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Abstract In this paper, we propose a cognitive

semantic approach to represent part–whole relations.

We base our proposal on the theory of conceptual

spaces, focusing on prototypical structures in part–

whole relations. Prototypical structures are not

accounted for in traditional mereological formalisms. In

our account, parts and wholes are represented in dis-

tinct conceptual spaces; parts are joined to form wholes

in a structure space. The structure space allows sys-

tematic similarity judgments between wholes, taking

into consideration shared parts and their configurations.

A point in the structure space denotes a particular part

structure; regions in the space represent different gen-

eral types of part structures. We argue that the struc-

tural space can represent prototype effects: structural

types are formed around typical arrangements of parts.

We also show how structure space captures the varia-

tions in part structure of a given concept across dif-

ferent domains. In addition, we discuss how some

taxonomies of part–whole relations can be understood

within our framework.

Keywords Part–whole relation � Conceptual

spaces � Prototype � Context � Partonomy

Introduction

There are several types of cognitive phenomena involved in

how we deal with the concepts. Such phenomena are

unsurprisingly reflected in theories about how we believe

concepts should be represented. However, the interplay

between two important aspects related to the concepts,

namely conceptual similarity and part–whole relations, is

usually overlooked when it comes to concept representation.

The intuitive idea behind the role of similarity in cate-

gorization is that two objects belong to the same concept if

they are ‘‘similar enough.’’ The exact definition of ‘‘similar

enough’’ depends on the actual representation framework

(Tversky 1977; Edelman 1998), but the general importance

of similarity in categorization is well established (Goldstone

1994). In addition to similarity, concepts are thought to show

prototype effects (Rosch 1978); concepts are defined in

relation to one or more individuals that are judged to be

typical exemplars of that concept (for example, a robin could

be seen as a prototype for the concept of bird, in contrast to a

penguin). The classification of a new object is determined by

measuring its similarity to the concept prototypes.

On the other side, human cognition can also represent the

relationships between entities and their parts, for example,

between a horse and its four legs. These relations play an

important role in how humans perceive and think about

concepts. One of the central questions of this paper is how

the notions of similarity and prototype are reflected in an

analysis of parts and wholes. The idea of a prototypical

whole seems to be intuitive enough to make it significant; for

example, it is easy to think about a prototypical pen, with its

typical configuration of parts. The degree of typicality of

other pens can be measured by their similarity to the pro-

totype. Partonomical (part–whole) similarity between

wholes takes into account which parts are actually similar

S. Rama Fiorini (&) � M. Abel

Institute of Informatics, Federal University of Rio Grande do Sul

(UFRGS), CP 15064, Porto Alegre, RS CEP 91501-970, Brazil

e-mail: srfiorini@inf.ufrgs.br

P. Gärdenfors

Lund University Cognitive Science, Lund University, Box 188,

Lund 22100, Sweden

123

Cogn Process (2014) 15:127–142

DOI 10.1007/s10339-013-0585-x



and how parts are structured. While some experiments have

indicated prototype effects in part–whole relations (e.g.,

Chaffin et al. 1988), the specific role of prototypes in these

relations is not yet well understood. Nevertheless, there are

direct and indirect evidences that partonomical similarity

plays a role in object recognition and concept learning

(Mash 2006; Wu et al. 2010; Alexander and Zelinsky 2012).

Our goal in this paper is to describe a computationally

oriented representation framework for part–whole relations

using knowledge about cognitive mechanisms involved in

representation and reasoning with parts and wholes as

sources of inspiration. In particular, we emphasize the role

of similarity and prototypes. We will not propose a specific

formalism for knowledge representation; the aim is,

instead, to present a framework that can guide the devel-

opment of such formalism. Furthermore, we restrict our

discussion to part relations involving physical objects only.

Our proposal follows the tradition of cognitive seman-

tics. It differs fundamentally from the realist semantics

usually employed in knowledge representation, specifi-

cally, in ontologies (Guarino 1998). Whereas realist

semantics defines meaning as mappings from language to

one or more ‘‘worlds,’’ cognitive semantics defines mean-

ing as mappings from language to conceptual structures

within an agent’s mind (Gärdenfors 2000). Cognitive

semantics provides a more principled account of the

influence of cognitive mechanisms, such as concept

learning, perception, and symbol grounding. Furthermore,

purely symbolic languages usually employed for repre-

senting concepts, such as the Ontology Web Language

(OWL), lead to difficulties in representing part–whole

relations (cf. Rector et al. 2005). This is a good argument

for looking for other representational formats. In particular,

the advantages of using cognitive semantics to explain

meaning have been investigated in relation to the knowl-

edge systems (e.g., the Semantic Web) (Gärdenfors 2004;

Adams and Raubal 2009). For instance, Adams and Raubal

(2009) proposed the Conceptual Space Markup Language

(CSML). CSML is a XML-based representation proposed

as a complement to the Semantic Web languages.

As it has been put by Guarino et al. (1996), there are two

approaches to the problem of representing of part–whole

relations. One is the logico-philosophical approach, which

takes the perspective of formal ontology and algebraic

theories of parts, such as classical mereology (the formal

study about parts and wholes) and other derived theories

(Simons 2003; Varzi 2011). This approach seems to be

dominant among ontologists, particularly in computer sci-

ence. However, Simons seems to recognize that algebra is

not enough:

When it comes to the honest toil of investigating the

principles governing what objects are parts of others,

and what collections of objects compose others, it

appears that most ontologists have been following the

paradigm of abstract algebra when it would have

been better to take a lead from sciences such as

geology, botany, anatomy, physiology, engineering,

which deal with the real. (Simons 2006)

On the other hand, there is the cognitive–linguistic

approach, which is the one we adopt. Here, we consider the

cognitive phenomena related to the concepts that are usu-

ally ignored in other approaches, like prototype effects and

similarity. Furthermore, we account for the context effects

of using concepts that frequently turn up. We submit that a

semantic model suitable for implementing intelligent

computational systems should be aligned with human

cognition as much as possible.

To that effect, we base our analysis on the theory of

conceptual spaces (Gärdenfors 2000), which takes simi-

larity and prototypes into account. Its main feature is that

the concepts can be represented as regions in a multidi-

mensional space. Similarity plays a central role: the

dimensions of conceptual spaces provide the means for

determining similarity between concepts and between

objects.

More precisely, we discuss the role of similarity in part–

whole structures; in other words, what it means to say that

two objects (or concepts) are similar because they have a

similar part–whole structure. We present constructive

proposals for modelling the conceptual structures of parts

and wholes. In brief, we argue that the conceptual space of

a whole can be seen as a product space, composed of the

conceptual spaces of its parts accompanied by part struc-

tural information. The notion of using product spaces to

form more complex conceptual construction is not new (cf.

Aisbett and Gibbon 2001); however, we innovate by add-

ing more information to product spaces based on cognitive

phenomena.

