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Abstract
The classical piezoelectric theory fails to capture the size-dependent electromechanical coupling behaviors of piezoelectric
microstructures due to the lack of material length-scale parameters. This study presents the constitutive relations of a piezo-
electric material in terms of irreducible transversely isotropic tensors that include material length-scale parameters. Using
these relations and the general strain gradient theory, a size-dependent bending model is proposed for a bilayer cantilever
microbeam consisting of a transversely isotropic piezoelectric layer and an isotropic elastic layer. Analytical solutions are
provided for bilayer cantilever microbeams subjected to force load and voltage load. The proposed model can be simplified to
the model incorporating only partial strain gradient effects. This study examines the effect of strain gradient by comparing the
normalized electric potentials and deflections of different models. Numerical results show that the proposed model effectively
captures size effects in piezoelectric microbeams, whereas simplified models underestimate size effects due to ignoring partial
strain gradient effects.

Keywords Size dependency · Piezoelectric microbeam · Size effect · Strain gradient effect

1 Introduction

Piezoelectric microstructures have gained significant atten-
tion in the field ofmicro-sized devices and systems, including
micro energy harvesters, microsensors, and microactua-
tors [1]. The performance of these microdevices relies
on the electromechanical coupling properties of piezoelec-
tric microcomponents. However, as the characteristic sizes
of piezoelectric structures reach microns and sub-microns,
their properties exhibit notable deviations from macro-
scale behavior. Experimental studies have revealed size-
dependent electromechanical coupling behaviors in piezo-
electric microstructures. For instance, Bühlmann et al. [2]
observed a significant increase in the piezoelectric response
for lateral dimensions below300 nm in lead zirconate titanate

B Shenjie Zhou
Zhousj@sdu.edu.cn

1 School of Mechanical Engineering, Shandong University,
Jinan 250061, China

2 Key Laboratory of High Efficiency and Clean Mechanical
Manufacture, Ministry of Education, Shandong University,
Jinan, 250061, China

(PZT) films. Huang et al. [3] reported a substantial enhance-
ment in the effective piezoelectric coefficient and electric
energy density of barium strontium titanate (BST) can-
tilever microbeams with decreasing beam thickness. These
size-dependent phenomena remain unexplained by classical
continuum theories of piezoelectricity.

To explain the size-dependent mechanical behavior of
microstructures, a variety of high-order continuum theories,
including those of high-order elastic deformation, have been
developed, such as couple stress theory and strain gradient
theory. Couple stress analysis can be categorized into the ini-
tiated version and the modified version. As for the initiated
couple stress theory, Mindlin [4] introduced rotation gradi-
ents into the strain energy of the structure. Subsequently,
Yang [5] developed a modified couple stress theory, which
considers only the symmetric components of rotation gradi-
ents on this basis. As for strain gradient theory, the earliest
version was proposed by Mindlin [6] by introducing the first
gradient of strain into the strain energy. On this basis, Lam
et al. [7] put forward the modified strain gradient theory,
where the components of strain gradients corresponding to
the antisymmetric rotation gradients in the strain energy are
ignored. In addition, Aifantis [8] established a simple strain
gradient theorywith only onematerial scale length parameter
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for isotropicmaterials. Zhou et al. [9] reformulatedMindlin’s
first-order strain gradient elasticity theory and introduced an
isotropic strain gradient model containing only three inde-
pendent length parameters. Because this equation does not
need any assumptions or approximation conditions, it can
be regarded as a generalized strain gradient theory [10]. It
should be pointed out that the couple stress theory, Aifantis’s
simple theory and the modified strain gradient theory are
specific cases of the generalized strain gradient theory [11].
The above-mentioned high-order theories have been widely
used in the numerical simulation of microstructures, such as
microbeams, microplates, and microshells.

Recently, high-order theories incorporating piezoelectric
effects based on electromechanical formulation have been
employed to model electromechanical responses in piezo-
electric microstructures. For instance, Korayem et al. [12]
applied the couple stress theory to model the performance
of atomic force microscopy with a piezoelectric microcan-
tilever. Arefi and Zenkour [13] analyzed the vibration, wave
transmission, and static bending characteristics of Timo-
shenko sandwich microbeams made of functionally graded
piezoelectricmaterials using themodified strain gradient the-
ory.

