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Abstract
The first principal stress plays a key role in ductile fracture processes. Investigation of the distribution and evolution of the
first principal stress at the crack tip is essential for exploring elastoplastic fracture behaviors. A semi-analytical model was
developed in this study to determine the maximal first principal stress at the mode I crack tip with 3D constraints for materials
following the Ramberg–Osgood law. Themodel, based on energy density equivalence and dimensional analysis, was validated
through finite element analysis (FEA) of various materials and geometric dimensions of specimens with mode I cracks, under
over 100 different types of working conditions. The dimensionless curves of maximal first principal stress versus load, as
predicted by the model, agreed well with the FEA results, demonstrating the accuracy and applicability of the model. This
research can provide a basis for future theoretical predictions of crack initiation and propagation.

Keywords Mode I crack · 3D constraints · Ramberg–Osgood law · Energy density equivalence · First principal stress

1 Introduction

Under the effects of manufacturing methods, damage, and
other factors, structures in aerospace, nuclear power, chemi-
cal, and other engineering sectors frequently exhibit defects
and cracks that can significantly impact the safety of systems.
Investigation of fracture mechanical behaviors of cracked
structures plays a key role in structural integrity analysis. To
comprehend structural fractures, first crack tip stress field
and deformation distribution should be understood.

Characterizationof crack tip stress distributionhas been an
active research topic. In 1939,Westergaard [1] first described
biaxial stress fields in internal cracks of a pressurized cylin-
der, which is considered as one of the earliest and most
well-known methods to comprehend stress fields in cracked
structures. In 1957, Williams [2] demonstrated that stress
fields around crack tips in isotropic elastic materials could
be represented as an infinite series. Since then, the Williams
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series expansion has been the most popular analytical tech-
nique for modeling the mechanical field around crack tip in
a planar domain. The first two components of the Williams
series expansion denote stress intensity [3, 4] and T-stress [5]
factors, respectively. For each cracked structure, the coef-
ficient sequence in the Williams series expansion depends
on the existing loading system and geometry. In addition,
higher-order stress terms significantly affect the engineering
description of stress fields for different fractured specimens
[6]. In 2013, Berto and Lazzarin [7] derived an equation
series to precisely define crack tip stress components, while
the accuracy of complete stress fields in front of crack tips
was unsatisfactory. In 2016, Larisa and Pavel [8] analyti-
cally determined stress expansion coefficients at crack tips
for two collinear finite cracks with similar lengths in an infi-
nite plane medium. Their study particularly focused on the
effect of varying numbers of series expansion terms on stress
distribution. The primary application of the Williams series
expansion is in linear elastic fracture mechanics, and the ana-
lytical calculation of crack tip stress expansion coefficients
remains an area deserving of in-depth studies.

Cherepanov [9] and Rice [10] independently proposed the
J-integral for elastic–plastic fracture mechanics, an energy
line integral demonstrating path independence for every con-
tour surrounding the crack tip to characterize the crack-tip
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stress field intensity. In order to tackle the power-law plas-
ticity problem of mode I cracks under plane conditions,
Hutchinson [11] and Rice and Rosengren [12] presented the
crack tip stress and strain field (HRR field) characterized by
the J-integral in 1968. It has been proved that the J-integral
uniquely determines crack tip stress and strain field strength.
The proposed HRR field is a milestone in investigating crack
tip stress and strain fields. Recent theoretical, experimen-
tal, and numerical analyses have revealed that the HRR field
could accurately capture the inherent stress and strain prop-
erties in an annular region at the crack tip. The control region
of the HRR field varies with the geometric configuration and
size of the specimen. In general, the stress and strain field
with high constraints under plane strain conditions can be
effectively described by the HRR field.