Part–whole relations can also take many forms, having

different meanings. For instance, the part relation engine-

car is of a different nature than tree-forest. Many authors

have proposed diverse categorizations of these forms (e.g.,

Chaffin et al. 1988; Gerstl and Pribbenow 1995; Simons

2003; Guizzardi 2005). We analyze how some of these

forms manifest themselves in the conceptual world,

allowing us to account for the plasticity of part–whole

relations. In addition to that, we discuss how prototype

structures in a partonomical hierarchy affect object clas-

sification; and how the same whole can be seen in different

ways, taking into account contextual information on the

parts. We finally present a simplified model of an object

recognition algorithm based on our framework.

This paper is structured as follows. In ‘‘Parts, wholes,

and cognition’’ section, we review the basic cognitive
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background on part–whole relations. In ‘‘Conceptual

spaces’’ section, we introduce the main ideas behind con-

ceptual spaces. In ‘‘Representing parts and wholes in

conceptual spaces’’ section, we describe the notions of

holistic and structure spaces, the core of our contribution.

‘‘Types of structure domains’’ section details the types of

part–whole relations and how they can be accounted for by

our approach. In ‘‘Marr’s hierarchical model, revisited’’

section, we present a reinterpretation of Marr’s hierarchical

model. ‘‘Same whole, different parts,’’ ‘‘Partonomies,’’ and

‘‘Other ontological considerations’’ sections are devoted to

the discussion of related issues, such as context and par-

tonomies. In ‘‘Object recognition with structure spaces’’

section, we sketch an object recognition framework using

structure spaces as basis for concept representation.

Parts, wholes, and cognition

Before proposing a cognitive semantics approach to part–

whole representation, we must consider how humans per-

ceive and think about objects and their parts. However, the

research on the cognition of parts and wholes is not as

extensive as one would expect, given its importance for

human reasoning. For instance, early work by Tversky and

Hemenway (1984, 1989) showed that parts play a central

role in differentiating between basic-level concepts, and

also suggested that the parts form a bridge between per-

ceptual and functional knowledge.

A good amount of the research in the cognition of part

and wholes is centered on shape recognition. During the

1990s, the discussion concerning shape recognition gravi-

tated around two general set of theories in which the

importance given to part relations was a distinguishing

feature. The view-independent theories, mainly influenced

by Marr’s computational models of vision (1982) and

Biederman’s work on geons (Biederman 1987), postulated

that objects are represented and perceived based on the

configurations of visual primitives that are invariant to

viewpoint changes. On the other hand, there are view-

dependent theories, like the ones proposed by Edelman

(1998) and Ullman (2000), which state that objects are

represented by ‘‘snapshots’’ (i.e., images) of the object’s

different angles, dismissing the importance of structural

information. View-independent theories have the tendency

to give more relevance to the part relations (between visual

primitives), while this aspect is not so much emphasized in

view-dependent theories. Recently, though, evidence from

cognitive and neurosciences (Foster and Gilson 2002;

Newell et al. 2005) supports that both processes are needed

in object recognition (see Graf 2006, for a review).

Reviewing the state of the art in object recognition, Peissig

and Tarr (2007) argue that the discussion regarding

dependence of view in object recognition is orthogonal to

the actual importance of part structure in recognition of

physical objects. In this paper, we focus on the latter

aspect.

There are several relevant streams of empirical research

in part–whole reasoning and representation. The first

stream comes from the studies of patients with integrative

agnosia, which is a rare kind of impairment that makes

recognition of wholes difficult, but which leaves recogni-

tion of parts unaffected. In one experiment, Behrman et al.

(2006) asked one of these patients to compare objects

formed by different parts. The patient could recognize

dissimilarities between objects that did not share the same

parts. However, the patient was unable to recognize dis-

similarities when objects shared parts that were arranged in

different ways. Their conclusion is that the brain seems to

encode part arrangement (spatial relations) independently

of part shape (part qualities).

Developmental psychology also provides some

insights into this topic. It has been shown that the rec-

ognition of objects by children under 2 years of age is

mostly part-based. However, children later acquire the

ability to recognize objects by their full shapes. For

instance, a series of experiments with 18- to 30-month-

old children, conducted by Smith and her colleagues

(2009, 2011), suggests that the representations of geo-

metric structures of whole objects are built over time,

and, more broadly, that shape and part relations are two

distinct components of children’s judgments of shape

similarity. Rackison et al. (Wu et al. 2010) showed a

similar trend in the development of children’s cognition,

also suggesting that salient parts play a role in object

categorization. The perception of parts also seems to

affect generalization in learning. Son et al. (2008) found

that teaching children the names of simple, featureless

versions of new objects (e.g., some inner parts of the

objects) helps them generalize the names to similar but

more complex versions of the objects. This finding

supports the idea that young children focus their atten-

tion on small details (parts) when learning words for

new objects. Presenting them with simple objects steers

their attention to more general geometrical structures,

helping them learn and generalize words for basic-level

concepts. However, parts are important when differen-

tiating objects that are similar in overall shape (e.g.,

cows and horses). A child normally first notices high-

level part similarities, but for some concept distinctions,

more attention must be given to lower levels. For

instance, dogs and cows have quite similar overall parts,

and children sometimes do not distinguish them in their

naming. Then, they learn to differentiate on lower levels

of the hierarchy, such as by noticing that dogs and cows

have differently structured noses and tails.
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The existence of two stages in the development of object

recognition suggests that there are two distinct but corre-

lated representation systems in the brain: one based on the

parts and the other based on the whole object. Evidence for

this distinction also comes from a meta-analysis carried out

by Farah (1992) on the research pertaining to the patients

with different types of agnosia. She suggests that the brain

employs two parallel but distinct cognitive processes in

object recognition. In the structural process, whole objects

are recognized by recognizing its constituent parts. In the

holistic process, the recognition rests on the whole object,

independent of its parts. The recognition of certain cate-

gories of objects usually relies more on the one or the

other. In support of this position, there is evidence of a

double dissociation between impairments in word recog-

nition (regarded as structurally based) and impairments in

face recognition (regarded as holistically based). At the

same time, object recognition also seems to be partially

affected in both impaired conditions, suggesting that object

recognition is dependent on both structural and holistic

representations.

Some studies showed evidence of interaction between

part–whole processing and similarity effects. For instance,

Alexander and Zelinsky (2012) showed that part similarity

plays an important role in visual search of real-world

object. Förster (2009) performed nine studies on how

people judge similar/dissimilar stimuli in global and local

processings. They found that global (holistic) processing

tends to focus on similarities, while local (structural) pro-

cessing tends to focus on dissimilarities.

In summary, the empirical evidence unveils two

important aspects of part–whole representation by humans.

First, information about the part and the whole are pro-

cessed differently. Second, there is evidence to support the

presence of similarity effects in holistic and structural

processes. Consequently, one is to expect that a cognitive-

inspired framework for representing part relations should

account for such phenomena in some way.

Conceptual spaces

The theory of conceptual spaces (Gärdenfors 2000) is a

framework for representing concepts using geometrical and

topological structures, in the tradition of other geometrical

concept representation proposals, such as (Shepard 1987).

