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Abstract Estrogen depletion due to aging, surgery or

pathological events can cause a multitude of problems,

including neurodegenerative alterations. In rodents without

ovaries, 17-beta estradiol (E2) has been shown to produce

beneficial effects on cognition, stimulating brain regions

(e.g., the neocortex, hippocampus and amygdala) related to

cognition and learning. Another treatment that stimulates

these brain regions is an enriched environment (EE), which

is a complex set of external factors in the immediate sur-

roundings that facilitates greater stimulation of sensorial,

cognitive and motor circuits of the brain. The aim of the

present study was to test, using an animal model of

ovariectomy-induced impairment of memory, the relative

effect of E2 (with a time-released pellet; 1 lg/rat/day), EE
exposure and a combination of both treatments. Experi-

mental and control groups were submitted to two memory

tests 18 weeks post-surgery: the autoshaping learning task

(ALT) for measuring associative learning and the novel

object recognition test (NORT) for evaluating short- and

long-term memory. To assess potential motor impairments

caused by treatments, all rats were tested after the ALT in

an automatic activity counter. Results from ALT show that

the ovariectomy blocked the conditioned responses

displayed, an effect rescued by chronic treatment with

estrogen or EE exposure. The combination of both treat-

ments did not improve the results obtained separately. In

the NORT, the exploration time for recognizing a novel

object was similar in the short run with all groups, but

greater in the long run with hormone administration or EE

exposure. As with the ALT, in the NORT there was no

improvement shown by the combination treatment. These

data were not masked by changes in spontaneous activity

because this parameter was not modified in the rats by

either treatment. Possible action mechanisms are proposed,

taking into account the role of corticosterone and BDNF on

cognition.
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Introduction

There is evidence that various neurodegenerative alter-

ations are more frequent in hypoestrogenic women (Gibbs

1998; Henderson 2008). According to some authors,

estrogen depletion due to aging, surgical or pathological

events is partially responsible for the cognitive decline

associated with neurodegenerative disorders such as Alz-

heimer’s disease (Craig and Murphy 2010; Zhao and

Brinton 2006) and other forms of dementia (Vegeto et al.

2008). Estrogens, besides regulating endocrine processes,

stimulate brain regions related to cognitive and learning

integration, such as the neocortex, hippocampus and

amygdala (Paris and Frye 2008). In fact, hormonal

replacement therapy has been proven to be capable of

attenuating some symptoms of Alzheimer’s (Gibbs and

Aggarwal 1998; Ryan et al. 2008; Wu et al. 2008).
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Since menopause is defined as the permanent cessation

of menstruation resulting from the surgical or natural loss of

ovarian follicular activity (Utian 2004), the removal of

ovaries (OVX) in rats has been proposed, with restrictions,

as a model for the study of some disorders associated with

human postmenopause (Bosse and Di Paolo 1995). Rats

under this hormonal condition have shown high levels of

anxiety and depression (Estrada-Camarena et al. 2011;

Picazo et al. 2006; Rodrı́guez-Landa et al. 2009), alterations

in body temperature (Li and Satinoff, 1996), bone loss

(Gurkan et al. 1986; Kalu 1991), a low threshold of pain

(Kobayashi et al. 2000; Okada et al. 1997) and a deficit in

memory function detectable with an autoshaping learning

task (ALT) 18 weeks after surgery (Espinosa-Raya et al.

2011). Regarding the latter, replacement therapy with E2 or

the synthetic steroid tibolone (Espinosa-Raya et al. 2011,

2012), initiated immediately after OVX, seems to overcome

this cognitive impairment. Contrarily, when the hormonal

treatment is initiated a relatively long time after the removal

of ovaries or cessation of their activity, such protective

actions are not observed (Daniel et al. 2006; Frick 2009;

Gibbs 2010; Maki 2006). This is referred to as the critical

period hypothesis (Resnick and Henderson 2002; Zhang

et al. 2011) and is currently under discussion.

