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Abstract Human beings seem to be able to recognize

emotions from speech very well and information commu-

nication technology aims to implement machines and

agents that can do the same. However, to be able to auto-

matically recognize affective states from speech signals, it

is necessary to solve two main technological problems. The

former concerns the identification of effective and efficient

processing algorithms capable of capturing emotional

acoustic features from speech sentences. The latter focuses

on finding computational models able to classify, with an

approximation as good as human listeners, a given set of

emotional states. This paper will survey these topics and

provide some insights for a holistic approach to the auto-

matic analysis, recognition and synthesis of affective

states.

Keywords Emotional vocal expressions � Processing

algorithms � Computational models

Introduction

In a daily body-to-body interaction, emotional expressions

play a vital role in creating social linkages, producing cul-

tural exchanges, influencing relationships and communicat-

ing experiences. Emotional information is transmitted and

perceived simultaneously through verbal (the semantic

content of a message) and non-verbal (facial expressions,

vocal expressions, gestures, paralinguistic information)

communicative tools and contacts and interactions are

highly affected by the way this information is communi-

cated/perceived to/from the addresser/addressee. Research

devoted to the understanding of the relationship between

verbal and non-verbal communication modes, and to

investigate the perceptual and cognitive processes involved

in the recognition/perception of emotional states (as well as

their mathematical modeling and algorithmic implementa-

tion) is particularly relevant in the field of Human–Human

and Human–Computer Interaction both for building up and

strengthening human relationships and developing friendly

and emotionally colored assistive technologies.

In the present paper, considerations are set on emotional

vocal expressions and their automatic synthesis and rec-

ognition. Demand for and delivery to date of sophisticated

and functional computational instruments able to recog-

nize, process and store these relevant emotional cues, as

well as to interact with people, displaying reactions that

show abilities of appropriately sensing and understanding

emotional vocal changes (under conditions of limited time

or other resource) and producing suitable, autonomous and

adaptable responses to the various emotional displays has

produced great expectations in the information communi-

cation technology (ICT) domain. It is unmistakable that the

same utterance may be employed for teasing, challenging,

stressing, supporting, or as expressing an authentic doubt.
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The appropriate continuance of the interaction depends on

detecting the addresser’s mood. A machine interface

unable to comprehend the affective differences will have

difficulty in managing the interaction. Progress toward the

understanding and modeling of such interactional facets is

crucial for implementing a friendly human–computer

interaction that exploits synthetic agents and sophisticated

human-like interfaces and will simplify user access to

future and profitable remote social services. The applica-

tion of such techniques could be very useful, for example,

in monitoring psycho-physical conditions of subjects

engaged in high responsibility tasks, researching new

means for socio-behavioral investigations, clinical studies,

media retrieval, call centers and remote applications where

information about the caller’s emotional state might pro-

vide data about her/his contentment and/or her/his health

state (Jones and Deeming 2008; Petrushin 1999).1

Nowadays, we do have emotionally colored systems, but

far from human ability. The achievement of a human level

machine for emotional behavior (and in general of human

level automaton intelligence) raises the need for more

accurate solutions to the following challenges:

(a) Identify a set of processing algorithms able to capture

emotional invariant features from multimodal social

signals and in particular from speech;

(b) Implement simple and fast computational models

trained to classify, as well as humans, emotional

acoustic features for the maintenance of sentences

hierarchically structured, time dependent and recip-

rocally connected through complex relations, such as

a set of multifaceted emotional feelings.

Another problem to be dealt with when researching into

affective vocal expressions is the lack of adequate

recordings of genuine emotions. Indeed, most of the studies

take advantage of the work of actors (not always profes-

sional) who are required to portray collections of phrasal

groups with specifically required emotional intonations.

Since it is not obvious whether actors reproduce a genuine

emotion or generate a stylized idealization of it, it is

questionable whether their emotional vocal expressions

authentically represent the characteristics of speech used

by ordinary people when they spontaneously experience

similar affective states.