It has been employed in works ranging from computer

science and robotics (Chella et al. 2001, e.g. Adams and

Raubal 2009; Fiorini et al. 2013) to the philosophy of

science (Gärdenfors and Zenker 2011). A rationale for

proposing conceptual spaces is that the concept similarity

is essential to understand the concept formation. The theory

complements two other major approaches to the concept

representation: symbolic (logical) and associationist (con-

nectionist), supplying an intermediate representation level.1

A conceptual space is a multidimensional space where

the concepts are projected and similarities represented. It

can be understood as a space in the mathematical sense,

such as a Euclidean space. The concepts correspond to

regions in a conceptual space, whereas instances (objects)

correspond to points (or, equivalently, vectors). If the space

is provided with a metric, concepts and instances can be

compared. Similarity between the concepts and instances

can then be defined as the inverse of their distance in the

space. In the following discussion, we assume that the

conceptual spaces are metric.

The representational power of conceptual spaces

depends on the selection of the dimensions of the space for

an application area. The quality dimensions, as they are

called, represent different ways in which instances and

classes in the space can be compared. A canonical example

is the color space that contains three dimensions: hue,

saturation, and brightness. The perceivable colors can be

represented as a combination of these three dimensions. In

this space, each point represents a particular color. In

everyday life, we do not refer to colors with such precision;

we use labels instead, like ‘‘red’’ and ‘‘yellow’’, to refer to

two distinct sets of shades in which the members look

sufficiently similar to each other to be referred to by the

same label. Geometrically speaking, the concept of ‘‘yel-

low’’ corresponds to a particular convex region of the color

space. However, different languages carve up the color

space in different ways. Jäger (2008) has provided strong

empirical support from more than 100 languages for the

convexity of color concepts. Once the convexity of the

concept regions is required, it becomes natural to define

prototypical instances as points that are central to a region.

For example, the focal red that can be experimentally

identified will be at the center of the region representing

red.

Conceptual spaces also introduce the notion of quality

domains. A quality domain is a group of integral

dimensions. Quality dimensions are integral when one

cannot assign an object a value on one dimension without

giving it a value on the other(s) (Garner 1974; Maddox

1992; Melara 1992). A color cannot be given a hue

without also giving it a brightness; a sound’s pitch always

goes with a certain loudness. Dimensions that are not

integral are separable, for example, the size and hue

dimensions. Using this distinction, we define a domain as

a set of integral dimensions separable from all other

1 In brief, the conceptual spaces fill the gap between the lack of

flexibility of logic-based constructions in relation to the concept

learning and the unstructured malleability of connectionist

approaches to raw data. A more detailed discussion can be found in

(Gärdenfors 1997; Gärdenfors 2000).
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dimensions. The three color dimensions constitute a

prime example of a domain in this sense: hue, saturation,

and brightness are integral dimensions separable from all

other quality dimensions.

Concepts defined exclusively within a single domain are

called properties. For example, ‘‘yellow’’ and ‘‘red’’ are the

properties, since they are single regions defined in a single

domain, i.e., the color space. Other concepts can be defined

as a set of regions involving many quality domains. The

concept of ‘‘apple’’ is a good example: it comprises regions

in domains like color (red, green), taste, shape (cycloid),

texture, smell, and nutrition.

Usually, the conceptual spaces are constructed out of

many dimensions and domains that can make their depic-

tion very challenging. We have devised a simple diagram

that emphasizes the multidimensional composition of the

conceptual spaces as a product of quality domains.

Figure 1 exemplifies this diagram for representing the

concept ‘‘apple.’’ The apple space is represented as a

product space of properties (smaller ellipsoids) in the

quality domains that form the conceptual space (bigger

ellipsoids). This diagram is inspired on the intuitive notion

that a concept in conceptual spaces can be seen as a product

of regions (or subspaces) in a series of quality domains

(Fig. 1a), or as a region in a multidomain space generated

by the product of quality domains (Fig. 1b). The ellipsoids

and domains can be drawn in different colors and sizes to

convey additional information.

Representing parts and wholes in the conceptual spaces

The cognitive grounding of the relation existing between

parts and wholes must be founded on a broader theory of

concepts. Our aim is to show that conceptual spaces can

provide the basis for such a theory. In the next sections, we

describe how part relations can be founded in the con-

ceptual spaces and discuss the consequences for the con-

cept representation. The general idea is that the relationship

between a whole and its parts is represented in a structure

space, where structural similarity between wholes can be

measured and prototypical wholes can be identified. We

start by exploring the relationship between the whole and

its structure.

As mentioned in ‘‘Parts, wholes, and cognition’’ section,

the cognition of part–whole reasoning seems to require that

the descriptions of concepts take into account holistic and

structural information. Additionally, similarity effects

present in categorization seem to suggest that the same

descriptions should also support similarity comparisons.

Bringing all this together, we can redefine the concept

similarity as a function of holistic and structural similarity.

Intuitively,

Concept similarity ¼ Holistic similarity

� Structural similarity ð1Þ

The goal is to define a representation structure that allows

for such similarity calculations.

We assume that wholes and parts have their own rep-

resentational units, that is, certain properties are exclusive

to wholes and some properties are exclusive to parts. More

specifically, we assume that the whole and each of its parts

are represented in their own, distinct2 conceptual spaces.

For example, the concept of bird is placed in a conceptual

space with its own dimensions, while the concept of beak,

wings, and feet is placed in three other conceptual spaces,

with independent dimensions and domains. There are of

course correlations between the properties of the whole and

the properties of the parts. Nonetheless, we do not assume

then to be necessarily linked. For instance, the concept of

black woodpecker (Dryocopus martius) certainly occupies

the ‘‘black’’ region of the color domain, as would both of

its wings; however, the color of its crown does not corre-

lates to the color of the whole and is to be positioned in the

‘‘red’’ region.

The relationship between the conceptual spaces of

wholes and parts is represented in the conceptual space of

the whole. It is structured in such a way that it implements

the conceptual similarity defined by Eq. (1). Accordingly,

we propose a definition of the conceptual space of any

whole as a product space of two subspaces: the holistic

(sub)space, which represents the properties of the whole,

allowing for holistic similarity comparisons; and a struc-

ture (sub)space, which represents the relation of the parts

with the whole, and allow for structural similarity com-

parisons. Thus, we have that

Conceptual space ¼ Holistic space � Structure space ð2Þ

The inner form of the holistic space is, for the present

purposes, reasonably unproblematic. Holistic spaces are

standard conceptual spaces with dimensions and domains

describing the properties about the whole. For instance, the

conceptual space of apple represented in Fig. 1 can be seen

as a holistic space, for it mainly describes the properties of

the whole apple. In this space, whole apples can be com-

pared regarding their similarity.

We are, however, more interested in the inner form of

the structure space, which is naturally more intricate. It

has to implement structural similarity, relating parts to

the whole. Therefore, we have to first consider in more

2 The real meaning of the word ‘‘distinct’’ here depends on the actual

way chosen to implement the conceptual spaces. Some representa-

tions tend to aggregate all possible concepts in a unique, compre-

hensive conceptual space including all domains. Others may represent

the concepts in really distinct conceptual spaces, formed by the

combination of the relevant quality domains.
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detail what structural similarity is, before unveiling its

inner form. The intuitive notion behind structural simi-

larity is that two wholes are structurally similar if they

share a similar set of parts. This explanation is never-

theless incomplete. For instance, according to it, a pile of

Lego bricks and the assembled Lego toy would be con-

sidered similar entities, since they share the same set of

parts. Yet, the two entities are clearly structurally dis-

similar: although the pile and the toy share the same types

and number of parts, they do not share the same internal

structure, which is essential for distinguishing between

the two. Other authors have drawn attention to this sep-

aration between part and structure (Hummel and Bie-

derman 1992). Thus, we claim that structural similarity

consists of two elements: part and configuration simi-

larity. Two individual wholes have high part similarity if

the parts in one whole are similar to the parts in the other.