All the aforementioned studies have primarily relied on
simplified strain gradient theories that neglect certain com-
ponents of strain gradients, leading to inaccurate predictions
of size effects in small-scale structures [11]. In this study,
a model based on the generalized strain gradient theory
is proposed to investigate the size-dependent static charac-
teristics of bilayer piezoelectric microbeams [9]. On this
basis, the constitutive equations incorporating strain gra-
dients for transversely isotropic piezoelectric materials are
given. Basic equations for obtaining analytic solutions of
bilayer piezoelectric cantilever beams are derived using the
variational method. Then, the electromechanical responses
of a piezoelectric–elastic bilayer cantilever under force load
and voltage load are determined, respectively. The results
obtained using different strain gradient theories are analyzed
to reveal the contribution of strain gradient components.

2 Constitutive Relations for Piezoelectric
Materials with Strain Gradient Effects

The present study develops a model for piezoelectric bilayer
microbeams based on the general strain gradient theory in
[9], which is appropriate for linear elastic materials. In the
following, we recall the principal results of the constitutive
relations in this theory. The expression for the strain energy
density in the strain gradient elasticity theory is as follows:

U0 � 1

2
σi jεi j +

1

2
τi jkηi jk (1)

where σ ij is the classical Cauchy stress tensor, εij is the strain
tensor, ηijk is the strain gradient tensor whose last two indices
satisfy the subsymmetric condition, and τ ijk is the higher-
order stress tensor work conjugated with the strain gradient
tensor. The definitions of the strain tensor and the strain gra-
dient tensor are as follows

εi j � 1

2

(
ui , j + u j , i

)
(2)

ηi jk � ε jk, i � 1

2

(
u j , ki + uk, j i

)
(3)

Here, ui is the displacement vector, and the comma
denotes partial differentiation of the coordinates. The con-
stitutive relations derived from the strain energy density are
as follows [9]

σi j � ∂U0

∂εi j
� Ci jklεkl (4)

τi jk � ∂U0

∂ηi jk
� gi jklpqηlpq (5)

in which Cijkl denotes the conventional material elastic ten-
sor, and gijklpq represents the material elastic length-scale
tensor linked with the strain gradient effects.

For isotropic materials, the convectional elastic tensor
only has twoLame constantsλ andμ, while thematerial elas-
tic length-scale tensor only contains three independent length
scale parameters l0, l1, and l2 for a general case. Thus, the
expressions of constitutive relations (4) and (5) using Lame
constants and the independent length-scale parameters can
be rewritten, respectively, as follows [9]

σi j � λδi jεnn + 2μεi j (6)

τi jk �μ

[(
9

5
l20 − 4

15
l21 − l22

)(
δi jηnnk + δikηnnj

)

−
(
3

5
l20 +

2

15
l21 − l22

)
(
δi jηknn + δikη jnn + 2δ jkηinn

)

+

(
12

5
l20 − 2

15
l21 − 2l22

)
δ jkηnni +

(
2

3
l21 + 4l22

)
ηi jk

+

(
2

3
l21 − 2l22

)(
ηki j + η j ik

)
]

(7)

The above constitutive relations are the general form of
strain gradient elasticity theory, involving all components of
the strain gradient tensor. When ignoring certain parts of the
strain gradient tensor, the current form can be reduced to var-
ious forms of simplified strain gradient elasticity theory [11].
For instance, by disregarding the symmetric components, the
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general theory with three length-scale parameters simplifies
to the initial couple stress theory containing two parameters.

