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Abstract Moving beyond the stimulus contained in ob-

servable agent behaviour, i.e. understanding the underlying

intent of the observed agent is of immense interest in a

variety of domains that involve collaborative and com-

petitive scenarios, for example assistive robotics, computer

games, robot–human interaction, decision support and

intelligent tutoring. This review paper examines ap-

proaches for performing action recognition and prediction

of intent from a multi-disciplinary perspective, in both

single robot and multi-agent scenarios, and analyses the

underlying challenges, focusing mainly on generative ap-

proaches.

Introduction

Designing and implementing algorithms for enabling ma-

chines, and in particular robots to recognise the actions of

humans is a task that, although challenging, has substantial

application potential. Applications for such algorithms in-

clude:

• Surveillance: monitoring public areas for automatic

recognition of threatening or abusive behaviour; crowd

monitoring during evacuation of large buildings.

• Ambient intelligence and assistive devices: monitoring

indoor environments and the actions of humans for

assisted living. Applications in this area are usually

focused on monitoring and assisting disabled or elderly

people.

• Entertainment and sports: recognising the actions of

humans as an interface to games and virtual environ-

ments; better monitoring of athletes’ performance.

• Robotics: recognising the actions of humans has novel

robot applications such as learning by demonstration

and imitation (Schaal 1999; Schaal et al. 2003; Demiris

and Hayes 2002; Demiris and Khadhouri 2006) which

have the potential to lead to easily programmable robots.

A number of detailed surveys (Aggarwal and Cai 1999;

Moeslund and Granum 2000; Moeslund et al. 2006, among

others) have already explored how such actions can be

captured, analysed and understood; what this paper will

concentrate on is the different approaches to move beyond

the demonstrated stimulus, and investigate how less tan-

gible aspects of the demonstration, particularly the under-

lying goals and intentions of the demonstrator, can be

inferred. This is a task that is particularly difficult, and

might prove to be impossible in certain cases; however, it

is worthwhile to pursue because equipping machines with

such capabilities will elevate their capacities as effective

assistants.

We will first examine some of the definitions related

with intention and prediction, and proceed to examine

alternative approaches for the prediction of intent; we will

subsequently focus our discussion on generative ap-

proaches, using the HAMMER architecture (Demiris and

Khadhouri 2006) as a representative example. The paper

will conclude with a review of the more general and less

explored problem of predicting the intention of groups of
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agents. Intention recognition is studied extensively in dif-

ferent disciplines and it is not possible to do justice to all of

them in the space of a short review article. The purpose

instead is to serve as an interdisciplinary introduction and

demonstrate links between the different approaches,

hopefully inspiring further interdisciplinary cooperation in

intention recognition.

Background—intentions and goals in humans

People act not only as a response to external or internal

stimuli, but also in order to achieve internally or externally

posed goals. There has been a lot of theoretical and

experimental work in determining the mechanisms in-

volved in these processes, as well as clearly defining the

associated terminology (e.g. Bratman 1990; Cohen and

Levesque 1990; Tomasello et al. 2005).

Living in societies, humans also direct much of their

behaviour in response to their interpretation and prediction

of the intentions of others. Humans are quite good at this

inference task, starting from a very young age. In an

experiment by (Meltzoff 1995, 2007b), 18-month-old chil-

dren were shown unsuccessful acts involving a demon-

strator trying but failing to achieve his goal, i.e. the children

did not see a successfully reached end-state. The children,

however, did not replicate the unsuccessful surface behav-

iour of the adult but proceeded to imitate the intended goal,

even when it was never shown to them. In adults, neuro-

science data have been pointing to specialised human brain

mechanisms for perceiving actions and intentions of other

humans (for a review, see Blakemore and Decety 2001).

There are significant difficulties in perceiving intentions

as well as action goals. The main one is the problem of

inversion, the fact that an observed action can be the result

of more than one intention. Consider the example of

someone intentionally pushing you. The immediate goal of

the other agent is to displace you from a location, but the

underlying intention is not clear until additional informa-

tion are added into the equation—is the person that pushed

me angry at me? Am I in danger in my previous location?

The perception of the current context is crucial to correctly

infer the intentions of other agents.

The example above highlights the close relation of

intentions and action goals, and the difficulty in drawing an

exact division line between them. The terms goals and

intentions are frequently used interchangeably, but in

general goals refer to more immediate desirable end-states,

whereas frequently intentions have a longer term or higher-

level connotation. Tomasello et al. (2005) define intentions

as ‘‘a plan of action the organism chooses and commits

itself to the pursuit of a goal—an intention thus includes

both a means (action plan) as well as a goal’’ (p. 676). We

will use Tomasello’s definition as the working definition

for this paper.