It takes into consideration part categories and their

number. Additionally, two individual wholes have high

configuration similarity if parts in both wholes are also

arranged in a similar way. The combination of these two

kinds of similarity defines structural similarity between

two wholes: similar parts placed in a similar

configuration.

With the notion of structural similarity in mind, we can

define in more detail what kind of construction a structure

spaces have. A structural space is a conceptual space where

one can represent and compare many possible part con-

figurations. It is a high-dimensional space, where each

point (or vector) corresponds to a particular part configu-

ration and regions denote different kinds of part arrange-

ments. It is formed by a product of a subspace of (the

conceptual spaces) each constituent part, as well as a set of

properties in special quality domains called structure

domains. Structure domains modulate how parts bear to the

whole, representing, for instance, displacement informa-

tion. They are quality domains in the sense they also

describe the qualities of a concept. Thus, following from

Eq. 2, we have that

Concept ¼ Holistic properties

� Part properties � Structure propertiesð Þ
ð3Þ

More formally, given a whole C and its parts P1, P2, …, Pn,

a structure space is a subspace of C formed by the product

of subspaces of P1, P2, …, Pn and supplemented by

structure domains S1, S2, …, Sn to each Pi. The motivations

for defining structure space essentially as a product of the

parts is the necessity of finding a straightforward way of

measuring structural similarity as a distance function

between wholes. When we consider that a particular object

can be represented by a single point in a space, then this

single point must encode information about the specific set

of parts composing the whole (encoding part similarity)

and also its structural information (encoding configuration

similarity). A good way of doing this is to transfer this

information to the dimensions: the set of parts composing

the whole is encoded by joining the quality dimensions of

the parts, and the structure information is encoded by

joining the structural dimensions for each part.

As an example, consider the conceptual space of apple

in Fig. 2. Each part (stem, seed, skin, and flesh) is defined

as a set or properties in their own conceptual spaces

(Fig. 2a). In order to form the structure space of apple,

subspaces of the parts are used to compose the product

space that forms the structure space of apple (Fig. 2b).

Notice that the use of subspaces of the parts is due to the

fact that the whole relates just to a subset of the indi-

viduals described by the general part concept. For

instance, the concept fruit seed describes all kinds of fruit

seeds, given that only a fraction of them (a subspace) can

be said to be apple seeds, i.e., oval dark seeds. Further-

more, for each part, there is a property in a structure

domain that defines the configuration information of that

part (depicted as lune shapes in Fig. 2b). In the context of

this example, configuration information can be regarded

as the displacement coordinates (e.g., position and ori-

entation coordinates) of each part of the apple in relation

Apple Space

Apple 
Space

Colour Space

Red

Green

Shape Space

Cycloid

Taste Space

Sweet

Sour

Texture  
Space

Smooth

Nutrition  
Space

Nutritive

× × × ×

(a) (b)

Fig. 1 Example of diagrams depicting the conceptual space of apple:

a shows the inner form of the apple space as a product of properties

(smaller ellipsoids) in different quality domains (bigger ellipsoids);

and b shows a compact representation of the apple space as a set of

points (smaller ellipsoid) in a multidimensional space formed by the

product of its quality domains
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to the whole apple.3 For instance, Fig. 2d shows a two-

dimensional structure domain of coordinates centered at

the apple, with the region at the top corresponding to the

coordinates allowed for the position of the stem. The

same kind of information is added as regions in structure

domains for each part in the structure space. The result is

the complete apple structure space, which can be seen as

a multidimensional conceptual space itself (Fig. 2c). A

given point p in this space corresponds to a particular

structure of apple, with a specific set of parts displaced at

specific places. Points in the neighborhood of p corre-

spond to similar apples, such as apples having a slightly

different stem positioned at a slightly different place on

the apple. It is important to note that structure domains

allow the representation of structural information in

terms of object-centered configurations. They can also be

combined to describe more complex information, such as

spatial relations (e.g., right of and back of).4

The link between structure spaces and parts is governed

by what we call dimensional filters. A filter is a higher-

order structure that defines which subspace of the part that

is actually used to compose the structure space of the

whole. In this context, the role of a filter is twofold. First, it

can be used to filter out the sections of the structure space

of a part that is not relevant to the whole, i.e., as in the

stem-apple example above. Second, it can also be used to

filter quality domains of the part (holistic or even struc-

tural) that are not relevant to the whole. For instance, a

combustion engine may have quality domains describing

its characteristics as a car engine and as a power generator.

However, it is necessary to filter out the quality domains

regarding power generation when the concept is imported

in the structure space of a car. In some ways, the dimen-

sional filter works like a context, screening out the unim-

portant dimensions of its parts.

The formation of the concepts in the structure space is,

to a large extent, determined by prototype effects. Some

part structures can be seen as more typical than others.

These typical individuals—not necessarily any that exists

in reality—determine the focal points of the convex regions

that form the concepts in structure space. Take the concept

of an apple as an example. Its part structure would be

determined by a prototypical exemplar of its kind, denoted

by a point in the structure space of apple. In turn, this

prototype determines the focal points of the convex

regions, which fully define the concept of apple structure.

Furthermore, regarding the relationship between the

prototypical whole and the prototypical parts, it is tempting

to say that the prototype of a whole is also composed by the

prototypes of its parts. However, even if this assessment

could be true in some cases, it fails in a high number of

situations. For instance, our prototypical notion of grass-

hopper includes a subspace of the concept of wing that

certainly does not include what we consider to be the

common prototype of wing.

At this point, it is important to highlight that this

framework does not address what is a part or how we

separate parts from the whole (e.g., in perception). We are

just interested in determining a way of representing the

relationship between the parts and wholes so that holistic

and structural similarity can be measured. We return to this

point in the next sections.

Types of structure domains

Structure domains and properties are fundamental parts of

our framework. They qualify the partonomical relation-

ships between the parts and wholes. As such, it is natural to

expect they themselves might have a complex form. As a

matter of fact, the elementary notion of being part of

something can be specialized into more specific types of

part–whole relations. In recent years, several authors have

proposed different taxonomies of part–whole relations,

based on many different criteria (Winston et al. 1987, e.g.,

Gerstl and Pribbenow 1995; Guizzardi 2005; Johansson

2012). In this section, we show how different ways of

constructing structure domains can explain common kinds

of part–whole relations.

Complex and collective

Essentially, there are two clear-cut kinds of part relations. A

part relation can be collective, when a class of instances of a

certain type generically composes the whole. For example,

the part relationship between tree and forest just defines that

an instance of forest includes an arbitrary number of trees;

no particular tree is conceptualized or has a specific role or

place in the forest. On the other hand, complex relations

give more specific information about how the parts relate to

the whole, such as with functional or displacement infor-

mation. For example, the part relationship between cat and

tail specifically defines that an instance of cat has an

instance of tail positioned at a particular place on the cat.