The commonly applied approach in creating automatic

emotional speech analysis systems is to start with a data-

base of emotional speech that has been annotated with

emotional tags by a panel of listeners (generally a limited

number of expert judges or a group of naı̈ve ones). The

next step is to perform an acoustic analysis of these data

and correlate statistics of certain acoustic features, mainly

related to fundamental frequency, with the emotion tags. In

the last step, the obtained parameters are verified and

adapted by assessing the system performance through

human interaction. Most approaches focus on six basic

emotions—happiness, sadness, fear, anger, surprise, and

disgust—supposed to be universally shared since reliably

associated with basic survival problems such as nurturing

offspring, earning food, competing for resource, avoiding

and/or facing dangers (Ekman 1992; Izard 1992; Plutchik

1993). Few attempts have been made to cover a wider

range of emotions.

It is worth to mention that the discrete categorization of

emotions as reported above is just one of the many and

varied theories and models developed over the years that

attempt to explain emotions either from a holistic point of

view or as atomic components of individuals’ emotional

experience (Oatley and Jenkins 2006). The discrete theory

is widely used since it best suits the needs of an informa-

tion processing approach that can produce immediate

market applications. More sophisticated approaches, as in

the affective computing (AC) field (Picard 2000), are

dedicated to specific facets of emotion synthesis motivated

by the attempt to develop emotionally capable artificial

intelligences able to emulate human abilities such as flex-

ibility, decision making, creativity and reasoning, exploit-

ing limited memory and bounded information. To date, an

emotionally complete computer architecture is yet to be

developed even though the AC literature has provided

several more or less sophisticated attempts (Blumberg et al.

1996; de Byl and Toleman 2005; El-Nasr 1998; Kaehms

1999; Penrose 1989; Sloman 2001; Velasquez 1999).

The encoding issue

Automatic recognition of emotion from speech (as well as

automatic speech recognition) has been revealed to be a

computationally hard problem due to the fact that emo-

tional voices appear to be affected at various degrees by

many sources of variability that cause distortions and

modifications in the original signal, thus modifying the

acoustic features useful for its recognition. Such sources of

variability are coarsely clustered into 4 groups: phonetic

variability (i.e., the acoustic realizations of phonemes are

highly dependent on the context in which they appear),

within-speaker variability (as a result of changes in the

speaker’s physical and emotional state, speaking rate, voice

quality), across-speaker variability (due to differences in

the socio-linguistic background, gender, dialect, size and

shape of the vocal tract), and acoustic variability (as a

result of changes in the environment as well as the position

and characteristics of the transducer).

1 Sony AIBO Europe, Sony entertainment. www.sonydigital-link.com/

AIBO/.
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In order to overcome the limitations in the system per-

formances elicited by the above sources it becomes nec-

essary to know, at any stage of the recognition process,

which would be the most appropriate encoding and com-

putational approach.

There is no doubt that emotions produce changes in

respiration, phonation and articulation, which in turn affect

vocalizations and the acoustic parameters of the corre-

sponding signal (Bachorowski 1999; Banse and Scherer

1996; Friend 2000; Scherer et al. 2001). Moreover, the

acoustic realization of specific emotions is to a large extent

speaker dependent.

Acoustic features of emotional speech are derived from

perceptual cues of loudness, pitch and timing, which in turn

are expressed in changes of acoustic variables such as

amplitude (which quantifies sound pressures), sound

intensity (which is representative of sound energy at dif-

ferent frequencies), signal fundamental frequency F0 (in

Hz), some F0-derived measures, speaking rate, utterance

and syllable lengths and distribution of empty and filled

pauses in the utterance.