For low-constrained cracked specimens under plane strain
conditions, J–Q [13–15], J–A2 [16, 17], and J–A [18–20]
theories have been developed to describe the crack tip field.
According toO’DowdandShih et al. [13–15], the J–Q theory
offers a two-termcrack tipfield solution capable of accurately
predicting stress fields under a wide spectrum of conditions
ranging from small yield to large yield or pure plasticity.
However, as an empirical parameter, Q depends on finite
element calculations for specific materials or configurations,
as well as the distance and angle between a chosen refer-
ence point and the crack tip. Yang and Chao et al. [16, 17]
developed the J–A2 theory on the basis of three asymptotic
expansions of the crack tip stress field. Later, using a similar
method, Nikishkov andMatvienko [18–20] developed a new
version of the J–A theory, which was almost identical to the
J–A2 theory. Under some circumstances, constraint parame-
ters such asQ, A2, A, or others could be transformed into one
another, and their descriptive capabilities are comparable. For
cracked specimens with different constraints and materials,
the constraint parameters had to be separately determined by
finite element calculations and could not be expressed ana-
lytically.

In recent years, many researchers have explored new
methods to characterize crack tip stress fields. Withers [21]
found that tomographic imaging and synchrotron X-ray
diffraction could capture crack initiation and growth at 3D
crack tips. The quantitative information of fracture mechan-
ics regarding the area around the crack tip, such as fracture
strength factor and stress field, could be retrieved to mon-
itor crack tip fracture behavior. Sutton et al. [22] applied
digital image correlation (DIC) to examine 3D effects near
crack tips. Srilakshmi et al. [23] investigated crack growth
in composite patch-repaired aluminum panels under fatigue
loading using finite element analysis (FEA) and DIC. How-
ever, further development is needed to fully leverage these
technologies for studying stress fields at crack tips.

Existing equations for stress and strain fields mainly
focus on plane conditions, while cracked problems under 3D

constraints have rarely been studied. The paucity of compre-
hensive research on complex constraint conditions at crack
tips is also a significant factor limiting our ability to predict
crack initiation. It is essential to develop methods for ana-
lytically characterizing crack tip stress under 3D constraint
conditions, which can not only depict stress characteristics
but also effectively combine ductile fracture criteria with
crack initiation studies, to lay a theoretical foundation for
predicting crack structure and fracture behavior.

Previous research on critical ductile fracture criteria [24,
25] considered the critical first principal stress as the primary
control parameter for ductile fractures. In this research, a
semi-analytical model of critical first principal stress at the
crack tipwas developedusing energydensity equivalence and
dimensional analysis, and themodel’s accuracywasvalidated
throughFEAofdifferentmaterials andgeometric dimensions
of specimens with mode I cracks.

2 Load–Displacement Model for Specimens
withMode I Cracks

2.1 Energy Density Equivalence

Uniaxial equivalent stress–strain relationships of representa-
tive volume elements (RVEs) are fundamental in continuum
mechanics. In elastic–plastic fracture mechanics, the Ram-
berg–Osgood (R–O) law is commonly used to characterize
constitutive relationships of materials under quasi-static con-
ditions, which is stated as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εeq � εe-eq + εp-eq

εe-eq � σeq
E

εp-eq � (
σeq
K )n

(1)

where εp-eq and εe-eq are the equivalent plastic and elastic
strains, respectively; σeq and εeq are total equivalent stress
and strain, respectively; K is stress strength coefficient in
terms of MPa; E is elastic modulus in terms of GPa; and n is
strain hardening exponent, which is a dimensionless param-
eter.

According to Chen and Cai [26–28], for any loaded spec-
imens, the effective deformation region has a median energy
density point, and the RVE strain energy density at this point
is equal to the ratio of the specimen’s total strain energy to the
effective deformation volume, i.e., the average strain energy.
Based on the von Mises equivalence principle, the RVE
strain energy density at a medium point subjected to complex
stress states is also equal to that of the RVE under uniax-
ial equivalent stress states. This allows for a semi-analytical
link between strain energy and material constitutive relation
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parameters, geometric sizes, and the load or displacement of
loaded specimens.