These two types of relations can be found in some part–

whole taxonomy proposals, such as those of Winston et al.

(1987) and Gerstl and Pribbenow (1995).

Regions in structure domains, called structure properties,

have the exact function of defining how a part fits into a

whole. Different structure domains allow for different part

3 An object-centered coordinate system seems to be preferable.

Nonetheless, one can think of structural information based on an

egocentric coordinate space, or even a retinal coordinate space

(Newell et al. 2005).
4 More about the conceptual spaces and spatial relations can be found

in Ligozat and Condotta (2005).
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relations. In the previous section, we talked about the

structure properties that represent displacement information

only. These are complex structure properties. Collective

relations can be represented in structure spaces by changing

the type of structure domain used. Take the relation R(A,

B) as a part relationship between a part concept A and its

whole B. Let S be the structure space of B. Let Dr be the

structure domain added by the relation R to S. Then, based on

the type of R, we can establish which kind of information is

carried by Dr:

(a) R is a complex relation iff Dr is formed by complex

structure domains;

(b) R is a collective relation iff Dr is formed by collective

structure domains.

In complex relations, the structure domain denotes the

specific configuration or role of the part, like the allowed

positions and orientations. For example, the relation part

(tail, cat) is complex because the relationship between the

cat and its tail is modulated by a complex structure property,

i.e., a region in a complex structure space denoting the

allowed set of positions and orientation of the tail in a cat

(Fig. 3a). In collective relations, the structure domain

quantifies the part concept, such as how many instances of

the part are the components of the collective whole. For

instance, our general conceptualization of a forest is that it

is simply composed by many trees. As such, the relation

part(tree, forest) is a collective relation because the

structure domain that modulates it in the structure space of

forest is a collective structure domain, that is, it does specify

only a region (i.e., interval) in a quantification space cor-

responding to how many trees a forest could have and

perhaps how they are packed (Fig. 3b). This scheme allows

the representation of individuals as ‘‘there are thousands/

many/few trees in that forest.’’

Complex and collective structure domains can have a

variety of forms, depending on the implementation.

Regarding complex structure domains, we already descri-

bed an example in the last section where an object-centered

position space could work as an implementation. In such a

space, the displacement of parts of an object is described as

a two-dimensional coordinate of each part within the

whole. However, one can devise more sophisticated

implementations for complex structure. Consider dis-

placement now defined as the geometric volume in the

spatial extension of the whole where a given part can be

found (or seen). For instance, if a person is asked to point

where the engine is usually placed in a car, she will

probably point at the front of the car, drawing an ellipsoid

with her finger, while saying ‘‘around there.’’ This ellipsoid

captures the intuition of the displacement volume we are

talking about and it is naturally a function of the overall

shape, position, and orientation of the part. This sort of

construction can be neatly represented as a property region

in a geometric volume domain, such as superquadrics

(Chella et al. 2001). A point in this region represents the

Apple 
Space

Apple 
Space

Apple Holistic 
Space

×
Apple Structural 

Space

Fruit Skin SpaceFruit Flesh SpaceStem SpaceSeed Space

(a)

(b)

Apple Holistic 
Space

× × × ×× × × ×

(c)

(d) Apple Stem Structure Domain

Fig. 2 Example of structure space for the apple concept: a the

conceptual spaces of each part of apple, their inner form (dimensions

and domains) is omitted; b the conceptual space of apple as a product

of the holistic space and subregions of parts and also structure

information; c a compact representation of the holistic and structure

space of apple; and d an graphical depiction of the regions defining

the displacement for the stem in the structure space of apple
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specific placed volume where the part can be found in the

whole (e.g., ‘‘where the engine is placed in this car’’). For

example, the displacement of the skin of an apple can be

represented as a region embarking the whole apple; a point

in this region encodes a volume that coincides with the

surface of the apple.

Collective structure domains on the other hand represent

how a set of parts of the same type generically related to

the whole. For instance, it might be represented as simple

one-dimensional spaces denoting, for instance, how many

instances of that given part are expected to be found in the

whole. More interestingly, we believe that collective

structure domains might be able to represent the notion of

ensembles of parts (Alvarez 2011), which are related to the

capacity humans have to summarize the groups of similar

objects into a cognitive compact average representation. In

this context, we could see the relationship between ‘‘tree’’

and ‘‘Amazon Forest’’ as conjunction of a conceptual space

describing an average Amazonian tree and a region in a

collective structure property denoting how many trees this

forest has (e.g., say, ‘‘billions’’, or ‘‘many’’).

Perhaps not surprisingly, complex and collective rela-

tions are intrinsically correlated. We can see collective

relations as a generalization of many complex relations to

which no displacement information is necessary. This

might account to what Gerstl and Pribbenow (1995) call

the plasticity of part–whole relations. For instance, it is

possible to classify the relation ship–fleet in two ways. If

one considers a fleet as a uniform set of ships, the relation

is collective. On the other hand, if each ship has a special

role in a fleet, one can consider the relation complex. We

argue that there is a third case where both kinds of relations

are mixed: certain ships could have special roles while

others are referred to generically (e.g., in a fleet composed

of a carrier and many destroyers); then, the relation can be

seen as a hybrid of collective and complex. These pro-

cesses of change can be explained by the processes of

folding and unfolding of complex relations into collective

relations.

External partitions

In general, we talk about parts as the building blocks of

objects, in the sense that an apple is formed by many parts.

However, we can also talk about arbitrary partitions

imposed on the objects. For instance, if we say that ‘‘the

upper part of the house is blue,’’ we are imposing a

somewhat arbitrary partitioning of the house. In some

cases, these external partitions can be seen as part of the

definition of certain concepts, thereby composing their

structure space. For instance, the concept ‘‘planet’’ might

include the notion that the planet’s polar regions are cold;

the notion of ‘‘polar region’’ can be seen as an external

partition imposed on planet; there is no actual inner

structural part that corresponds to the poles of a planet.

Note that the parts in a given partition are disjoint by

definition, but the same entity can be subject of many

simultaneous external partitions.

We can describe external partitions in the conceptual

spaces by means of certain region operations (e.g., inter-

section) on the quality domains of wholes and their parts.

For instance, the concept of ‘‘the equatorial region of a

planet’’ translates to an intersection of a property in the

shape domain of ‘‘planet’’ (a sphere) with the property in
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Cat Structure 
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Cat Tail 
Space

×

Complex Structure 
Domain

R
ear

Forest 
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Forest Holistic 
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Forest Structure 
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×

Collective Structure 
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M
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Fig. 3 Structure spaces according to partonomy types: a fragment of

the structure space of cat showing the complex relation of tail; and

b fragment of the structure space of tree showing the collective

relation of forest. Both ‘‘rear’’ and ‘‘many’’ are property regions on

their respective structure domains
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the shape domain of ‘‘equatorial region’’ (a section of a

sphere). This new concept helps to compose the structure

space of ‘‘planet.’’