Another treatment that has reportedly produced

improved cognitive abilities is an enriched environment

(EE), a complex set of external factors in the immediate

surroundings (Nithianantharajah and Hannan 2006). Dif-

ferent schedules of EE induce an improvement in learning

and memory through the development of new nerve cells in

the hippocampus and enhanced dendritic growth (Bruel-

Jungerman et al. 2005; Diamond 2001; Kempermann et al.

1997; Leggio et al. 2005; Saito et al. 1994). Compared to

standard conditions, EE facilitates a greater stimulation of

sensorial, cognitive and motor circuits of the brain. For

instance, non-spatial (Sun et al. 2010) and spatial memory

impairment produced by cerebral ischemia or scopolamine

can be restored when rats are exposed to a complex envi-

ronment (Dahlqvist et al. 2004; Lima et al. 2014; Sun et al.

2010; Wadowska et al. 2014).

These findings have been confirmed by clinical studies

showing that EE increases the dendrite branching com-

plexity (Jacobs et al. 1993), reduces the risk of Alzheimer’s

disease (Wilson et al. 2002) and protects against hip-

pocampal lesion atrophy in the chronic stages of traumatic

brain injury (Miller et al. 2013; White et al. 2013). In the

same sense, it has been shown that for aging humans,

aerobic exercise training increases brain volume (Col-

combe et al. 2006), reduces brain tissue loss (Colcombe

et al. 2003) and improves cognitive function (Colcombe

and Kramer 2003).

Even though the majority of studies have reported pos-

itive results with EE, some studies have found contradic-

tory data. This could be explained by differences in the

schedule of EE exposure, aging and gender of the animals,

housing conditions, and so on (Gresack et al. 2007; Lam-

bert et al. 2005). For instance, compared to control animals

housed under standard conditions, a few hours of EE

exposure improves spatial working memory but not spatial

reference memory of female mice (Redolat and Mesa-

Gresa 2012), while a 4-week EE exposure of aged, but not

young, OVX mice improves object recognition memory

(Gresack et al. 2007). These discrepancies about the

estrogens–EE interaction are difficult to interpret due to the

methodological variables involved, but also because this

issue has not been extensively explored so far. To our

knowledge, this is the first report using a noninvasive

method of hormonal administration for studying the role of

E2 and EE on cognition.

Since a clear cognitive deficit in both tests used here has

previously been shown following ovariectomy (Bastos

et al. 2015; Fonseca et al. 2013; Espinosa-Raya et al.

2012), here only OVX females were used, sham controls

being not necessary to demonstrate the impaired perfor-

mance induced by estrogen depletion. Thus, taking into

account the advantages represented by noninvasive proce-

dures and considering the critical period idea, the current

study explored whether or not an 18-week protocol of EE

alone or in combination with E2 treatment improved this

ovariectomy-induced impairment of memory.

Rats with E2 treatment initiated immediately after OVX

were exposed to an EE following a modified protocol

reported by Leal-Galicia et al. (2008) and then submitted to

two memory tests: the ALT and the novel object recogni-

tion test (NORT). ALT has been proposed for measuring

associative learning (Meneses 2003) and requires an intact

neuronal system in the hippocampus, septum and cortex, as

well as the participation of the cholinergic signaling

transduction pathways in the integration of the acquisition–

consolidation process (Steckler et al. 1993; Meneses 1999;

Meneses and Terrón 2001; Espinosa-Raya et al. 2007,

2011). On the other hand, NORT has been used for the

study of short- and long-term memory (Taglialatela et al.