In the case of homogeneous and isotropic materials, the
strain energy U of a loaded specimen can be stated as

U �
˚

�

μ(x , y, z)dV (2)

where � is the effective deformation region of the loaded
specimen, and μ(x, y, z) is the RVE strain energy density at
any point in �.

On the basis of integral mean value theorem, there must
be a point M(xM , yM , zM ) in � at which the relationship
between strain energy density μM and total strain energy U
can be expressed as

μM (xM , yM , zM )� U

Veff
(3)

where V eff is the volume of effective deformation region of
the specimen.

For the RVE at the medium point, there is

μM �
εi j−M∫

0

σi jdεi j �
εeq-M∫

0

σeqdεeq (4)

where σij and εij are stress and strain tensors under complex
stress states, and εeq-M and εij-M are equivalent strain and
strain tensor under certain deformation conditions, respec-
tively.

According to Eqs. (2) and (4), the effective deformation
region strain energy for a loaded specimen is stated as

U � μMVeff�Veff

εeq-M∫

0

σeqdεeq (5)

If the uniaxial equivalent constitutive relation of the mate-
rial can be described as σeq � f (εeq,E,K , n), the relationship
between εeq-M and dimensionless displacement v

v∗ on the
loaded line (with v∗ being the characteristic displacement of
the specimen) can be stated as εeq-M �φ v

v∗ , and that between
v
v∗ and the volume of dimensionless effective deformation
region V eff/V* (with V* being the characteristic volume of
the specimen) can be expressed asV eff/V* �ϕ v

v∗ , the analyt-
ical description of the strain energyU of the loaded specimen
can be obtained based on Eq. (5) as

U�V ∗ϕ
( v

v∗
)

φ
(

v
v∗

)

∫

0

f (εeq, E , K , n)dεeq (6)

The link between strain energy, material constitutive
parameters, geometric sizes, and load or displacement on
the load line can be precisely calculated after identifying the
specific forms of functions f , φ, and ϕ.

2.2 3D Constraint Function of Specimens with Mode
I Cracks

For specimens with mode I cracks under 3D constraints, the
geometric dimension {L} consists of the width W , crack
length a, and thickness B; denoted as {L}� {W , a, B}. Chen
and Cai [26–28] developed an independent power law func-
tion relationship for dimensionless displacement v/v* on the
loading line and dimensionless effective deformation volume
V eff for specimens with different geometric configurations.
Therefore, the dimensionless effective deformation volume
V eff for specimens with mode I cracks can be described as a
separation relationship between dimensionless displacement
function and dimensionless geometric function. This separa-
tion relationship is expressed as

V eff�ϕ
({
L
}
, v

)�G

(
a

W
,

B

W

)[

k01
( v

v∗
)k2

]

(7)

where v* is the characteristic displacement of the specimen
(equal to W for specimens with mode I cracks), k01 is the
effective volume coefficient associated with geometric sizes,
and k2 is the effective volume exponent associated with spec-
imen deformation.

(1 − a/W )m1 parameters suggested by Landes et al. [29]
were utilized to further break down the dimensionless geo-
metric function G(a/W , B/W ) as

G

(
a

W
,
B

W

)

�k02
(
1 − a

W

)m1
g

(
B

W

)

(8)

where g(B/W ) is the dimensionless thickness separation
function, and k02 and m1 are the effective volume reduction
coefficient and index, respectively.

To address the effective deformation volume analysis of
specimenswithmode I cracks across a broad thickness range,
g(B/W ) is anticipated as

g

(
B

W

)

�k03

[

arctan

(

b1
B

W

)

+ b2

]m2

(9)

where b1 and b2 are thickness coefficients, and k03 andm2 are
the effective volume reduction coefficient and index, respec-
tively.
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Substitution of Eqs. (8) and (9) into Eq. (7) yields the
dimensionless effective deformation volume V eff for speci-
mens with mode I cracks as

V eff� Veff
W 2B

�k1
(
1 − a

W

)m1
[

arctan

(

b1
B

W

)

+ b2

]m2( v

v∗
)k2

(10)

where k1 is a constant only associated with specimen geom-
etry, and k1 � k01k02k03.