By introducing the electric term into the strain energy
density (1) of the general strain gradient theory,we can obtain
the electric enthalpy function of a piezoelectric solid which
incorporates the effects of strain gradient as follows:

H � 1

2
σi jεi j +

1

2
τi jkηi jk − 1

2
Ei Di (8)

where Di is the electric displacement vector, and Ei is the
electric field vector defined by

Ei � −ϕ, i (9)

in which ϕ denotes the electric potential function. Consider-
ing the coupling actions between strain and electric field, the
constitutive relations of linear elastic piezoelectric materials
based on the general strain gradient theory are derived from
Eq. (8) as

σi j � CE
i jklεkl − eki j Ek (10)

τi jk � gi jklpqηlpq (11)

Di � eiklεkl + kSik Ek (12)

where CE
i jkl , eki j , gi jklpq , and kSik denote the elastic, piezo-

electric, elastic length-scale, and dielectric constant tensors,
respectively. The independent parameters of these material
constant tensors vary for different classes of piezoelectric
crystalline materials and can be provided accordingly. For
transversely isotropic piezoelectric materials, all tensors in
the constitutive relations (10–12), both the variable tensors
and material constant tensors, can be decomposed into two
orthogonal parts in the main direction and plane of trans-
verse isotropy, respectively. The complete representations of
these components using elementary tensors attached to the
main direction and plane of transverse isotropy are detailed in
Appendix A. Then, the constitutive relations of these tensors
are rewritten in component form as

σi j � CEn
i jklε

n
kl + CEt

i jklε
t
kl − enki j E

n
k − etki j E

t
k (13)

τi jk � gni jklpqη
n
lpq + gti jklpqη

t
lpq (14)

Di � eniklε
n
kl + etiklε

t
kl + kSnik E

n
k + kStik E

t
k (15)

in which the superscripts ‘n’ and ‘t’ denote the components
of tensors attached to the main direction and plane of trans-
verse isotropy, respectively. It turns out that the components
with the superscript ‘t’ are isotropic because the material
properties are isotropic in the plane of transverse isotropy.

3 Size-Dependent Models of Bilayer
Microbeams

A rectangular bilayer microbeam composed of a transversely
isotropic piezoelectric upper layer with a thickness of h1 and
an isotropic elastic lower layer with a thickness of h2 is con-
sidered. As can be seen in Fig. 1, the size of the miniature
beam is determined by its total thickness (H� h1 + h2), length
L, and width B. In the Cartesian coordinate system, a trans-
versely isotropic plane with the length and width aligning
uniformly with the x- and y-axes, and the thickness along
the z-axis. The zero-strain axis is indicated by the dashed
line, also known as the physical neutral axis. For a slender
beam with strain gradient effects, the location of the zero-
strain axis is unknown. On this basis, a new method for
locating the zero-strain axis is proposed. Therefore, in the
Euler–Bernoulli beammethod, a displacement component is
used [14]

u � u0(x) − z
dw(x)

dx
, v � 0, w � w(x) (16)

where u, v, andw are displacements in the x-, y-, and z- direc-
tions, respectively, u0(x) � −d(x), and dw(x)/dx is the axial
displacement at z � 0, with d(x) representing the derivation
from the physical neutral axis to the x-axis, and w(x) depict-
ing beam deflection at the neutral axis. The non-vanishing
parts of the strain and its gradients derived from Eqs. (2) and
(3) are as follows:

εxx � du0
dx

− z
d2w

dx2
(17)

ηxxx � d2u0
dx2

− z
d3w

dx3
(18)

ηzxx � −d2w

dx2
(19)

By substituting Eqs. (17–19) into Eqs. (6) and (7), the
stress and the higher-order stress are obtained, respectively.
On this basis, the energy density of the elastic lower layer is
expressed as

(20)

U0 � 1

2
Eεxxεxx +

1

5
μ

(
9l20 + 2l21

)
ηxxxηxxx

+ 2μ

(
6

5
l20 +

4

15
l21 + l22

)
ηzxxηzxx

where E is the material modulus. For the piezoelectric layer,
non-vanishing terms of strain and strain gradients attached
to the direction and plane of transverse isotropy are derived
from Eqs. (A1–A6) in Appendix A as

(21)εtxx � εxx , ηtxxx � ηxxx , ηnzxx � ηzxx
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Fig. 1 Schematic of a bilayer piezoelectric microbeam

For a slender beam, the electric fieldEz of the piezoelectric
layer is mainly distributed in the thickness direction, while
compositions in other directions can be ignored. Then, non-
vanishing stress and electric displacement can be derived
from Eqs. (10–12) as