Approaches to intention recognition

(Kanno et al. 2003) defines three types of intention rec-

ognition: keyhole recognition, intended recognition and

obstructed recognition. In the first one, the observed agent

is unaware of the observer, and proceeds executing the plan

without any special consideration for the observer. In the

second type the observed agent is aware of the observer

and actively cooperates in the recognition, for example, by

ensuring that crucial parts of the demonstration are not

obstructed. In the third type, the observed agent is again

aware of the observer but is actively trying to disrupt the

recognition process and hide its intentions. More chal-

lenging issues such as adversarial reasoning and deception

(Kott and McEneaney 2006) can also come into play,

where the agent will even execute actions that do not

correspond to its intentions, in order to deceive or mislead

the observer. The latter cases are however beyond the

scope of the paper, and we will restrict the discussion to the

keyhole and intended types of intention recognition.

Recognizing the goals and intentions of the actions of an

agent is essentially a problem of model matching; the ob-

server agent deploys a number of sensors, each reporting its

observations about the state of the observed agent at a

specified sampling rate. The collected data can be acted

upon through two different approaches, descriptive versus

generative.

Within the descriptive approach, patterns are charac-

terised through the extraction of a number of low-level

features, and the use of a set of restrictions at the feature

level, for example through Markov Random Fields (Isham

1981), or Deformable Models, popular in computer vision-

based applications (see Jain et al. 1998 for a review). The

observer agent subsequently matches the observed data

against pre-existing representations, and depending on

what the task is (imitation of observed actions, collabora-

tion etc.), generates the actions corresponding to these

representations. Pre-existing representations can have

associated data that label these representations with the

goals, beliefs and intentions that underlie their execution.

This approach corresponds to the ‘‘action–effects associa-

tions’’ method for intention interpretation in the review of

Csibra and Gergely (2007), and to the ‘‘Theory of Event

Coding’’ approach put forward by Hommel et al. (2001)

based on William James’ ideomotor principle in which

bidirectional action–effects associations are used to predict

the goals of an action.

Within the generative approach, a set of latent (hidden)

variables is introduced; this set encodes the causes that can

152 Cogn Process (2007) 8:151–158

123



produce the observed data. They represent the intrinsic

degrees of freedom underlying the structure of the obser-

vations, usually using probability distributions. Using these

variables for a recognition task involves modifying the

parameters of the generating process until the generated

data can be favourably compared against the observed data.

Generative models are very popular in the machine learn-

ing community, with many variations in existence (e.g.

Roweis and Ghahramani 1999; Bishop 2006; Buxton

2003).

The idea that the generative model can be used to

explain or predict observed data has been gaining popu-

larity in the robotics community who have been

approaching the problem armed with an additional con-

straint, that of embodiment. The internal models here take

the form of motor control models capable of driving an

embodied system. These internal models exist in various

forms, including forward and inverse models (explained

later), as well as behaviours (Arkin 1998), schemas

(Acosta-Calderon and Hu 2005; Pezzulo and Calvi 2006),

varying in whether they act in a feedback (usually

behaviours) or feedforward (usually schemas, inverse

models) manner. A number of architectures have been

proposed, using combinations of these internal models,

including HAMMER (Demiris and Hayes 2002; Demiris

and Khadhouri 2006), with an emphasis on modelling

mirror neurons and robot learning by imitation applica-

tions, and MOSAIC (Wolpert et al. 2003) with an

emphasis on motor control. HAMMER, in particular, was

designed with the aim of using the internal models of

robots to produce movement as well as perceive it when

produced by others. We will proceed to explaining this in

more detail in the next section, as a prototypical example

of the prediction through synthesis approach. Alternative

approaches also exist, including for example the use of

repeated imitation games between agents (Jansen and

Belpaeme 2006).

The idea that you can view perception as internal sim-

ulation, using your action models to predict ongoing

demonstration (as in HAMMER) has many links with the

simulationist perspective of cognitive functions (Hesslow

2002). Similar ideas to this have been put forward in other

research fields, demonstrating the generality of the princi-

ple. For example, in the field of intelligent tutoring, John

Anderson put forward a technique known as model tracing

(Anderson et al. 1990), where a runnable model of the

student’s cognitive skills in a particular domain is executed

and compared with the student’s actions. Inserting ‘‘buggy

rules’’ into the model results in suboptimal performance

and errors; if these errors correlate well with the student

errors, the rules are taken as a possible explanation of the

deficiencies in the student’s knowledge, and actions are

taken to repair these. In the field of speech perception,

Liberman’s theory of speech perception (Liberman et al.