The values of the above acoustic features are taken over

long-lasting speech utterances (supra-segmental), since it is

expected that emotional feelings are more durable than

single phonetic segments. The most common acoustic

attributes supposed to encode information useful to detect

emotions in vocal expressions are: F0 contour, F0 maxi-

mum and minimum excursion, F0 jitter (i.e., random

fluctuations on F0 values), spectral tilting, vocal enve-

lope—defined as the time interval for a signal to reach the

maximum amplitude and decay to zero amplitude—long

term average spectrum (LTAS), energy values in different

frequency bands, inverse filtering measurements (Banse

and Scherer 1996; Breitenstein et al. 2001; Hozjan and

Kacic 2006; Hozjan and Kacic 2003; Klasmeyer and

Sendlmeier 1995; Navas et al. 2006; Nushikyan 1995). In

addition, some authors also propose Mel Frequency

Cepstral Coefficients (MFCC) (Hu et al. 2007), perceptual

critical band features (PCBF) (Esposito and Aversano

2005), Mel Bank Filtering (MELB) (Busso et al. 2007;

Esposito and Aversano 2005), erceptual linear predictive

coefficients (PLP) (Hermansky 1990) as well as other

comparable encodings (see El Ayadi et al. 2011; Frago-

panagos and Taylor 2005 for a review) together with their

first (D) and second derivatives (DD).

These measurements are generally considered by the

current literature as the acoustic correlates of the small set

of discrete emotional states referred to as basic emotions

(Russell 1980; Scherer 1989, 2003). Yet, so far, there is

little systematic knowledge about the details of the

decoding process, that is, the precise acoustic cues the

listeners use for inferring the speaker’s emotional state. It

is evident from the above that the acoustic attributes which

seem to play a role in signaling emotions, are the same

acoustic attributes which are modified by the phonetic

context, the inter- and intra-speaker variability, as well as

the environmental noise. Therefore, the quest in the search

for reliable algorithms able to encode emotional speech

features is strictly related to the quest in searching invariant

features for speech recognition.

In the following section, we will report some results on

our experience using two different databases and different

encoding algorithms.

The first experiment was based on a database of 504

utterances of infant-directed speech (BabyEars). The

recordings were made at the Interval Research Corporation

(IRC), California, US, by Slaney and McRoberts (Slaney

and McRoberts 2003) and consisted of sentences spoken by

12 parents (six males and six females) talking to their

infants (from 10 to 18 months old). The sentences were

divided into three emotional categories, approval (212

sentences), attention (149 sentences) and prohibition (148

sentences).

It can be objected that infant-directed speech cannot be

properly included in the set of emotional vocal expressions

since it has generally a social and educative intent. How-

ever, parents are really pleased, or worried, or concerned

when producing their sentences. Therefore, it seems

appropriate to relate their approving, prohibitive and

attentional affective acoustic productions to the emotional

categories of happiness (for the infant is doing something

good or new showing learning and progress), fear (for the

infant is putting herself/himself in a dangerous situation)

and distress (for the infant is attention demanding)

respectively. In addition, these types of affective vocal-

izations are of great interest both from a psychological and

an information communication technology (ICT) point of

view, since their prosodic contours seem to be universally

recognized (Bryant and Barrett 2007) and can be used to

facilitate a robot teaching process in realistic affective

computing applications (Breazeal and Aryananda 2002).

The speech signal was processed using two different

algorithms: the perceptual linear predictive (PLP) coding

(Hermansky and Morgan 1994), and the well known linear

predictive coding (LPC) (Makhoul 1975). The computa-

tional model employed for the sentence classification was a

simple recurrent neural (SRNN) network (Elman 1991). The

SRNN architecture consisted of 50 hidden nodes (and

respectively 50 context units) and 3 output nodes. The

training set included 242 examples and the validation and

testing set, comprised each 132 examples. The classification

results with the SRNN gave a high percentage of correct

classification on the training set (100 % of correct classifi-

cation), but the performance was poor on the validation and

testing set. In particular, the total percentage of correct

classification was 59 and 62 % using LPC and PLP features
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respectively (details are reported in Tables 1 and 2), with

PLP features providing a slightly better performance.