σ t
xx � C11εxx − e31Ez (22)

Dn
z � e31εxx + k33Ez (23)

and non-vanishing high-order stresses from Eq. (14) as

τ txxx � gt111111ηxxx (24)

τ nzxx � gn311311ηzxx (25)

Following [9], we let gt111111 � 2(C11−C12)(9l2t0+2l
2
t1)/5

and gn311311 � 2C44l2n , where lt0, lt1, and ln are the length-
scale parameters of the transversely isotropic piezoelectric
materials in the isotropic plane and main direction of trans-
verse isotropy, respectively.

Substituting Eqs. (21–25) into Eq. (8) yields the electric
enthalpy of the piezoelectric upper layer as

(26)

H0 � 1

2
C11εxxεxx − e31Ezεxx

+
1

5
(C11 − C12)

(
9l2t0 + 2l2t1

)
ηxxxηxxx

+ C44l
2
nηzxxηzxx − 1

2
k33EzEz

The total electric enthalpy of the bilayer beams is

H � B
∫ L

0

∫ 0

−h2
U0dzdx + B

∫ L

0

∫ h1

0
H0dzdx (27)

The work done by external force loads and electric loads
is

(28)

W �
∫ L

0
pwdx + Qw

∣
∣∣L0 + Mw′

∣
∣∣L0 + Mhw′′

∣
∣∣L0

+ Nu0
∣∣∣L0 + N hu′

0

∣∣∣L0 − B
∫ L

0
qϕ

∣∣∣h10 dx

where p is the distributed load, Q,M,Mh, N , and Nh are the
shear force, bendingmoment, higher-order bendingmoment,
axial force, and higher-order axial force at the end of beams,
and q is the electric charge density at the top and bottom
surfaces of the piezoelectric layer. The apostrophe denotes
the first derivative of x, and the double apostrophe denotes
the second derivative of x.

The mechanical and electrostatic equilibrium of the
bilayer beam requires the following variational equation

δ(H − W ) � 0 (29)

By substituting Eqs. (20) and (26) into Eq. (27) and cal-
culating the variational equation, we obtain the governing
equations

k33ϕ, zz + e31w
′′ � 0 (30)

a5u
(5)
0 − a3u

(3)
0 + a4w

(4) − a6w
(6) − p � 0 (31)

a1u
′′
0 − a2u

(4)
0 − a3w

(3) + a5w
(5) � 0 (32)

and the boundary conditions as

(
e31u

′
0 − e31

d2w

dx2
z − k33ϕ, z + q

)
δϕ

∣∣
∣h10 � 0 (33)

(
a1u

′
0 − a2u

(3)
0 − a3w

′′ + a5w
(4) + Be31

∫ h1

0
ϕ, zdz − N

)
δu0

∣∣
∣L0 � 0

(34)
(
a2u

′′
0 − a5w

(3) − N (h)
)
δu′

0

∣∣∣L0 � 0 (35)
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(
a3u

′′
0 − a5u

(4)
0 − a4w

(3) + a6w
(5) − Q

)
δw

∣∣
∣L0 � 0 (36)

(
−a3u

′
0 + a5u

(3)
0 + a4w

′′ − a6w
(4) − Be31

∫ h1

0
zϕzdz − M

)
δw′

∣
∣
∣L0 � 0

(37)
(
a6w

(3) − a5u
′′
0 − Mh

)
δw′′

∣∣∣L0 � 0 (38)

in which u(n)0 and w(n) (n � 3, 4, 5, 6) are the n-th derivatives
of u0 and w with respect to x, respectively, and the constants
are

a1 � C11Bh1 + EBh2, a2 � b1Bh1 + b2Bh2

a3 � 1

2
C11Bh

2
1 − 1

2
EBh22

a4 � 2C44l
2
n Bh1 + b3Bh2 +

1

3
C11Bh

3
1 +

1

3
EBh32

a5 � 1

2
b1Bh

2
1 − 1

2
b2Bh

2
2, a6 � 1

3
b1Bh

3
1 +

1

3
b2Bh

3
2

(39)

with

(40)

b1 � 2

5
(C11 − C12)