2009) and requires participation of the perirhinal cortex for

acquisition, consolidation and retrieval of object informa-

tion. Accordingly, glutamatergic, serotoninergic and

cholinergic neurotransmission is necessary for the inte-

gration of these processes (Dere et al. 2007). Finally, to

discard that changes in motor activity could influence

performance on these behavioral tasks, all rats were eval-

uated with an automatic activity counter immediately after

the ALT test.
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Materials and methods

Animals

The Animal Care and Use Committee of the Escuela

Superior de Medicina at the Instituto Politécnico Nacional

approved all experimental protocols. Forty female Spra-

gue–Dawley rats (200–250 g) were purchased from Harlan

Laboratories (Harlan Mexico, S.A. de C.V.). Before

beginning the treatments, the animals were housed in

groups (n = 10) in polycarbonate cages for 2 weeks under

an inverted 12/12-h light–dark cycle (lights on at 9 p.m.) in

a temperature-controlled (22 �C) room. All animals had

free access to food (Purina Rat Chow) and water

throughout the experiments. Animal care and handling

were in accordance with internationally accepted proce-

dures and approved by our Institutional Committee (NOM-

062 ZOO, 1999). Special care was taken to minimize

animal suffering. All experiments were carried out between

11:00 and 15:00, and independent groups were used.

Environmental enrichment

This procedure was carried out following a modified ver-

sion of the conditions proposed by Leal-Galicia et al.

(2007). It has been reported that exposure to this EE

schedule elicits an increase in the hippocampal neurogen-

esis, modifies rat emotionality and improves the recogni-

tion memory in old rats (Leal-Galicia et al. 2007, 2008).

Briefly, this apparatus consists of an exploration chamber

(1.5 9 1.5 m; illuminated by red light) containing different

elements such as plastic balls, tunnels, nesting materials,

mesh wire ladders and running wheels. For EE exposure,

rats in the EE and E2 ? EE groups (kept under standard

housing conditions) were placed in this chamber 2 h daily

(for 2 weeks). To avoid behavioral habituation, for the

remaining of the 18-week treatment period exposure was

carried out only on Saturdays for 3 h. All moveable objects

used for enrichment were placed in a different arrangement

inside of the exploration chamber before each session.

Treatments

At the time of surgery, rats were randomly assigned to one

of the following groups (n = 10 each): (a) a control group

not treated with E2 nor exposed to enrichment (CONT);

(b) a group chronically treated with E2 but not exposed to

enrichment (E2); (c) a group exposed to enrichment but not

treated with E2 (EE); and (d) a group treated with E2 and

exposed to enrichment (E2 ? EE).

Animals in the E2 and E2 ? EE groups were subcuta-

neously implanted with a pellet that time-releases E2 for

60 days. This pellet, containing 0.05 mg of E2 (1 lg/

rat/day) (Innovative Res. America, FL, USA), was placed

at the dorsal portion of the neck during the ovariectomy. In

order to complete 18 weeks of treatment, the pellet was

replaced 9 weeks after implantation. It has been continu-

ously confirmed that these pellets supply physiological

hormonal levels beginning 2 weeks after their insertion

(Singh et al. 2008; Strom et al. 2008a, b; Nordell et al.

2005; Aubele and Kritzer 2012). In order to eliminate

variations due to daily handling, animals in the control

group were manipulated in a similar manner as those in the

experimental groups.

Surgery

Animals were bilaterally ovariectomized (OVX) under

2,2,2-tribromoethanol anesthesia (0.2 g/kg, i.p.), by a well-

trained technician, through a dorsal incision that allows for

the location and removal of the ovaries (Picazo et al. 2006)

and whose complete extraction was corroborated by visual

inspection. Immediately after surgery, rats were placed for

approximately 2 h in a harm platform until their complete

recovery. Rats were then gently transported and housed in

plastic cages and randomly assigned to the different

treatments.