A second attempt was made using the data collected at

the School of Psychology Queen’s University Belfast,

headed by Cowie and Douglas-Cowie (see www.image.

ece.ntua.gr/physta for more details), in the context of the

European project Principled Hybrid Systems: Theory and

Applications (PHYSTA). The database consisted of video

clip extracts from television programs where subjects were

invited to speak about their own life and interact with an

interlocutor in a way that was considered to be essentially

genuine. Associated with each video clip there was also an

audio file containing only the speech of the main speaker

(the interlocutor’s voice was removed) and a file describing

the emotional state that three observers (expert judges) were

attributing to the subject using an automatic system called

Feeltrace (Douglas-Cowie et al. 2000). The data were pro-

duced by 100 subjects, 77 females and 23 males, each

showing at least two emotional states, one always labeled as

neutral, and one or more marked emotions among the 16

under examination. From these data, after a qualitative and

quantitative evaluation, 122 audio files were selected, con-

taining several utterances of different lengths, associated

with 4 emotional states: neutral (N), angry (A), happy (H),

and sad (S)—details in (Esposito 2002).

These waves were encoded as PLP, RASTA-PLP (Rel-

Ative SpecTrAl), and PCBF (perceptual critical band fea-

ture) coefficients (Aversano et al. 2001; Hermansky and

Morgan 1994; Hermansky 1990) and classified using a time

delay recurrent neural network (TDRNN) with 10 input

units, 50 hidden units and 4 output units (Ström 1997). The

net performance on the test sets is reported in Table 3 for

each encoding procedure.

The results in Table 3 revealed that the PCBF

encoding schema better captured the emotional content

of the data. However, the net performance was far from

being acceptable and this was mostly due to the low

signal-to-noise ratio of the recorded waveforms

(recordings were made during talk shows). However,

also the naturalness of the emotional sentences may have

played a role since the waveforms being produced by

ordinary people when they spontaneously experience

emotions, may contain speech characteristics not

accounted in the encoding process.

Given the difficulty to decipher which encoding schema

is appropriate for a given emotional database, the most

recent approaches compute a high number of acoustic

attributes using different encodings and then apply a feature

selection algorithm in order to reduce the dimensions of the

final input vectors as well as to select the most appropriate

features for a given classification task. For example, in

(Atassi and Esposito 2008) it was shown that the best mean

classification rate of 63 % (obtained for the anger, fear,

happiness, boredom, sadness, disgust and neutral emotions)

on the Berlin Database of Emotional Speech (BDES)

(Burkhardt et al. 2005) was accomplished using a Gaussian

mixture model (GMM) as classifier and feature vectors

obtained combining [through the sequential floating forward

selection (SFFS) algorithm (Pudil et al. 1994)] PLP, DPLP,

PCBF, DDMELB (Mel Bank) coefficients.

Interestingly, using a feature vector of only PLP, PCBF,

MELB, and MFCC coefficients or combining them with

their first and second derivatives, the performance was

10 % lower, if not worse, than 63 %, suggesting that rel-

evant emotional acoustic attributes are only partially

encoded by each processing schema.

Table 1 SRNN percentage of correct classification on the testing set

using the LPC encoding schema

% Approval Attention Prohibition

Approval 62 20 18

Attention 18 60 22

Prohibition 19 34 47

Table 2 SRNN percentage of correct classification on the testing set

using the PLP encoding schema

% Approval Attention Prohibition

Approval 59 21 20

Attention 22 63 15

Prohibition 14 17 69

Table 3 TDRNN percentage of correct classification on the test set, using PLP, RASTA, and PCBF encoding schemes

PLP coding ? energy ? F0 RASTA coding ? energy PCBF coding

N A H S N A H S N A H S

N 54.8 14.4 11.2 19.6 15.1 21.1 40.7 23.1 39.6 18.9 23 18.5

A 31.4 44.2 10.8 13.6 8.8 32.2 32.9 26.1 18.5 51.7 17.3 12.4

H 51.2 6.7 25.6 16.6 11.8 19.5 48.8 19.9 23.3 12.4 50.1 14.2

S 31.7 19.6 9.6 39.2 12.8 25.8 34.5 26.9 13.6 16 19 51.4

Bold values indicate the percentage of correct identification of each emotion category, neutral (N), angry (A), happy (H), and sad (S), while the

other values in each row indicate the percentage of samples confused with the other emotion categories
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The Berlin database of emotional speech (BDES)

(Burkhardt et al. 2005) like most of the existing emotional

audio databases, consists of audio stimuli produced by

professional actors and recorded under studio conditions.