(
9l2t0 + 2l2t1

)
, b2

� 2

5
μ

(
9l20 + 2l21

)
, b3 � 2μ

(
6

5
l20 +

4

15
l21 + l22

)

So far, a general model of the bilayer piezoelectric
microbeams based on the general strain gradient theory has
been established. The general strain gradient theory can be
reduced to the simplified theory by ignoring certain com-
ponents of strain gradient [11]. On this basis, the general
model canbe simplified further basedon the simplified theory
including only one length-scale parameter [8]. This simpli-
fication is achieved by appropriately selecting the constants
in Eq. (39) as

b1 � 2(C11 − C12)l
2
st, b2 � b3 � 2μ(1 − v)

(1 − 2v)
l2s (41)

where lst and ls are the length-scale parameters of the trans-
versely isotropic piezoelectric layer and the isotropic elastic
layer for the simplified strain gradient theory, respectively.

Moreover, if all material length-scale parameters for the
general model are taken as zero, meaning that the strain gra-
dient effects are neglected, the relations a2 � a5 � a6 � 0 and
a4 � 1

3C11Bh31 +
1
3 EBh32 hold true. Additionally, the deriva-

tion between the zero-strain axis and the x-axis d � −a3/a1
is a constant, and the axial displacement u0(x) at z � 0 is
related to the deflection w(x) by −d · dw(x)/dx . In this case,
the general model reduces to the model of bilayer piezoelec-
tric beams based on conventional elastic and piezoelectric

theories. The corresponding governing equations are given
by

k33ϕ, zz + e31w
′′ � 0 (42)

(E I )ew
(4) − p � 0 (43)

and the boundary conditions become

[e31
d2w

dx2
(d + z) + k33ϕ, z − q]δϕ

∣∣∣h10 � 0 (44)

[(E I )ew
′′ − Be31

∫ h1

0
(d + z)ϕ, zdz − M]δw′

∣∣
∣L0 � 0 (45)

[(E I )ew
(3) + Q]δw

∣∣∣L0 � 0 (46)

where (E I )e � 1
2C11Bh21d− 1

2 EBh22d+
1
3C11Bh31+

1
3 EBh32

is the effective bending rigidity for bilayermicrobeams of the
classical piezoelectric theory.

4 Electromechanical Responses of Bilayer
Cantilever Microbeams

This study focuses on the static bending of a bilayer piezo-
electric cantilever microbeam subjected to force load at its
free end and voltage load on its top surface, respectively.

4.1 A Bilayer Cantilever Piezoelectric Microbeam
under a Force load at Its Free End

As shown in Fig. 1, a bilayer piezoelectric cantilever
microbeam under force Q at the free end is considered. The
zero point of electric potential is set at the interface between
the upper and lower beams. For this case, the governing
Eqs. (30–32) of the present model can be simply written as

k33ϕ, zz + e31w
′′ � 0 (47)

a5u
(5)
0 − a3u

(3)
0 + a4w

(4) − a6w
(6) � 0 (48)

a1u
′′
0 − a2u

(4)
0 − a3w

(3) + a5w
(5) � 0 (49)

and the boundary conditions become

(
e31u

′
0 − e31

d2w

dx2
z − k33ϕ, z

)∣
∣
z�h1 � 0, ϕ

∣
∣
z�0 � 0

(50)
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(
a1u

′
0 − a2u

(3)
0 − a3w

′′ + a5w
(4) + Be31

∫ h1

0
ϕ, zdz

) ∣∣
x�L

� 0, u0
∣∣
x�0 � 0

(51)

(
a2u

′′
0 − a5w

(3)
)∣∣

x�L � 0, u′
0

∣∣
x�0 � 0 (52)

(53)

(
a3u

′′
0 − a5u

(4)
0 − a4w

(3) + a6w
(5) − Q

) ∣
∣
x�L

� 0, w
∣
∣
x�0 � 0

(54)