The characteristic volume V* is expressed as

V ∗�W 2B
(
1 − a

W

)m1
[

arctan

(

b1
B

W

)

+ b2

]m2

(11)

Thus, from Eqs. (10) and (11), it can be inferred that

ϕ
( v

v∗
)

� Veff
V ∗ �k1

( v

v∗
)k2

(12)

where all undetermined constants k1, k2,m1, m2, b1, and b2
can be calculated using a small amount of FEA.

Based on Eqs. (6) and (12), the analytical function of
strain energy for specimens with mode I cracks under 3D
constraints can be written as

⎧
⎪⎨

⎪⎩

U = V *k1
(

v
v∗

)k2
φ
(

v
v∗

)

∫

0
f (εeq, E , K , N )dεeq

V * = W 2B
(
1 − a

W

)m1
[
arctan

(
b1

B
W

)
+ b2

]m2

(13)

2.3 Plastic Load–Displacement Semi-analytical
Model for Specimens with Mode I Cracks

In specimens with mode I cracks under 3D constraints, only
pure plastic deformation was considered. According to the
R–O law, the material constitutive function f in Eq. (6) can
be expressed as

σeq � f
(
εeq, E , K , n

) � K ε1/np-eq (14)

Substitution of Eq. (14) into Eq. (13) yields the plastic
strain energy Up for specimens with mode I cracks as

Up � nKV ∗

n + 1
k1

( vp

v∗
)k2[

φ
( vp

v∗
)]1+1/n

(15)

where vp is the plastic displacement on the loading line.
Referring to [26–28], the function φ is defined as

φ
( v

v∗
)

� k3
( vp

v∗
)k4

(16)

where k3 and k4 are the effective strain coefficient and index
under pure plastic conditions, respectively.

Substitution of Eq. (16) into Eq. (15) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
p

U∗ � ξp

( vp

v∗
)mp+1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U∗ � KV ∗�KW 2B
(
1 − a

W

)m1

[

arctan

(

b1
B

W

)

+ b2

]m2

v∗�W

ξp � nk1k
1/n+1
3

n + 1

mp � k4
n

+ k4 + k2 − 1

(17)

where U* is the characteristic strain energy function associ-
atedwith specimengeometry, ξp is the curvature of the plastic
energy-displacement curve, andmp is the plastic deformation
index.

Under quasi-static plastic conditions and following the
functional principle, Up is determined as

Up � W �
∫ vp

0
Pdv (18)

Substituting Eq. (17) into Eq. (18), the derivatives of
Eq. (18) with respect to vp are obtained as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

P∗ � (
1 + mp

)
ξp

( vp

v∗
)mp

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P∗ � K A∗�KWB
(
1 − a

W

)m1
[

arctan

(

b1
B

W

)

+ b2

]m2

v∗�W

ξp � nk1k
1/n+1
3

n + 1

mp � k4
n

+ k4 + k2 − 1

(19)

where A* is the characteristic area, given by A* � V*/v∗,
and P* is the characteristic load associated with geometric
dimensions. Equation (19) outlines the dimensionless plastic
load–displacement model for specimens with mode I cracks
under 3D constraints (abbreviated as the CS-pv model).
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Table 1 Details of the finite element model for CT and SEB specimens

Model Element models Configuration
sizes

Node counts Element counts

W � 50 mma/W
� 0.5, 0.6, 0.7,
0.8, B/W � 0.1,
0.3, 0.5, 0.7,
1.5, 3, 6

29,533 (a/W � 0.5, B/W � 0.5) 24,438(a/W �
0.5, B/W �
0.5)

