophora and S. carpocapsae to several VOCs such as

methyl salicylate, hexanol, heptanol, undecyl acetate, and 4,

5-dimethylthiazole. Interestingly, they showed that several

volatiles repelled the nematodes. Dillman et al. (2012)

reported that EPN host-seeking behavior is stimulated by a

wide range of host-derived odorants. Similar effects of

VOCs on the behavior of EPNs were also observed in our

investigation. Terpinolene repelled both Steinernema and

Heterorhabditis species in our investigation. Weissteiner

and Schütz (2006) reported that Terpinolene is a VOC

released from the undamaged roots of cultivated carrots.

Our results suggest that EPN are able to distinguish herbi-

vore-induced chemicals from chemicals that are typical for

healthy roots. Our findings could support the theory of Ali

et al. (2011). Ali et al. (2011) suggest that selection of an

herbivore-induced signaling response should be direction-

ally stronger toward channeling resources for production of

a distress signal only when necessary because a constant

release would likely carry a high physiological cost (Heil

2008; van Dam 2009; Degenhardt et al. 2009; Robert et al.

2013). Our conclusion is also supported by the VOC a-
pinene (released from undamaged carrot roots) (Weissteiner

and Schütz 2006), which was a weak repellent of S. car-

pocapsae and S. kraussei. The other tested VOCs in our

investigation (Bornyl acetate, 2, 4-Di-tert-butylphenol, and

2-Ethyl-hexanol) acted inconsistently (as a weak repellents

or weak attractants).

Most VOCs that are involved in belowground tritrophic

interactions remain unknown but an increasing effort is

being made in this field of research. Understanding more of

these complex interactions would not only allow a better

understanding of the rhizosphere but could also offer

ecologically sound alternatives in pest management of

agricultural systems (Hiltpold et al. 2010; Turlings et al.

2012).
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