ALT

The ALT is used to measure associative learning (Meneses

2003). Briefly, it consists of a standard Skinner box (Med

Associates Inc., USA) with an illuminated lever in the

middle of one wall (4 cm above the floor) and a food tray

located 5 cm to the right of the lever. Animals submitted to

this test are previously fasted for 24–36 h. On the training

day, each rat is placed in the experimental chamber and

given time to acclimate to it (*15 min). During this time,

animals find and eat 20 food pellets (45 mg Mach) that are

in the tray. Afterward, the rat can obtain another pellet each

time the illuminated lever is pressed. An inter-trial interval

of 5 s is used as the standard. Thus, an increase or decrease

in the number of conditioned responses (CRs) is considered

an enhancement or impairment in the consolidation of

learning, respectively. The protocol consists of three ses-

sions, one every 24 h, with the first and second sessions

comprising 20 trials and the third session only 10. As it is

usual practice for this paradigm, data are expressed as the

mean number of CRs (i.e., times the lever is pressed)

during the last session (Espinosa-Raya et al. 2011).

Spontaneous activity test

To assess the potential effects of the drugs on motor

activity, all rats were tested in an automatic activity

counter, which consists of an acrylic cage measuring
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51.1 9 9.5 9 69.2 cm with two arrays of 15 infrared

beams (each spaced 2.5 cm apart) that are perpendicular to

each other. The interruption of a beam generates an electric

impulse, which is processed and presented as a count

(Opto-Varimex; Columbus Instruments, OH, USA). This

test was carried out immediately after the third session in

the ALT. Ambulation, vertical activity (climbing) and total

activity are automatically registered during a 5-min

session.

NORT

The NORT is used to study short- and long-term memory.

This test, described by Ennaceur and Delacour (1988), is

based on the natural tendency of rodents to explore new

objects and compare them to ones with which they are

already familiar. Thus, when a rat is exposed to a new

object, it is expected that the animal will take longer

exploring it than when exposed to a familiar one.

Briefly, the task consists of an open-field arena

(30 9 30 9 15 cm) with two identical objects (F ? F0)
located in opposite and symmetrical corners. During the

first phase (acquisition), the rat was placed in the arena for

5 min. To avoid forcing the animal to explore some

specific object, it was always placed in the center of the

arena. During this phase, animals that did not explore the

objects for at least 30 s were not included in the current

study. At the end of the session, the rat was returned to its

housing cage.

Given that this task is useful for the study of memory at

different time points (Taglialatela et al. 2009), animals

were tested again 1 h (short-term memory) and 24 h (long-

term memory) after the acquisition phase. Before the latter

two sessions, one of the familiar objects (F) was replaced

by a different one (N). All sessions were videotaped for

later scoring by a single observer, who was blind to the

treatment conditions.

In this test, data are frequently presented as the prefer-

ence index (PI), which expresses the difference between

the time spent with the familiar object and the novel one

[time spent with novel object/(time spent with novel

object ? time spent with familiar object) 9 100] (Wang

et al. 2007). A PI above 50 % (i.e., the chance level)

indicates a novel object preference and can be interpreted

as normal cognitive performance (Navarrete et al. 2008;

Walf et al. 2006).

Statistics

Data were analyzed with a one-way ANOVA or with a

Kruskal–Wallis analysis (depending on whether popula-

tions were normally distributed or not) followed by the

corresponding post hoc comparisons. Other statistical

analyses were performed using paired t tests. A p value

\0.05 was considered significant.

Results

ALT

Hormonal treatment and/or exposure to EE restored cog-

nitive performance in the ALT of OVX rats, compared to

the control group. Overall, there was a significant differ-

ence across the four groups tested (H = 15.885; n = 40;

p = 0.001). Mann–Whitney U tests showed that groups

exposed to E2 and EE treatments performed significantly

better than the control group (E2 vs C: U = 7.50, n1 = 10,

n2 = 10, p = 0.001; EE vs C: U = 24.0, n1 = 10,

n2 = 10, p = 0.047; EE ? E2 vs C: U = 11.0, n1 = 10,

n2 = 10, p = 0.003; Fig. 1). The combination of both

treatments did not improve the number of CRs obtained

under EE treatment (EE ? E2 vs EE: U = 45.0, n1 = 10,

n2 = 10, p = 0.733). Contrarily, such combination

decreased the number of CRs produced only by E2

administration (EE ? E2 vs E2: U = 18.0, n1 = 10,

n2 = 10, p = 0.017).