External partitions in conceptual spaces might explain a

kind of parthood that recurs in the literature, namely what

Gerstl and Pribbenow (1995) call external parthood. They

argue that certain part relations derive from the internal

structure of the whole, whereas others can be said to derive

from external partitions imposed on the whole. In their

original proposal, Gerstl and Pribbenow (1995) define two

types of external part relations: portions and segments. A

segment is a spatiotemporal part that results from the

imposition of an external scheme on the whole. This

scheme distinguishes different parts of the object, indif-

ferent to its internal structure (‘‘the upper part of the body’’

and ‘‘the beginning of a story’’). On the other hand, a

portion is construed by using a property dimension to

select parts out of the whole; for example, the dimension of

color is used in phrases like ‘‘the red parts of a painting’’ or

‘‘the annoying parts of the evening television show.’’ We

can explain portions and segments in conceptual spaces by

relating them to intersection operations in particular kinds

of domains. In brief, portions can be seen as the results of

restrictions in spatiotemporal quality domains, whereas

segments are the result of restrictions on other quality

domains. For instance, the pole–planet example translates a

typical case of segmentation: a restriction on the spatial

domain of ‘‘planet.’’ On the other hand, a sentence like

‘‘the white patches on the planet’’ translates the case of

portioning. The sentence refers to a specific part of planet

that is formed by the other parts in which the color property

regions intersect with the color property ‘‘white.’’

Marr’s hierarchical model, revisited

The basic utilization of structure spaces can be exempli-

fied by reinterpreting Marr and Nishihara’s (1978) influ-

ential hierarchical model of cylinders. In the literature,

there are many attempts to model the shapes of the

objects in object recognition (Marr and Nishihara 1978;

Pentland 1986; Biederman 1987; Zhu and Yuille 1996;

Chella et al. 2001). Many of these attempts take into

consideration the visual part–whole structure of the

objects, associated with some sort of shape primitive, like

cylinders or more complex parametric volumes. The

model by Marr and Nishihara (1978) employs sets of

cylinders to approximate biological forms, as illustrated in

Fig. 4. The cylinders are combined in a hierarchical

manner, with the torso on the first level, and the head and

limbs (arms) on the second, forearms on the third, and so

on. In the following, we demonstrate how Marr’s model

can be described in our framework.

We can consider each level of the Marr’s hierarchy as a

single concept (‘‘body’’, ‘‘arm’’, ‘‘hand’’, etc.). Each con-

cept in this hierarchy has two types of descriptions. One

represents the whole (e.g., the whole body) and the other

connects the parts of the hierarchy together (e.g., the limbs

and head). The description of the whole is called a model

axis: a generalized cylinder that captures the overall outline

and orientation axis of a particular hierarchy level (e.g., the

cylinder that represents the whole body in Fig. 4). It

abstracts away the details that are usually supplied by the

parts. This approach is closely related to the model of

holistic versus structural descriptions: the model axis rep-

resents a holistic take on the object shape at a given hier-

archy level, while the same level includes more detailed

structural (part) descriptions.

The recreation of Marr’s model using our framework is

quite straightforward. We can model each level in Fig. 4

(body, arm, forearm, etc.) as a concept with properties in

holistic and structural domains. The elementary quality

domain here is shape. In this formulation, we can represent

the shape space by two dimensions: cylinder length and

radius. Different regions in this space denote different

cylinder shapes. This shape domain is used to compose all

concepts in this hierarchy. Each concept is then formed by

a property (a region) in the shape domain, plus a structure

space formed by its parts.

The structure space is formed by quality domains,

imported from subparts of the body, and structure domains.

In this case, the structure domains are of the complex kind

and encode information about the position and orientation

of the parts in the coordinate space of the whole. For

instance, the concept of ‘‘hand’’ in Fig. 4 has a structure

space formed by the shape domains and the properties of

each finger, plus structure domains defining the position

and orientation allowed for each finger. A point in the

conceptual space of ‘‘hand’’ describes a particular whole

Model

Part

Fig. 4 Part hierarchy model proposed by Marr and Nishihara. The

arm is deconstructed as finer parts along the chain of part structures

(adapted from Marr 1982)
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shape cylinder for the hand, plus particular shapes, orien-

tations, and positions of the fingers. In this space, we can

refer to prototypical hand shape and configurations, and

categories of hand shape.

Same whole, different parts

Structural similarity judgments are influenced by context:

two apples can look very similar to a child in a super-

market, but very different to a botanist. Distinct parts have

distinct importance [or ‘‘goodness,’’ according to Tversky

(1989)] depending the context. Similar to Tversky (1977),

context is represented in the conceptual spaces as different

weights given to each quality dimension (or domain) in the

conceptual distance measurement (Gärdenfors 2000). We

can use the same method to account for the influence of

context in structural similarity judgements. Domains of

different parts in structure space receive different weights:

parts that are less relevant receive smaller weights and

parts that are more relevant receive larger weights. In the

apple example, a botanist comparing apples will give more

weight to internal parts when trying to decide whether a

given apple is included in the ‘‘good apple’’ category,

whereas a consumer will give more importance to external

parts (Fig. 5).

If we define context as a vector of weights, it implies

the existence of a context space. A context space is a

higher-order space where points denote different combi-

nations of weights of the quality domains in a conceptual

space. Again, we believe that context space also includes

prototype structures: some context situations are more

typical than others. Prototypes denoting typical part-

importance scenarios will complement the context space

for a structure space. For instance, the same person can

play the role of a botanist and consumer at different

times; the present context ‘‘moves’’ through different

categories in the context space. In an apple dissection

situation, one can pay attention to the internal parts of the

apple; nevertheless, the prototypical apple consumer

context is the one where just the more external parts of

the fruit are relevant for comparisons. Situations that are

close to the prototype situations define the concept

regions in context space; these regions can be interpreted

as kinds of context, like ‘‘apple dissection’’ context or

‘‘apple consuming’’ context.

Another example in which context plays a role is a situ-

ation where the characteristics of the different parts influ-

ence the categorization of the whole. For instance, a boat

with a black hull and white sail may be ‘‘the black boat’’ in

the context of boats with white hulls, and ‘‘the white boat’’ in

the context of boats with black sails. Context influences part

saliency, which in turn affects categorization.

Partonomies

A common way of describing part structures is to use

partonomies, or a tree structure of parts. A partonomy is a

simple representation that highlights the common transitive

nature of part relations, allowing one to visualize and

navigate the different levels of deconstruction. While

useful as tools for reasoning about parts, there is no general

way of representing partonomies as points in a space.5

Thus, it is not possible to represent part hierarchies

explicitly in the conceptual spaces. On the other hand, the

hierarchy is implicit in a sequence of structure spaces

represented as a chain of whole–part pairs. It can be

derived as a symbolic construct from the chain of structure

spaces, but it is not necessary for comparing the similarity

of objects.