27,503(a/W � 0.6, B/W � 1.5) 22,758(a/W �
0.6, B/W �
1.5)

25,473(a/W � 0.7, B/W � 6) 21,078(a/W �
0.7, B/W � 6)

23,443(a/W � 0.8, B/W � 0.1) 19,398(a/W �
0.8, B/W �
0.1)

W � 20 mma/W
� 0.5, 0.6, 0.7,
0.8, B/W � 0.1,
0.25,0.5, 0.75,
1.5, 3, 6

13,608(a/W � 0.5, B/W � 0.25) 11,304(a/W �
0.5, B/W �
0.25)

13,146(a/W � 0.6, B/W � 0.5) 10,920(a/W �
0.6, B/W �
0.5)

12,684(a/W � 0.7, B/W � 0.75) 10,536(a/W �
0.7, B/W �
0.75)

12,222(a/W � 0.8, B/W � 3) 10,152(a/W �
0.8, B/W � 3)

Fig. 1 Distribution of crack tip first principal stress

3 Maximal Principal Stress Model at Mode I
Crack Tip

3.1 FEA of Specimens with Mode I Cracks

Compact tension (CT) and single-edge notch-bending (SEB)
specimens were selected as typical mode-I-cracked speci-
mens to investigate crack tip stress fields. Their deformation

Fig. 2 Schematic diagram of maximal first principal stress σ1max
T

processes were analyzed under 3D large deformation condi-
tions using the finite element software ANSYS 14.5. Solid
185 elements were utilized to develop quarter models of the
CTandSEBspecimens.Themeshes at crack tipswere locally
refined, and the selectedmesh density was not sensitive to the
calculated results. Table 1 summarizes the details of CT and
SEBmodels, with red shaded faces in bothmodels indicating
symmetric constraints applied during calculations.
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Fig. 3 σ1max
T/σ0-P/P* curves of CT specimens

3.2 Distribution and Evolution of Crack-Tip First
Principal Stress

Studies on ductile material critical fracture behaviors in [24,
25] have identified the primary controlling parameter of duc-
tile fracture as the first principal stress. Accurate description
of the maximal crack tip first principal stress is essential for
predicting the onset of mode I cracks using the stress fracture
criterion. Numerous experiments [30–32] have demonstrated
that crack initiation occurs at the crack tip on a surface with
symmetric thickness. FEA was used to determine the distri-
bution of the first principal stress in the crack tip regionwhere
the crack surface and symmetric thickness surface meet.

A CT specimen was employed as an example to show
the distribution of the first principal stress at the intersection
line between the crack surface and the symmetric thickness
surface under different loads. The constitutive parameters of
the CT specimen were K � 800 MPa, E � 210 GPa, and
n � 6, and its geometric parameters were a/W � 0.5 and

B/W � 0.5. The obtained results are displayed in Fig. 1.
The material yield stress, denoted as σ0, was obtained from
stress–strain curves to normalize the first principal stress. It
was observed that the first principal stress distribution first
increased and then decreased in the crack tip region, with the
maximal first principal stress point gradually moving away
from the crack tip with increasing load. In Fig. 2, the first
principal stress at the maximal point was denoted as σ1max

T.
When the relationship between the first principal stress and
stress triaxiality at themaximal principal stress point satisfied
the ductile material critical fracture criterion [24, 25], crack
initiation occurred.

Establishing a dimensionless relationship between the
maximal first principal stress and the load (σ1max

T/σ0-P/P*)
during the loading process is crucial to pinpoint mode I crack
initiation under 3D constraints. Large-deformation FEA was
applied to obtain σ1max

T/σ0-P/P* curves of CT and SEB
specimens with various materials and geometric dimensions.
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Fig. 4 σ1max
T/σ0-P/P* curves of SEB specimens

The results are illustrated in Figs. 3–4. The σ1max
T/σ0-P/P*

curves reveal the following rules:

(1) For all specimens with various materials and geome-
tries, the trend of σ1max

T/σ0-P/P* curves evolved in
the following manner: Initially, there was a signifi-
cant increase in σ1max

T/σ0 as P/P* rose, marking the
ascending period. Once the specimens underwent a cer-
tain degree of elastic–plastic deformation, σ1max

T/σ0
stabilized, showing no significant change with further
increases in P/P*, indicating the onset of the stable
period.