Spontaneous activity test

As aforementioned, all rats were evaluated with an auto-

matic activity counter immediately after the ALT. It is

clear from this evaluation that no treatment altered the

motor ability of the animals (Table 1).

Fig. 1 Number of conditioned responses, in an autoshaping learning

task, for rats chronically treated with estradiol (E2), exposed to an

enriched environment (EE) for 18 weeks or given a combination of

both treatments (EE ? E2). Each column represents the mean ± SE

of ten rats. The asterisk denotes a difference versus the control group

(C) or between those groups indicated by the bracket (Mann–Whitney

U test; p\ 0.05)
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NORT

All rats in the present study spent a similar amount of time

on object exploration during the acquisition phase in the

NORT, where F and F0 represent identical objects (Fig. 2,
upper panel), as reflected by a lack of significant difference

in the PI across groups (lower panel; one-way ANOVA;

F = 0.249; p = 0.861).

Although the test carried out 1 h after the acquisition

phase showed that rats belonging to each group spent more

time exploring the novel object (N) compared to the

familiar one (F) (Fig. 3, upper panel; paired t tests; all

ps\ 0.05), the PI did not significantly differ across groups

(Fig. 3, lower panel; one-way ANOVA, F = 1.115,

p = 0.356).

In the test carried out 24 h after the acquisition phase,

rats belonging to all the experimental groups, but not to the

control group, spent more time exploring the novel object

than the familiar object (Fig. 4, upper panel; paired t tests,

all ps\ 0.05). Moreover, the PI significantly differed

across groups (Fig. 4, lower panel; Kruskal–Wallis;

H = 17.039; n = 40; p = 0.001); all experimental groups

significantly differed compared to the control group

(Tukey’s test, all ps\ 0.01), but did not significantly differ

between each other.

Discussion

Data from the current study can be summarized as follows:

(a) The impairment of memory, putatively caused by

removal of the ovaries, could be overcome by with estro-

gens or EE; (b) hormonal treatment was better than the

combination EE ? E2 for improving the performance of

rats in the ALT; (c) the combination of these two treat-

ments showed different results depending on the test used

for measuring cognition.

As aforementioned, an estrogen deficiency has profound

effects on cognition. Accordingly, deterioration of the

natural ovarian function or removal of the ovaries has been

associated with cognitive deficits (Markowska and Savo-

nenko 2002; Walf et al. 2006). For instance, several studies

have reported that during induced or natural proestrus/

estrus, rodents perform better on learning tasks than during

diestrus or than counterparts without ovaries (Paris and

Table 1 Spontaneous activity

of ovariectomized rats under

chronic estrogen treatment (E2)

and exposed to an enriched

environment (EE)

Experimental groups Climbing Ambulation Total activity

W 270.2 (30.7) 902.7 (80.8) 1084.4 (78.7)

E2 282.2 (26.8) 851.0 (64.8) 1072.5 (64.0)

EE 290.2 (28.7) 903.3 (69.3) 1041.8 (51.6)

EE ? E2 320 (24.3) 980.9 (62.8) 1153.6 (67.4)

Kruskal–Wallis H = 2.231; p = 0.526 H = 1.615; p = 0.656 H = 1.603; p = 0.659

Data are expressed as the mean of counts ± SE (n = 10) for 5 min. W—control group without estradiol

implanting and without exposition to EE

Fig. 2 Behavior of rats chronically treated with estradiol (E2),

exposed to an enriched environment (EE) for 18 weeks or given a

combination of both treatments (EE ? E2) during the acquisition

phase in the novel object recognition test. The upper panel shows the

amount of exploration time spent by rats during a 5-min period, while

the corresponding preference index is depicted below. In this figure,

F and F0 denote identical (familiar) objects
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Frye 2008; Van Goethem et al. 2012). The results of the

current contribution are in accordance with this evidence.