(
−a3u

′
0 + a5u

(3)
0 + a4w

′′ − a6w
(4) − Be31

∫ h1

0
zϕ, zdz

) ∣
∣
x�L

� 0, w′ ∣∣
x�0 � 0

(
a6w

(3) − a5u
′′
0

)∣∣
x�0 � 0, w′′∣∣

x�L � 0 (55)

Solving the Gauss Eq. (47) with boundary conditions (50)
gives the electric potential as follows

ϕ � e31
k33

(
u′
0z − 1

2
w′′z2

)
� 0 (56)

By solving the mechanical governing Eqs. (48) and (49),
the solutions of displacements are obtained as:

(57)

w � C1 + C2x + C3x
2 + C4x

3 + C5e
r1x

+ C6e
−r1x + C7e

r2x + C8e
−r2x

(58)

u0 � C9 + C10x +
3a3
a1

C4x
2 + d1C5e

r1x

− d1C6e
−r1x + d2C7e

r2x − d2C8e
−r2x

in which Ci (i � 1, 2 …10) are undetermined constants, and
the parameters are

r1 � [
−g2 + (g22 − 4g1g3)1/2

2g1
]1/2

r2 � [
−g2 − (g22 − 4g1g3)1/2

2g1
]1/2 (59)

d1 � a3r1 − a5r31
a1 − a2r21

, d2 � a3r2 − a5r32
a1 − a2r22

(60)

with

g1 � a25 −a2a6, g2 � a2a4 +a1a6 −2a3a5, g3 � a23 −a1a4

(61)

Based on the reduced conditions of the general model to
simplified models, the above solutions can also be reduced

to those of simplified models. For example, the condition of
setting material length scale parameters to be zero, that is,
r1 � r2 � 0, leads to the solution of the classical model as

wc � C1 + C2x + C3x
2 + C4x

3 (62)

For solutions (57) and (58) with strain gradient effects, the
constantsCi (i� 1, 2… 10) are determined using the bound-
ary conditions (51–55). For the classical solution (62), the
constants Ci (i � 1, 2 … 4) are determined using the bound-
ary conditions (44–46). The results are given in Appendix
B.

4.2 A Bilayer Piezoelectric Cantilever Microbeam
Subjected to aVoltage on the Piezoelectric Layer

A bilayer piezoelectric cantilever microbeam is subjected
to a voltage on the piezoelectric layer, as shown in Fig. 1.
The zero point of electric potential is set at the interface
between the upper and lower beams. In this scenario, the
boundary conditions (50) and (53) are taken as follows, while
the remaining boundary conditions and governing equations
are the same as those of the previous problem.

ϕ
∣∣
z�h1 � V , ϕ

∣∣
z�0 � 0 (63)

(
a3u

′′
0 − a5u

(4)
0 − a4w

(3) + a6w
(5)

)∣∣
x�L � 0, w

∣∣
x�0 � 0

(64)

The electric potential solution of Eq. (47) with condition
(63) is obtained as

ϕ � 1

2

e31
k33

w′′(h1z − z2) +
V

h1
z (65)

The displacement solutions follow the same form as Eqs.
(57) and (58). Different from the previous problem, in this
case, the constants Ci (i � 1, 2 … 10) are determined using
boundary conditions (51), (52), (54), (55), and (64). The
result is also given in Appendix B.

5 Numerical Results and Discussion

To evaluate the bilayer piezoelectric cantilever microbeam
models established in the previous section, this section
presents some numerical examples. The material PZT-5H
is chosen for the piezoelectric layer, with material constants
e31 � − 6.5 N/(Vm), C11 � 126 GPa, C12 � 55 GPa, C44

� 35.3 GPa, and k33 � 13 × 10–9 N/V2. For the elastic
layer made of Si, the material constants E � 166 GPa, μ

� 166 GPa, and υ � 0.3 are considered. For simplicity, the
material length scale parameters are taken as lt0 � lt1 � 1.2ln
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Fig. 2 Induced electric potential of bilayer piezoelectric beams under
force load

� lst � l for the piezoelectric layer and l0 � l1 � l2 � ls �
0.8 l for the elastic layer. The slenderness ratio L/h � 20 and
width-to-thickness ratio B/h � 0.5 are considered, respec-
tively.