(2) Figs. 3a and 4a indicated that as crack length a/W
increased from 0.5 to 0.8, the value of σ1max

T/σ0
under the same P/P* significantly decreased during the
ascending period, while remaining relatively constant
during the stable period.

(3) Figs. 3b and 4b demonstrated a slight change in
σ1max

T/σ0-P/P* curves for specimens with mode I

cracks of varying B/W ratios. This slight change must
be carefully investigated because thickness parameters
significantly influenced crack initiation. Among speci-
mens with different B/W ratios, those with values of 0.1
and 6 determined the minimal and maximal σ1max

T/σ0
values under the same P/P*, respectively.

(4) Figs. 3c, d and 4c, d showed the influences of material
parameters K , E, and n on σ1max

T/σ0-P/P* curves. The
ascending periods of σ1max

T/σ0-P/P* curves exhibited
clear correlations with K , E, and n, while the stable
periods were only closely related to n.

3.3 DescriptionModel for Crack-Tip Maximal First
Principal Stress

To accurately describe the dimensionless relationship
between the crack-tip maximal first principal stress and the
load for specimens with mode I cracks under 3D constraints,
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Table 2 Parameters of the description model for maximal first principal stress

Fig. 5 Flow diagram of model parameter determination

all influencing factors, including geometric dimensions a/W ,
B/W, and material parameters K, E, and n, needed consider-
ation.

The crack-tip maximal first principal stress σ1max
T exhib-

ited a positive relationship with the load and displacement
of specimens with mode I cracks. Following the principle
of dimensional analysis, the stress similarity criterion π1,
load similarity criterion π2, and pure plastic displacement

similarity criterion π3 are defined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π1 � σT
1max

σ0

π2 � P

P∗

π3 � vp

v∗

(20)

The relationship between π1, π2, and π3 is stated as

π1 � k5π2π
k6
3 + k7π2π

k8
3 (21)

where k5 and k6 are parameters in the ascending periods of
σ1max

T/σ0-P/P* curves, associated with a/W , B/W , K, E, and
n, while k7 and k8 pertain to the stable period of σ1max

T/σ0-
P/P* curves only associated with n.

From Eqs. (20) and (21), it can be deduced that

σT
1max

σ0
� k5

P

P∗
( vp

v∗
)k6

+ k7
P

P∗
( vp

v∗
)k8

(22)

The parameters k5 to k8 were defined through the large-
deformation FEA of various geometries and materials of
specimens with mode I cracks.

By substituting the CS-pv model from Eq. (19) into
Eq. (22), the dimensionless relationship between the crack-
tip maximal principal stress and the load can be obtained
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Fig. 6 σ1max
T/σ0-P/P* curves with different a/W

as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σT1max
σ0

� k5
[

1
(1+mp)ξp

] k6
mp ( P

P∗
) k6
mp

+1

+k7
[

1
(1+mp)ξp

] k8
mp ( P

P∗
) k8
mp

+1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k5 � p1ep2(
1

n+1 +1)( KE )
p3(

1
n+1 +1)(1 − a

W )p4
([
arctan

(
b1

B
W

)
+ b2

]p5 + p6
)

k6 � p7( KE ) +
p8
n+1

k7 � p9
(
1 + 1

n+1

)p10

k8 � 1 + p11
n+1

(23)

Equation (23) is referred to as the description model for
the maximal first principal stress in specimens with mode I
cracks (abbreviated as the CS-σ1max

T model). The parame-
ters p1 to p11 can be determined through fitting calculations.
Moreover, the CS-σ1max

T model can be universally applied
across various materials and geometric dimensions.