Adult OVX rats evaluated 18 weeks post-surgery showed

virtually no response in the ALT, whereas sham-operated

females displayed approximately 6–10 CRs/min (Espi-

nosa-Raya et al. 2012). This cognitive deficit due to OVX

can be restored by chronic estrogenic treatment initiated

post-surgery (Gresack and Frick 2004; Markowska and

Savonenko 2002) as long as the beginning of treatment is

within 10 weeks post-OVX (McLaughlin et al. 2008). This

phenomenon has been observed in several tests including

ALT and NORT. In the present study, the NORT showed

that E2 treatment reinstated the object recognition memory

of castrated females, reaching levels of performance sim-

ilar to those reported for sexually receptive rats (Fernandez

and Frick 2004; Luine et al. 2003; Walf et al. 2006). This

evidence is in line with the critical period hypothesis,

which considers that estrogen treatment confers optimal

performance benefits for women when initiated close in

time to the onset of menopause (Resnick and Henderson

2002).

Interestingly, the ALT showed that OVX rats with E2

administration plus EE exposure experienced less cognitive

benefits than animals given E2 alone. Contrarily, the

NORT demonstrated that OVX rats in these two groups—

the combined treatment and the E2 treatment alone—per-

formed in a similar fashion. In this regard, Gresack and

Frick (2004) reported that with the NORT, OVX mice

administered with E2, but without EE exposure, had a

significantly enhanced memory, while the simultaneous

application of both treatments led to reduced cognitive

Fig. 3 Exploration time and preference index for rats chronically

treated with estradiol (E2), exposed to an enriched environment (EE)

for 18 weeks or given a combination of both treatments (EE ? E2)

1 h after the acquisition phase in the novel object recognition test.

The familiar object is represented by F and the novel one by N. The

asterisk denotes the significant difference between the time spent by

the rats exploring the novel and the familiar object (paired t test;

p\ 0.05)

Fig. 4 Exploration time and preference index for rats chronically

treated with estradiol (E2), exposed to an enriched environment (EE)

for 18 weeks or given a combination of both treatments (EE ? E2)

24 h after the acquisition phase in the novel object recognition test.

The familiar object is represented by F and the novel one by N. Each

column represents the mean ± SE of ten rats. The asterisk denotes a

significant difference between the time spent by rats exploring the

novel and the familiar object (upper panel, paired t test; p\ 0.05) and

between the control group and each experimental group (lower panel,

Tukey’s test; p\ 0.05). Paired comparisons among experimental

groups did not show a significant difference (Mann–Whitney U test;

p[ 0.05)
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ability, an effect only observed in young but not aged mice

(Gresack et al. 2007).

There were obvious methodological differences between

the present study and that by Gresack and Frick (2004),

including the use of mice instead of rats, acute daily

injections of high doses of E2 and a delay in post-OVX

hormonal replacement. In such study, the reduced cogni-

tive ability found with the NORT in regard to the combined

EE ? E2 versus E2 treatment seems to indicate a role of

stress factors. Regarding this, we took into account the

critical period hypothesis and began the E2 release

immediately after the OVX through hormone-releasing

pellets instead of injecting rats for 15 days, diminishing in

this way the role of stress produced by injections that could

have masked the observations of Gresack and Frick (2004).

Some of the main factors that alter the effect of

enrichment are the exposure schedule, the size of the

enrichment boxes and the number of animals in the housing

cages (Diamond 2001; Simpson and Kelly 2011), showing

that this manipulation does not always produce the same

consequences. For instance, although the majority of

studies report a beneficial effect of EE (Costa et al. 2007;

Freret et al. 2012; Frick and Fernandez 2003; Hu et al.

2010; Jankowsky et al. 2005; Laviola et al. 2008), some

housing conditions can produce stress and as a conse-

quence result in high levels of corticosterone (CORT)

(Girbovan and Plamondon 2013). For instance, in intact

female rats or mice exposed to EE for 6 weeks, higher

levels of plasmatic CORT are found in animals housed four

per cage than in those housed individually (Arndt et al.