Such stimuli, being acted, are unlikely to possess either

naturalistic and/or genuine emotional characteristics. To

this aim the above combined encoding schema was also

tested on the Italian COST 2102 database of emotional

sentences (http://cost2102.cs.stir.ac.uk) that has a certain

degree of spontaneity since the actors/actresses producing

the sentences were acting according to a movie script and

their acted emotional states were judged as appropriate to

the required emotional context by the movie director

(supposed to be an expert). In addition, as audio records

extracted from movies, the emotional sentences are either

noisy or slightly degraded by interruptions, defining a more

realistic environmental context (Atassi et al. 2010; Esposito

and Riviello 2010; Esposito et al. 2009a). The classification

accuracy for this setup was extremely poor with a mean

recognition rate of 40 % accuracy on the six basic emo-

tions of happiness, disgust, fear, sadness, surprise, and

anger.

In general, there is no agreement on which encoding

schema better encodes emotional features and the same

encoding schemes may give different performance on dif-

ferent databases (see El Ayadi et al. 2011; Fragopanagos

and Taylor 2005 for a survey). It will be shown in the

following, that this problem also affects the automatic

recognition of emotions and produces difficulties in iden-

tifying a powerful computational model for this task.

The computational issue

The possibility of extracting features from speech which

can be used for the detection of the speaker’s emotional

states finds large interest in the automatic speech recogni-

tion and speech synthesis framework and to a large extent

in the field of human–machine interaction. Since the

exploited computational models are based on informational

contents extracted from processed data, special care must

be applied both to the collected data and the encoded

feature vectors utilized for training such computational

devices. This is not to say that the computational model

does not play a role on the final system achievement. In the

following it will be shown that different models produce

different performance on the same processed data. Never-

theless, it is fair to assume that an appropriate encoding

combined with an appropriate computational model would

provide results that encompass solutions where only one of

these two facets has been accounted for. For example, it

has been shown in Tables 1 and 2 that the performance of

an SRNN on the BabyEars emotional database depends on

the encoding schema (with the PLP more appropriate than

the LPC schema). Using as computational model a time

delay recurrent neural network (TDRNN) and a PLP cod-

ing (Apolloni et al. 2000; Esposito 2000; Ström 1997) the

mean correct classification rate on this same emotional

database, was 95 % on the training set, 75 and 77 % on the

testing and validation sets respectively (see Tables 4 and 5

where the TDRNN confusion matrices obtained on the test

set with both the LPC and PLP processing are reported).

It is worth to note that both the simple recurrent neural

(SRNN) network (Elman 1991) and the time delay recur-

rent neural (TDRNN) network (Ström 1997) are compu-

tational models able to capture temporal and spatial

information in the data, which are important information in

speech, mostly when emotional features should be evalu-

ated. However, the SRNN with static inputs was not able to

follow the temporal evolution of an emotional sentence.

Therefore, even though both the models learned very well

from the training examples, the SRNN did not generalize,

and its performance on the validation and testing sets were

poorer than those obtained on the training set. The TDRNN

model, instead, adopted a more general internal represen-

tation of the data resulting in a performance on the testing

and validation sets as good as that reached by non-native

human listeners asked to give an emotional label to the

same audio waves (Apolloni et al. 2000). Nevertheless, the

same model did not generalize at all on the PHYSTA

database, independently from the coding schema, as it is

shown in Table 3.