1967) employs a similar perception through motor simu-

lation approach; you understand speech through internal

generation and reproduction of the acoustic signal. The

neuroanatomical basis of this approach and its alternatives

are examined in Scott and Johnsrude (2003).

An alternative to goal recognition that has been put

forward is also worth noting, that is the ‘‘teleological

interpretation of actions’’. A comparative review against

the other two approaches can be found in Csibra and

Gergely (2007), but briefly the approach performs a nor-

mative evaluation of observed actions based on the prin-

ciple of rational actions (Csibra and Gergely 1998), which

‘‘allows for the assessment of the relative efficiency of the

action performed to achieve the goal within the situational

constraints given’’ (Csibra and Gergely 2007, p. 70). The

effect of an observed action can be seen as the goal

depending on whether the outcome is judged to justify the

action in the given context it was observed in.

The generative embodied simulationist

approach—the single agent case

We will now use the HAMMER (Hierarchical Attentive

Multiple Models for Execution and Recognition) archi-

tecture as a representative example of the generative

embodied simulationist approach to understanding inten-

tions. We will explain the operation of the architecture by

starting from the second half of its acronym (MER—how a

model can be used both for execution and recognition of an

action) in the next section, and proceed to explain how

multiple models can be used concurrently, organised in

hierarchies and incorporate attention, in the subsequent

sections.

Principles

HAMMER utilises the concepts of inverse and forward

models. An inverse model is akin to the concepts of a

controller, behaviour, action, or motor plan. The inverse

model’s function is to receive as input a measurement or

estimate of the current state of the system and the desired

target goal(s) and outputs the control commands that are

needed to achieve or maintain those goal(s). A forward

model of a modelled system (akin to the concept of internal

predictor) is a function that takes as inputs the current state

of the system and a control command to be applied to it and

outputs the predicted next state of the controlled system

(Miall and Wolpert 1996). It is worthwhile to note that the

term forward models have also been used in a modified

version in different contexts (for a review of different

usages, see Karniel 2002).
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The building block of HAMMER is an inverse model

paired with a forward model (Fig. 1). When HAMMER is

asked to rehearse or execute a certain action, the corre-

sponding inverse model module is given information about

the current state and, optionally, about the target goal(s).

The inverse model then outputs the motor commands that

are necessary to achieve or maintain these implicit or ex-

plicit target goal(s). The forward model provides an esti-

mate of the upcoming states should these motor commands

get executed. This estimate is returned back to the inverse

model, allowing it to adjust any parameters of the action

(an example of this would be achieving different move-

ment speeds (Demiris and Hayes 2002)). The estimate can

also be compared with the target goal to produce a rein-

forcement signal for the inverse model depending on how

much the model’s motor commands brought the estimate

closer to the target goal. Architectures involving combi-

nations of inverse and forward models (in varying config-

urations, for example differing in how control is switched

between multiple models) are used in motor control (Na-

rendra and Balakrishnan 1997; Wolpert and Kawato 1998)

due to their flexible modular structure, and have been

advocated for use in imitation and learning (Demiris and

Hayes 2002; Demiris and Khadhouri 2006; Schaal 1999;

Schaal et al. 2003; Wolpert et al. 2003).

The HAMMER architecture uses an inverse–forward

model coupling in a dual role: either for executing an ac-

tion, or for perceiving the same action when performed by

a demonstrator. When HAMMER operates in action per-

ception mode, it can determine whether a visually per-

ceived demonstrated action matches a particular inverse–

forward model coupling (Fig. 2), by feeding the demon-

strator’s current state as perceived by the imitator to the

inverse model. The inverse model generates the motor

commands that it would output if it was in that state and

was executing the particular action. In a sense, the imitator

processes the actions by analogy with the self—‘‘what

would I do if I were in the demonstrator’s shoes?’’

In the perception or planning modes, the motor com-

mands are inhibited from being sent to the motor system.

The forward model outputs an estimated next state, which is

a prediction of what the demonstrator’s next state will be.

This predicted state is compared with the demonstrator’s

actual state at the next time step. As seen in Fig. 2 and the

text that follows, this comparison results in an error signal

that can be used to increase or decrease the behaviour’s

confidence value, which is an indicator of how closely the

demonstrated action matches a particular imitator’s action.

An interesting point that arises here is how to learn these

models; interested readers are referred to Dearden and

Demiris (2005) for some initial work on a developmental

approach on how this can be achieved in robots. In these

experiments, the robot associated self-generated actions

with the feedback they produce once executed (including

learning the feedback delays in the motor system).