4 Validation of the DescriptionModel
for Maximal Principal Stress

4.1 Model Parameter Determination

The CS-σ1max
T model is a mathematical equation with uni-

versal applicability and adheres to dimensional analysis.
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Fig. 7 σ1max
T/σ0-P/P* curves with different B/W

Model parameters, including k1 to k4,m1,m2, b1, and b2, can
be obtained through FEA, while p1 to p11 are determined by
fitting simulated data for different materials and geometries.
Figure 5 illustrates the accurate parameter determination pro-
cess. Table 2 outlines the parameter values for CT and SEB
specimens.

4.2 Validation of CS-�1max
T Model

CT and SEB specimens of various materials and geometric
dimensions were tested. For CT specimens, material param-
eters were K � 200, 400, 600, and 800 MPa, E � 70, 110,
and 210 GPa, and n � 4, 6, 8, 10, and 12, and geometric

parameters were a/W � 0.5, 0.6, 0.7, and 0.8 and B/W �
0.1, 0.3, 0.5, 0.7, 1.5, 3, and 6. For SEB specimens, material
parameters were K � 300, 600, 900, and 1200 MPa, E � 70,
110, and 210 GPa, and n � 3, 5, 7, 9, and 11, and geometric
parameters were a/W � 0.5, 0.6, 0.7, and 0.8 and B/W � 0.1,
0.25, 0.5, 0.75, 1.5, 3, and 6. The calculations encompassed
over 100 working conditions.

The σ 1max
T/ σ0-P/P* curves corresponding to these work-

ing conditions were obtained through FEA and compared
with the prediction results from the CS-σ1max

T model, as
presented in Figs. 6, 7, 8, 9, 10. The σ1max

T/σ0-P/P* curves
presented good consistency with the results derived using
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Fig. 8 σ1max
T/σ0-P/P* curves with different K

the CS-σ1max
T model under all conditions for both CT and

SEB specimens, irrespective of variations in a/W , B/W ,
K , E, or n. This validated the ability of the CS-σ1max

T

model to accurately describe the dimensionless relationship
between crack-tip maximal first principal stress and load
across diverse materials and geometries.

5 Conclusions

The research examined the correlations between load, dis-
placement, and maximal first principal stress at crack tips
of specimens with mode I cracks under 3D constraints, with
constitutive relationships conforming to the R–O law. The
following conclusions were drawn:
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Fig. 9 σ1max
T/σ0-P/P* curves with different E

(1) According to energy density equivalence and dimen-
sional analysis, a CS-pv model was developed to char-
acterize the dimensionless relationship between plastic
displacement and load for specimenswithmode I cracks
under 3D constraints, considering the universality of
materials and geometric dimensions .

(2) The effects of constitutive and geometric parameters
on dimensional relationships between the maximal first
principal stress and the load were analyzed through
large-deformation finite element analyses. The ascend-
ing periods of σ1max

T/σ0—P/P* curves exhibited obvi-
ous correlations with all parameters a/W , B/W , K , E,
and n. In contrast, the stable periods of the curves were
only closely related to n.
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Fig. 10 σ1max
T/σ0-P/P* curves with different n

(3) A CS-σ1max
T model was developed to describe the

dimensionless relationship between the crack-tip max-
imal first principal stress and the load. The effects of
geometric parameters a/W and B/W , as well as con-
stitutive parameters K , E, and n on σ1max

T/σ0—P/P*

curves were all taken into consideration.

(4) The CS-σ1max
T model was validated through large-

deformation finite element analyses under over
100 different working conditions. The predicted
σ1max

T/σ0—P/P curves using the developed model
agreed well with finite element results for CT and SEB
specimens comprising various materials and geome-
tries.
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