These contradictory results are not a flaw of such par-

ticular computational models. For example, in Atassi and

Esposito (Atassi and Esposito 2008) a much more complex

procedure (known in literature as multiple classifier sys-

tems) was settled up in order to overcome the processing

and computational drawbacks discussed above for the

Table 4 TDRNN percentage of correct classification on the test set

using the LPC encoding schema

% Approval Attention Prohibition

Approval 64 18 18

Attention 25 55 20

Prohibition 12 22 66

Table 5 TDRNN percentage of correct classification on the test set

using the PLP encoding schema

% Approval Attention Prohibition

Approval 76 17 7

Attention 13 74 13

Prohibition 13 15 72
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automatic recognition of emotions. The idea was to split

the recognition task into two steps. The first step used as

encoding schema a combination of PLP, DPLP, PCBF and

DDMELB features that were given as input vector to a

GMM classifier for classifying six basic emotional states

and identifying among them the couple with the highest

likelihood. The GMM parameters were initialized through

the K-means procedure and estimated using the expectation

maximization (EM) algorithm (Duda et al. 2003). The

second steps re-encoded, through a set of prosodic and

voice quality measures, the two emotional states that

obtained the highest likelihood scores in the first step, and

again used a GMM classifier for selecting the winner. The

obtained average classification rate (80.7 %) was an

improvement to that (74.5 %) reported by Lugger andYang

(2007) on the same emotional database (BDES) (Burkhardt

et al. 2005). However, this same approach was unsuc-

cessful on the COST 2102 Italian database (Atassi et al.

2010) for which it was necessary to use a hybrid classifi-

cation model in order to improve the mean classification

rate from 40 % to 61 %. Notice that all the data discussed

above refer to a speaker-independent approach to the rec-

ognition of emotional vocal expressions. Speaker-depen-

dent recognition methods always give, under the same

conditions, better classification results.

In addition to artificial neural networks (Apolloni et al.

2004; Apolloni et al. 2000), multiple classifier systems

(Atassi et al. 2010; Atassi and Esposito 2008; Lugger and

Yang 2007) and Gaussian mixture model (GMM) (Slaney

and McRoberts 2003), several other computational models

have been proposed for automatic recognition of emotional

vocal expressions such as k-NN classifiers (Schuller et al.

2004), fuzzy classifiers (Razak et al. 2005), decision trees

(Pierre-Yves 2003), linear discriminant analysis (Frago-

panagos and Taylor 2005), support vector machine

(Schuller et al. 2004), hidden Markov model (Nwe et al.

2003). A detailed survey on both the processing and

computational issues can be found in (El Ayadi et al. 2011;

Fragopanagos and Taylor 2005).

It is worth to note that independently from their compu-

tational complexity all the proposed models showed the same

drawbacks, that is, their performance appeared to be strongly

dependent on the database and the data feature representation,

suggesting that for the achievement of a human level machine

emotional behavior (and in general of human level automaton

intelligence) there is a need for a strong shift into the com-

putational approaches applied up to now.

Discussion

In the past decade, there has been a big effort in imple-

menting automatic systems that can be used in most

environments and are able to decrease human work and

therefore, human errors. Most of these systems are devoted

to applications, such as emotion recognition and synthesis,

where the computational approach cannot be modeled

through a deterministic Turing machine since, the com-

putational complexity required to perform one or more of

the necessary algorithmic steps is prohibitive. These are

NP-complete and NP-hard problems in computer science,

where NP indicates that the automatic procedure has a

Non-Polynomial solution either in terms of computational

time or in terms of memory occupancy, or both. To allow

the computational tractability of these problems, some

powerful and new research fields such as artificial intelli-

gence and cognitive systems have been developed with the

aim to propose computational and mathematical models,

such as neural networks and expert systems, able to infer

and gain the required knowledge from a set of contextual

examples or rules. However, both the approaches showed

drawbacks and limitations: The neural paradigm was

unable to justify and explain the solutions obtained by the

proposed models, whereas the artificial intelligence para-

digm was unable to define the exact rules for describing

algorithmically the required knowledge that the proposed

expert systems must exhibit.

To overcome these difficulties, it was suggested to

combine the two paradigms and infer an understandable

solution to these problems directly from the data identify-

ing features from them that uniquely describe some of their

properties. However, due to several sources of variability

affecting the data, the search for such invariant features

was impracticable. Thus, the computational standstill

moved from the identification of an appropriate computa-

tional model to that of an appropriate data representation.