So far we have described how the ‘MER’ (Models for

Execution and Recognition) part of HAMMER operates. It

remains to be seen why the ‘HAM’ (Hierarchical Attentive

Multiple) part is important, starting from the multiplicity

aspect and continuing with the Hierarchies and Attention in

the next section.

HAMMER consists of multiple pairs of inverse and

forward models that operate in parallel (Demiris and Hayes

2002). As the demonstrator agent executes a particular

action, and there are multiple models (possibilities) that

can explain the ongoing demonstration, we feed the per-

ceived states into all of the imitator’s available inverse

models. This will result into the generation of multiple

motor commands (representing the multiple hypotheses as

to what action is being demonstrated) that are sent to the

forward models. The forward models generate predictions

about the demonstrator’s next state as described earlier and

these are compared with the actual demonstrator’s state at

the next time step. The error signal resulting from this

comparison affects the confidence values of the inverse

models. At the end of the demonstration (or earlier if

required) the inverse model with the highest confidence

value, i.e. the one that is the closest match to the demon-

strator’s action is selected and is offered as an estimate of

the intention. Demiris and Hayes (2002) have described the

relation of this process to a biological counterpart, the

mirror system (Gallese et al. 1996), offering a number of

Fig. 1 HAMMER’s basic building block, an inverse model paired with a forward model (from Demiris and Hayes 2002, Demiris and Johnson

2003). The target goal (or intention) is marked optional since it might already be implicit in the functionality of the inverse model
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explanations and testable predictions (Demiris and Hayes

2002; Demiris and Simmons 2006), for example, a pre-

dicted dependency of the firing rate of the macaque mon-

key mirror neurons to the velocity profile of the

demonstrated act.

Attention, hierarchies and perspective taking

Attention

The multiple models formulation, as stated so far, assumes

that the complete state information will be available for

and fed to all the available inverse models. Since each of

the inverse models requires a subset of the global state

information (for example, one might only need the arm

position of the demonstrator rather than full body state

information), we can optimise this process by allowing

each inverse model to request a subset of the information

from an attention mechanism, thus exerting a top-down

control on the attention mechanism. Since HAMMER is

inspired by the ‘‘simulation theory of mind’’ point of view

for action perception, it asserts that, for a given behaviour,

the information that it will try to extract during the dem-

onstration is the state of the variables it would control if it

was executing this behaviour (Demiris and Khadhouri

2006). Apart from improving on the resource requirements

of the architecture above, this novel approach provides a

principled way for supplying top-down signals to attention.

The saliency of each request can then be a function of the

confidence that each inverse model possesses, removing

the need for ad-hoc ways for computing the saliency of top-

down requests. Top-down control can then be integrated

with saliency information from the stimuli itself, allowing

a control decision to be made as to where to focus the

observer’s attention. An overall diagram of this is shown in

Fig. 2).

Strategies for selecting among the different requests can

include ‘‘equal time sharing’’, or ‘‘highest priority first’’,

or other suitable resource scheduling algorithms (Demiris

and Khadhouri 2006).

Although this architecture is based on a principled ap-

proach on how the observer’s internal models and prior

knowledge influence what parts of the stimulus will be

attended to, the relation to biological (for example, Flan-

agan and Johansson 2003) and developmental data requires

further exploration.

Hierarchical organisation of the inverse

and forward models

How are human action models organised? Recent evidence

on how infants encode goals suggests hierarchical repre-

sentations (Bekkering et al. 2000; Gleissner et al. 2000;

Wohlschlager et al. 2003), and recent brain imaging data

have also begun to shed light into these hierarchical rep-

resentations in adults (Hamilton and Grafton 2007). In

robots, hierarchical formulations have been proposed and

used (Demiris and Johnson, 2003; Tani and Nolfi 1999),

but their relation to biological data has not been explored

(but see Byrne and Russon 1998; Demiris and Simmons

2006).

The important issues to consider in hierarchical or-

ganisations are the nature of abstraction or generalisation

(if any) that we achieve by moving into higher levels of

the hierarchy, i.e. how inverse and forward models can be

put together to form ‘‘higher models’’. In the ‘subsump-

tion architecture’ (Brooks 1986) for example, higher

levels provide the gating for the lower levels but do not

provide any generalisation. In Demiris and Johnson

(2003) inverse models are formed by allowing lower level

models to be placed in parallel or in sequence based on

whether there are overlapping degrees of freedom be-

tween the body structures that the inverse models control.