Structure spaces import the domains of all parts. Given

that parts can also be wholes, and that they have structure

spaces of their own, the final structure space of a more

complex whole can become a transitive closure of all its

parts and subparts. This is not desirable from the standpoint

of cognitive economy and, at a first glance, can be seen as a

fatal limitation of our framework. The mechanism that

allows us to deal with this issue relates to the transitivity

problem. Any discussion of the representation of partono-

mies usually arrives at the problem of transitivity in part–

whole relations (Simons 2003; Varzi 2006). The classical

formulation of mereology holds that transitivity is one of

the basic properties of the part relation. However, transi-

tivity often breaks down. A good example of this break-

down is the following: the eye is usually regarded as part of

the face and the retina as part of eye; however, the retina is

hardly regarded to be part of face. There are some solutions

to this problem (Varzi 2006); one of the accepted solutions

is to consider ontologically distinct types of part–whole

relations, which are naturally not transitive between

themselves. For example, the relationship between eye and

face is not of the same kind as the relationship between

retina and eye. This general solution, however, does not

help us to solve our representation problem, mainly

because we do not assume any a priori meta-concepts in the

conceptual level.

In order to give a partial solution to this problem, we

deviate from the classical accounts of mereology and take

the part relation not to be transitive. We see few reasons to

consider a cognitive interpretation of part relation as nec-

essarily transitive. First, there are plenty of examples of

5 A main reason is that there is no general way of measuring the

similarity between three graphs. There are some attempts to do so by

converting tree graphs into graph spectra (e.g., Shokoufandeh et al.

2005), but the lack of isomorphism between the two kinds of

representation prevents the use of graph spectra as a framework for

implementing structure similarity.
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intransitive part relations. As others have pointed out (e.g.,

Johansson 2006), part relations might have different

interpretations in different contexts. For instance, the ten-

dency to ascribe transitivity to simple part relations pos-

sibly comes from its association with the notion of spatial

inclusion, which is transitive in nature. Second, following

the general notion of situated part structures by Moltmann

(1996), we see the formation of part relations and structure

spaces as a process that is generally linked to context,

experience, and perception, rather than to pure deductive

reasoning. We suggest that the structure space of a concept

comprises all its experienced parts. One tenet of cognitive

semantics is that conceptual structures are embodied. Thus,

the concepts are dependent on bodily experiences and

emotions (Gärdenfors 2000). In a broad sense, what dic-

tates whether an object is a direct part of another is the

experience (or perception) by the agent of a direct parto-

nomical relationship between the two. Many factors can

influence this experience, like the experience of other

relations, such as causality and spatial inclusion. More

specifically, considering a whole C, then a concept B that is

usually experienced as direct part of C is also a component

of the structure space of C. A concept A that is perceived as

a direct part of B and C is a component of the structure

spaces of B and C. In that sense, the structure space of C is

a very sparse product of the quality domains of its asso-

ciated parts and is in turn exclusively dependent on one’s

experience in the world.

However, even discounting transitivity, concepts can

still suffer from inflation problems stemming from their

legitimate direct parts. Remember that a structure space is a

subspace of the conceptual space of the whole. So, the

inclusion of the quality domains of ‘‘eye’’ in the structure

space of ‘‘face’’ will also bring in the structure space of

‘‘eye,’’ which includes the quality domains of ‘‘retina.’’

This may lend to a situation where inflated concepts

represent themselves and all their possible parts. Dimen-

sional filters act as a countermeasure for this issue. As seen

in the ‘‘Representing parts and wholes in conceptual

spaces’’ section, dimensional filters are able to select a

subspace of the part’s conceptual space to compose the

whole. In this context, dimensional filters can filter out the

aspects of the parts that are not relevant to the whole.6 For

instance, the relationship between face and eye is mediated

by a dimensional filter that blocks the fraction of the

conceptual space of eye referring to retina.

Other ontological considerations

Besides partonomies and part relation kinds, there are

other ontological aspects of part relations, often raised in

the studies of formal theory of parts (Simons 2003;

Guizzardi 2005). For instance, wholes can have manda-

tory or essential parts. For instance, it is usually said that

brain is an essential part of human, while heart is just a

mandatory part, i.e., a particular human has to have a

particular instance brain, but any instance of heart. Parts

can also be optional; in the sense, they might or might not

appear in the whole to which they relate to. This sort of

construction has no parallel in structure spaces in the

sense we do not specify any intensional mechanism in the

representation that allows us to tag parts as essential,

mandatory, etc. The main reason for not having it is that

such mechanism would remove the plasticity of our

representation scheme. For instance, it is not difficult to

find counterexamples for many typical illustration cases
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Fig. 5 Examples of different contexts in the apple structure space, where ellipses with smaller sizes denote spaces with less weight in a given

context: a structure space of apple for a botanist; and b structure space of apple for a consumer

6 Just as the botanist and the customer put different weights on

different apple properties (Fig. 4), a filter can be seen as an

attentional mechanism that picks out the aspects of the structural

complex that are of interest to the user in a particular context.
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of essential parts; there are tragic cases of living people

without a brain, such as newborns, or one can even

conceive the invention of a successful lobotomy proce-

dure, making brain just a mandatory part of the human.

Humans can easily adapt their conceptualizations for

such situations in a non-monotonic way, where the parts

stop being necessary or mandatory. Thus, it is reasonable

to expect the existence of a place in the concept repre-

sentation where these adaptations are possible. We

believe this place is the conceptual level. Structure

spaces can capture at least a portion of that non-mono-

tonicity in part reasoning by defining levels in which a

given part in entrenched in a whole by means of context

changes (see ‘‘Same whole, different parts’’ section).

Parts that bear more weight are more entrenched in a

given context than others. For instance, the brain might

be less important when comparing humans in a crowd.

Furthermore, the concept similarity models have been

linked to the notion of family resemblance (Rosch and

Mervis 1975). Family resemblance is an effect present in

categorization, where the instances of a given concept

share a great number of similar properties, but not a single

property is shared by them all. Conceptual spaces tend to

align more with this perspective. Humans have in common

they all have a particular brain; however, we can still

categorize individuals with no brain as humans because

they have many other properties in common (such as other

parts). This plays against an essentialist view on the con-

cept representation. From a conceptualistic point of view,

the idea of that some parts seem essential or mandatory

might make more sense as symbolic level constructions

reflecting common set of occurrences in the conceptual

level. This might as well reveal itself as a point of con-

nection between the conceptual and symbolic frameworks

in the future.

Object recognition with structure spaces

Holistic and structure spaces possibly fit in alternative

computer implementations of different cognitive tasks

involving conceptual representations. In this section, we

sketch how an artificial agent (e.g., a robot) could employ

holistic and structure spaces for carrying out object

recognition.

Object recognition with conceptual spaces

On an abstract level, one can see object recognition as a

cyclic process of perception–action. A bottom-up process

interprets raw perception stimuli into high-level abstract

structures; and a top-down process converts partial high-

level interpretations into directed attention in order to

clarify the missing information (i.e., visual search). We can

say that a cognitive agent implementing this system

achieves interpretation once its internal state stabilizes in a

particular set of high-level structures abstracting the per-

ceived stimuli.

In this context, conceptual spaces provide a way

describing the concepts in terms of sets of possible

observations. Consider an artificial agent equipped with a

visual perception system and a conceptual system descri-

bed in terms of conceptual spaces. Simply put, the general

strategy for visual interpretation consists in converting raw

visual stimuli into vectors in these conceptual spaces and

then checking whether the vectors are similar (close)

enough to the concept prototypes; the closest prototype

indicates the concept describing the perceived object. For

example, consider this agent is equipped with the con-

ceptual space of the (holistic) apple as presented in Fig. 1,

as well as a similar space for pear. When this agent is

presented with visual image of an apple, the visual stimuli

are converted into a vector in a conceptual space formed by

quality domains related to the visual system, such as the

shape space, the color space, the texture space, and so on.