In addition, the general idea driving this search was that

there are rules (or features) governing speech variability

and that such rules can be learned and applied in practical

situations. This point of view is not generally accepted by

all experts, since it is related to the classical problem of

reconciling the physical and linguistic description of

speech, that is, the invariance issue (see Lindblom 1990).

The importance of the real data from which computa-

tional models must extract knowledge is highly stressed in

the field of automatic recognition and synthesis of affective

states. It is clear that special care must be put in collecting

the data for training such intelligent devices, since the

classification accuracy of both human subjects and speech

emotion recognizers strongly depend on the data. However,

in order to move forward from the current impasse, it is

important that the machines to be developed should be

equipped with a human level automaton intelligence,

where dynamical and contextual issues are also considered.

This will require some considerations on the problem at the

hand.
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Emotions, as well as any facet of human interaction, are

not entities arriving vacuum-packed and amenable to study

in pristine isolation. They are communicated through a

gestalt of actions which involve much more than the speech

production system. Facial expressions, head, body and arm

movements (grouped under the name of non-verbal signals)

all potentially provide emotional information, transmitting

(through different channels) the speaker’s psychological

state, attitude, and feeling. There is a link of converging

and interweaving cognitive processes that cannot be totally

untangled. The definition and comprehension of this link

can be understood only by identifying some macro-entities

involving mental processes more complex than those

devoted to the simple peripheral pre-processing of the

received signals. To understand how humans exploit

information which, even arriving from several channels, all

potentially contributes to the semantic and pragmatic

meaning of the interaction, it is necessary to gather mul-

timodal dynamic data (comprising verbal and non-verbal)

and analyze them across a spectrum of disciplines. This

information can be fundamental for depicting the structure

of such macro-entities and may enable the development of

new mathematical models that favor the implementation of

intelligent emotional interfaces.

The concept of macro-entity promotes a comprehensive

view of the verbal/non-verbal packaging that is critical for

disambiguating among them. As an example, let us

reconsider the idea that the same utterance may be

employed for teasing, challenging, stressing, supporting, or

as expressing an authentic doubt. In this case, a challenge

will be likely accompanied by emblematic hand and

shoulder motions and by head and eye movements

dynamically distinct and with a different temporal align-

ment with the speech produced for teasing or expressing a

genuine question. The recognition of an emotional state

can be then captured through the appropriate phasing

(temporal order) of these verbal and non-verbal signals.

This phasing is critical for identifying the macro-entity that

assembles the real meaning of the conveyed feeling and

will solve possible ambiguities.

Other crucial aspects that have not been investigated,

during emotional speech, are some sets of non-lexical

expressions carrying specific emotional and communicative

values such as turn-taking and feedback mechanisms regu-

lating the interaction, or empty and filled pauses and other

hesitation phenomena, vocalizations and nasalizations sig-

naling positive or negative reactions, and the so called

‘‘speech repairs’’ which convey information on the speaker’s

cognitive state and the planning and re-planning strategies

she/he is typically using in a discourse (Butterworth and

Beattie 1978; Chafe 1987; Esposito 2008; Esposito and

Marinaro 2007). These phenomena have never been

accounted for in synthesizing or recognizing emotions.

In addition, recent results in social psychology have

shown that social information processing involves

embodiment, intended here as the mutual influence of the

physical environment and the human activities that unfold

within it. The underlying idea is that embodiment emerges

from the interaction between our sensory-motor systems

and the inhabited environment (that includes people as well

as objects) and dynamically affects/enhances our reactions/

actions, or our social perception. Several experimental data

seem to support this idea. For example, Schubert (2004)

showed that the act of making a fist influenced both men’s

and women’s automatic processing of words related to the

concept of strength. Similar effects in different contexts

have been described by several authors (see Bargh et al.

1996; Stepper and Strack 1993) suggesting that the body

and the context rule the individual’s social conduct as a

practical ability to render the world sensible and inter-

pretable in the course of everyday activities. Context

interaction, therefore—the organizational, cultural, and

physical context—plays a critical role in shaping social

conduct providing a means to interpret and understand

individuals’ choices, perception, actions and emotions.