HMOSAIC (Wolpert et al. 2003) proposes a three-level

hierarchy with the low-level dynamics at the lower level,

sequences of elements at the middle level, and symbolic

representations of tasks at the higher level. Despite these

first attempts, further theoretical advancements will be

required, in order to be able to merge the prediction of

proximal motor intentions that architectures, such as

HAMMER and MOSAIC, can provide and higher ‘‘the-

ory of mind’’ type of tasks that a more general simulation

theory of mind would require.

Perspective taking

The simulationist approach to understanding intentions

requires the observer to take the perspective of the

demonstrator, i.e. to ‘‘step into the demonstrator’s

Fig. 2 Inverse models submit requests to the attention mechanism,

exerting top-down control
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shoes’’. Useful information on how such mechanisms can

be implemented is available from developmental work on

gaze following, which can be viewed as the lowest end of

perspective taking. Work by Brooks and Meltzoff (2002,

2005) has shown that one-year-old infants can follow the

gaze of adults and realise that it is not a meaningless

movement but is directed at an object. The evidence

points to a use of first-person experience (our own

internal models) to make third-person attributions; for

example, Meltzoff (2007a) and Meltzoff and Brooks

(2004) have shown that once infants had experience with

blindfolds, the interpretation of others who wear blind-

folds also changes. Although various algorithmic solu-

tions to perspective taking have been proposed (Johnson

and Demiris 2005; Breazeal et al. 2006; Trafton et al.

2005), higher levels of perspective taking, like the ones

discussed in this paper, including beliefs, desires and

intentions remain difficult challenges in robotics. In

Johnson and Demiris (2005) perceptual perspective taking

allowed an observer robot to ‘‘place itself in the dem-

onstrator robot’s perceptual shoes’’ and engage the in-

verse models that were compatible with the

demonstrator’s viewpoint rather than its own viewpoint.

Although there is still a lot of work to be done in robotics

on this aspect, research on the development of perspective

taking and its roots in gaze following (Meltzoff 2005,

2007a) as well as relevant neuroscience data for the adult

cases (e.g. Jackson et al. 2006) can provide robotics

researchers with useful information regarding potential

implementation approaches.

The multi-agent case

Intention recognition and prediction is of importance also

for applications involving groups of agents, particularly in

adversarial scenarios such as competitive sports (Beetz

et al. 2005) and military simulations (Tambe 1996). It is

also of use in cooperative situations where the behaviour of

an agent is dependent on its partner’s or team’s behaviour

(Grosz and Hunsberger 2006; Kanno et al. 2003). The

multiplicity of agents involved complicates intention rec-

ognition in two important ways:

To predict the intention of the group it is not sufficient to

track and predict the actions of individual agents in the

group. It is necessary to attempt to infer the joint intention

or shared plan of the agents as a group. This is not simply

the sum of the intentions of the individual agents, but needs

to be found within the agents’ ‘‘shared cooperative activ-

ity’’ (Bratman 1992), which Bratman defined as a combi-

nation of mutual responsiveness, commitment to the joint

activity and commitment to mutual support. (Tambe 1996)

presented a system, RESCteam, which constructs explicit

teams models and tracks them at the team level; as a result,

they avoid the execution of a large number of individual

agent models.

In addition to recognising activity, it is crucial to rec-

ognise an agent’s identity, and its position in the social

structure i.e. in what sub-team does it belong to, and what

is its role (Sonenberg and Tidhar 1999). Given that an

agent within a team can assume more than one role, the

action it is performing can be interpreted in different ways

depending on the role it is believed to have.

Methods that attempt to simultaneously identify sub-

groups as well as recognise their behaviour have begun to

appear (Devaney and Ram 1998; Sukthankar and Sycara

2006), but their source of information are spatiotemporal

traces of the agents, which convey little information,

making the problem particularly hard. The observer does

not affect these traces, but remains a passive observer.

Mutual support, one of the key aspects of shared cooper-

ative activity (Bratman 1992), might be particularly

important here because mutual support might necessitate

intention updating depending on the performance of sub-

groups; the change of activity to a set of agents based on an

action we caused on another set of agents might reveal

important information regarding the correlation of the

activities and roles of the two sets, and give clues as to their

joint intention.

Conclusions

We reviewed the different approaches to action recognition

and prediction of intent, distinguishing between descriptive

and generative approaches, and surveying the generative

architectures available, using HAMMER as the main

example. Prediction of intent remains a challenging task,

with advancements needed at all levels, both theoretical, as

well as technological, particularly if the application in-

volves groups of agents. Solutions, as in the past in active

learning and active vision, might be found in the active

involvement of the observer while the operation is

unfolding, so that the intricate correlations between activ-

ities of multiple agents can be revealed.
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