This vector is a representation of the perceived object. In

order to recognize the object as an instance of ‘‘apple,’’ it is

sufficient to check whether the perceived vector is located

inside the properties regions that define ‘‘apple’’ in each

domain. In this case, high-level classification is reduced to

a relatively simple verification of geometric inclusion of a

point in a region. We can further simplify this process by

reducing geometric inclusion calculation to a distance

measurement from the concept prototype. However, given

the noise inherent to visual perception, it is more likely that

more than one concept will be activated by the input

vector, e.g., the agent might not be able to tell whether the

object was an apple or a pear. If more information is

necessary in order to achieve classification, then it is pos-

sible to use the candidate concepts to redirect perceptual

attention in order to gather better information about the

perceived object, i.e., in a top-down process. For instance,

the mismatch between the texture of apple and pear (i.e.,

empty intersection in the texture domain) might be used to

guide attention to get closer view of the surface of the

object being observed. The new perceptual information

complements the previous observation by refining its vec-

tor in the conceptual space, restarting the bottom-up pro-

cessing and closing the agent’s recognition loop.

Using structure information

Structure spaces can improve the previous scheme by

allowing the definition of independent holistic and struc-

tural processing strategies, which might bring improve-

ments in how different stimuli are classified in
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certain situations. A possible implementation is to consider

the previous algorithm as the holistic strategy for object

recognition and link it to a parallel structural strategy.

Consider an agent is now equipped with the conceptual

space of apple (and pear) as in the Fig. 2, i.e., with holistic

and structural descriptions. As we have seen in ‘‘Parts,

wholes, and cognition’’ section, holistic and structural

processes occur in parallel in object recognition of humans,

with one or other having some speed advantage depending

on the context (Love et al. 1999). For the sake of the fol-

lowing example, consider the holistic processes have a

slight speed advantage. Likewise, when this agent is pre-

sented with a whole apple, the holistic strategy is triggered,

using the holistic space of apple (and other concepts) as

basis for classification. As soon as the input stimulus is

recognized as being holistically an apple or a pear, then the

structural strategy can start in parallel trying to disambig-

uate between these candidate concepts. This strategy takes

structural information encoded in the parts of apple and

pear in order to refocus perceptual attention from the whole

toward specific parts of the object being perceived. Let us

assume pears have slightly longer stems than apples. The

agent can use stem to shift attention to the appropriate locus

of the stem on the perceived object. When the perception is

shifted to a part, visual processing is primed to process a

part, instead of a whole. The perception of the part result in

the augmentation holistic vector perceived earlier, receiv-

ing values in other domains corresponding to the perceived

part, such as part shape, texture and color, and configura-

tion. In our example, the vector now encodes information

about the whole apple being observed, as well its stem.

This vector is then matched against structural fragment of

the candidate concepts. If they are close enough to these

concepts in the structure space (i.e., to their structural

prototypes), they are kept as candidates. In this case, the

concept of ‘‘pear’’ could be discarded as the stem part will

now fail to fall in the correct property regions. The per-

ception/action loop will keep running until no more dis-

tinguishing properties or parts can be found and concepts

disambiguated; then classification is said to be achieved.

It is important to mention again that the stimuli seg-

mentation is mainly governed by the mechanisms outside

structure spaces. From a cognitive point of view, the pro-

cesses that define what a part is are possibly governed by

Gestalt grouping principles (Love et al. 1999), part boundary

rules (Hoffman and Singh 1997), part saliency, and so on and

so forth. In the computational approach described here, these

principles would be implemented in lower processing levels,

such as in blob extraction algorithms. Nevertheless, they still

might use high-level information to tune perception (such as

expected shape information).

Context effects can also play a role in this process

through external systems. If we can keep a short-term

memory with recently perceived objects, then these can

prime the contextual space, influencing the weights of the

vector components being compared during the high-level

processing. Consider an agent is trying to distinguish

between many similar sailing ships with triangular sails. If

a novel ship now appears with rectangular sails, the agent

will tend to shift more weight to the ‘‘sail’’ part, in order to

better discriminate between the objects being observed.

The mention to short-term memory highlights the fact

that more complex cognitive architectures can be combined

with holistic and structure spaces in order to specify more

complex behavior. For instance, computer-oriented cogni-

tive architectures such as the one proposed by Chella et al.

(2001) could benefit from our framework, allowing them to

deal with parts in the conceptual level. Furthermore,

implementations of the structural analogy models such as

BRIDGES (Tomlinson and Love 2006) and DORA (Dou-

mas and Hummel 2010) could benefit of having structure

spaces as an underlying conceptual structure. For instance,

while BRIDGES provides a good processing strategy for

measuring structural similarity between exemplars and new

stimuli, it ignores holistic similarities, which is accounted

by the holistic space in our framework. DORA, on the

other hand, depends heavily on low-level symbolic feature

descriptors. These could be replaced by regions in quality

domains, allowing fine similarity comparisons between the

object characteristics (i.e., geons).

Conclusion

In this article, we have presented a cognitive approach to

represent part–whole relations, founded on the theory of

conceptual spaces. Parts are associated with the whole in a

structure space, where structural similarity can be mea-

sured between wholes and types of wholes. The structure

space can capture many aspects of part relations. We have

discussed different types of part deconstruction for the

same whole, prototypical part deconstruction, variations in

part structure caused by context, and part hierarchies. We

also showed how different constructions of structure spaces

could explain some types of part–whole relations.

The framework presented here contributes to the dis-

cussion of whether cognitive semantics is necessary for

knowledge representation in computation. As it has been

argued by Gärdenfors (2004), technologies based on sym-

bolic theories, such as the Semantic Web, should also

include representations that take into account cognitive

phenomena. Indeed, the difficulties in representing part–

whole relations using ontology representation languages

(cf. Rector et al. 2005) serve as good arguments for

approaching the problem using a cognitive semantics

framework like the one presented here.
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While the presented study focuses on the concept rep-

resentation from a point of view of computer implemen-

tations, it still might be useful as a source of insights into

the inner workings of the human cognition. Mainly, it calls

the attention of the combination of two important cognitive

phenomena: part–whole processing and similarity effects.

While there is already evidence indicating the existence of

interplay between these two phenomena in cognition, it

would be interesting to test more thoroughly whether it

exists also in other contexts, such as in events and in

abstract entities, and how they relate to other aspects of

cognition.

We showed that parts, wholes, and their relations can be

represented in conceptual spaces, albeit the spaces are

high-dimensional and more complicated than for other

perceptual properties. However, a lot of empirical and

mathematical work remains to turn these sketches into

practical working models. The next clear step is to inves-

tigate ways in which holistic/structure spaces can be for-

malized as a mathematical model better suited for

implementation in computer system. Also, while the high

dimensionality may present some challenges, approaches

such as the one from Edelman (1998) might serve as a good

starting point for implementation.
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