2009; Konkle et al. 2010; Martin and Brown 2010). It is

currently known that this hormone improves performance

when found at optimal levels (Gresack and Frick 2004;

Sampedro-Piquero et al. 2014), essentially during the

consolidation memory phase (Roozendaal 2000), but pro-

duces amnesia at high concentrations (Meaney et al. 1988;

Schwabe et al. 2012).

Surprisingly, E2 also increases the levels of CORT

(Chan et al. 2014; Farid et al. 2013), suggesting that with

either E2 administration or EE exposure alone, the mne-

monic benefits could be due to the level of CORT produced

by each treatment. However, with combined treatment

there would seem to be an additive effect of the CORT

secretion induced by each individual treatment, which if

true would explain the reduction in the CRs produced by

this combination. Thus, it is possible that the combined

hormone and enrichment treatment result in high levels of

CORT and therefore a mnemonic deficit (Schwabe et al.

2012).

In contrast to data derived from the ALT, results from

the NORT evidenced the effectiveness of E2, EE and

E2 ? EE, each producing very similar effects on object

recognitive function in the long but not short run. The

reason for this finding could lie in the fact that the ALT and

NORT stimulate different brain regions: the first excites the

amygdala–NAcc–hippocampus pathway (Correa 2007),

while the NORT seems to affect hippocampal cortices

(Antunes and Biala 2012), specifically the perirhinal cortex

(Winters and Bussey 2005).

It is also known that E2 administration and EE exposure,

besides producing changes in CORT, increase the expres-

sion of the brain-derived neurotrophic factor (BDNF). The

role of BDNF in cognition has been well demonstrated

(Ozawa et al. 2014), and its increase occurs, under different

enrichment protocols, in central amygdala, hippocampus,

and/or visual and entorhinal cortices (Farmer et al. 2004;

Ickes et al. 2000; Pham et al. 1999; Ramı́rez-Rodrı́guez

et al. 2014; Ravenelle et al. 2014; Rossi et al. 2006). The

increase in this neurotrophin is prevented by an OVX

(Berchtold et al. 2001) and can be restored by E2 treatment

(Berchtold et al. 2001; Gibbs 1999). When E2 is combined

with exercise, as part of EE, the level of BDNF is above the

value reached by hormone replacement alone (Berchtold

et al. 2001). This evidence suggests that the memory

consolidation observed at 24 h, but not at 1 h, after the

acquisition phase in the NORT could be due to the BDNF

expression induced by either E2 or EE treatment. Finally,

although both types of memory, short- and long-term

memory, are integrated in hippocampus (Hammond et al.

2004), it is important to address that short-term memory

does not require protein synthesis (Balderas et al. 2014;

Rossato et al. 2007), an observation that could help to

understand the current data.

To sum up, a general hypothesis to explain the present

results should include the role of CORT and BDNF as

modulators of the learning and memory displayed in the

two tests herein used. It should also take into account that

recognition memory is integrated in extrahipocampal cor-

tices (Antunes and Biala 2012; Balderas et al. 2008; Spada

et al. 2006; Winters and Bussey 2005), where the corticoid

receptors are scarce in comparison with the hippocampus

(Sánchez et al. 2000) and that autoshaping learning

depends on the amygdala–NAcc–hippocampus pathway

(Correa 2007), where there is a high density of CORT

receptors (Reul and De Kloet 1986; Roozendaal and

McGaugh 1997) modulating the actions of CORT on the

associative learning (Beylin and Shors 2003; Roozendaal

2000).

Conclusions

The current results show that chronic treatment with

estrogen or EE exposure has a beneficial effect on two

types of memory. Regarding the effect on associative

learning, herein measured with the ALT, E2 treatment was

Cogn Process (2016) 17:15–25 21
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found to be better than certain schedules of EE. Finally, the

combination of both treatments did not produce perceptible

advantages.
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