Previous cognitive theories had not accounted for such

findings. The popular metaphor about the mind is that

cognitive processes (such as inference, categorization and

memory) are independent from their physical instantia-

tions. As a consequence, mental operations are based on

amodal representations performed by a central processing

unit that exploits the sensory (input) and motor (output)

subsystems for collecting and identifying representations of

the external world and execute commands respectively

(Block 1995; Dennett 1969; Fodor 1983; Newell and

Simon 1972; Pylyshyn 1984). Only recently, new cognitive

models have been proposed, which account for embodied

knowledge acquisition and embodied knowledge use

(Barsalou et al. 2003; Smit and Semin 2004). In order to

bring further support to these theories, it is necessary to set-

up a series of perceptual experiments that show how per-

ception and action are affected by the communicative

context (internal and external) and how a successful

interaction is a function of the user’s correct interpretation

of the contextual communicative instance.

As a further step into the investigation of multimodal

aspects of emotions, multisensory integration of auditory

and visual stimuli must be investigated. It has been proved

that the human brain has the ability to merge information

from different sensory systems thus offering a more

accurate and faster ability to operate in response to envi-

ronmental stimuli (Frens et al. 1995; Hughes et al. 1994).

This ability to integrate different signals in a unique per-

cept is especially appreciated in noisy environments with

corrupted and degraded signals (Benoit et al. 1994; Perrott

et al. 1991). Research in neuroscience had proved that
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audiovisual, visual-tactile and audio-somatic sensory

inputs are constantly synchronized and combined into a

reasoned percept (Callan et al. 2003; Macaluso et al. 2004;

Schulz et al. 2003; Stein et al. 2001). In speech, the effects

of vision influence on the auditory perception is proved by

the well known McGurk effect at the phoneme level

(McGurk and MacDonald 1976) as well as by recent results

on emotional labeling of combined audio and video stimuli

(Esposito and Riviello 2011; Esposito et al. 2009b;

Esposito 2007, 2009).

Multisensory integration of audio and visual emotional

stimuli must be investigated to take into account the

amount of information conveyed by the auditory and visual

channels and how this information integrates for the

identification of emotional states expressed in dynamic

emotional vocal and facial expressions.

Finally, taken singularly, signal processing, pattern

recognition and machine learning strategies are not suffi-

cient for succeeding in the algorithmic modeling of emo-

tional vocal expressions. There is need to take account of

the physical, social and organizational context, as well as to

provide the system of an a priori knowledge that dynam-

ically changes according to the system experience. This

motivates the holistic approach.

Conclusions

This paper does not provide a set of rules on how to

implement intelligent emotional interfaces. Instead, it

presents a personal account on how to identify a theoretical

framework to extract rules from multimodal emotional

data. We first emphasized the role of the data encoding

process, that is, the way knowledge can be extracted from

the data and encoded in a unique representation. This is a

very delicate stage since a device which uses this repre-

sentation can only rely on the information that such a

representation is able to encode. Then, we underlined the

importance of the context, the way the data are collected

and the amount of data available for training the proposed

computational models. We then considered the computa-

tional models and pointed out that a new level of autom-

aton machine intelligence approach would be necessary to

solve the ditches related to the synthesis and recognition of

affective states. Finally, we ended with a discussion on all

the modalities that humans exploit during interaction to

gather emotional information. From the section above, it

can be seen that there are several sources of emotional

information that have not been taken into account for the

automation of the recognition process. Together with these

sources, also the ability of the automaton model was

always very limited, with very few, if none, prospects to

gather tools that enable learning from experience and

associations as well as the ability to build up a personal

representation of the external and internal world. In sum-

mary, what is missed is a holistic approach to the com-

putational treatment of affective states. Neither the signal

alone, the feature processing alone, nor the computational

model alone can solve the computational handling of

affective states in speech, but the three aspects combined

together and restricted to a given contextual application

may boost up, both from a theoretical and a practical point

of view, the research in speech and affective computing.
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