5.1 Electric Responses of Bilayer Piezoelectric
Beams under Mechanical Loads

The bilayer piezoelectric beam has the ability to generate
electric potential when subjected to mechanical loads, mak-
ing it an important feature for use in sensors and energy
harvesting. To better understand the role of piezoelectricity
and strain gradient, this study presents numerical results of
the electric potential response of bilayer piezoelectric can-
tilevers subjected to free-end loading.

Figure 2 shows the relationship between normalized elec-
tric potential and piezoelectric layer thickness proportion
while keeping total thickness constant. It can be seen that the
changing trend of general strain gradient mode (GSGM) is
similar to that of the classical mode in the change of induced
electric potential.However, there is still a big difference.With
the decrease of the maximum induced electric potential, the
intrinsic thickness of the material does not change.

In addition, the results also indicate that as the piezo-
electric layer thickness increases, the normalized electric
potential increases until achieving a maximum value when
the zero-deviation is at the interface between the upper and
lower beams, then decreases towards zero. This is because
the deviation of the physical neutral axis from the interface
decreases and approaches zero, then becomes more negative
with the increase of piezoelectric layer thickness, as shown in
Fig. 3. In the case of positive deviation, meaning the physical

Fig. 3 Neutral axis derivation of bilayer piezoelectric beams

Fig. 4 Size-dependent electric potential of bilayer piezoelectric beams
under force load (h1/H � 1:2)

neutral axis is below the interface, the induced electric poten-
tial remains positive throughout the piezoelectric layer due to
tension. In the case of negative deviation, where the physical
neutral axis lies above the interface, part of the piezoelectric
layer experiences compression. This leads to the generation
of electric fieldswith opposite directions above and below the
neutral axis, causing the overall electric potential to decrease.

Figure 4 displays dimensionless maximum induced elec-
tric potentials of various models versus dimensionless thick-
ness, revealing noticeable size dependency in induced elec-
tric potential. Compared to classical methods, the induced
electric potential of GSGM is lower, particularly at smallH/l
ratios. Additionally, the general model yields even smaller
induced electric potentials than the simplified model.
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Fig. 5 Variation of normalized maximum deflections with piezoelectric
layer thickness when a 1 V voltage is applied

These findings suggest that the simplified model under-
estimates the size-dependent electromechanical response of
microbeams due to neglecting partial strain gradients, while
the general model effectively captures size dependence.

5.2 Mechanical Responses of Bilayer Piezoelectric
Microbeams under Electric Loads

When a voltage is applied to the piezoelectric layer, the
converse piezoelectric effect results in bending of bilayer
piezoelectric beams. For a cantilever beam, the maximum
deflection is at its free end.

To investigate the effect of piezoelectric layer thickness
on the bending deformation, the maximum deflections pre-
dicted by different models versus the piezoelectric layer
thickness are plotted in Fig. 5, where the applied voltage is
1 V. The results show that the deflections of both the GSGM
and classical model rapidly increase in negative values with
decreasing piezoelectric layer thickness. TheGSGMexhibits
smaller deflections than the classicalmodel, particularlywith
decreasing dimensionless thickness, indicating size effects
on the mechanical response of bilayer piezoelectric beams at
small scales.

Figure 6 presents the size dependency of deflection for a
bilayer piezoelectric microbeam when a voltage is applied.
Here, w(L) represents the deflections of GSGM and w0(L)
represents the defection of the classical model. It is found
that the deflection calculated by the strain gradient method
is smaller than the traditional deflection as the dimension-
less thicknessH/l is small. For the strain gradient model, the
deflection result of the general model is less than the simpli-
fied model.

Fig. 6 Size dependency of normalized deflection for a bilayer piezo-
electric microbeam

6 Conclusions

In this study, we analyze the electromechanical properties
of bilayer piezoelectric microbeams using the generalized
stress gradient method. We describe the constitutive rela-
tions of transversely isotropic piezoelectric materials, which
take into account the effects of strain gradient, represented
by specific forms of transversely isotropic tensors. By uti-
lizing the electric enthalpy variational approach, we derive
the governing equations and boundary conditions for bilayer
piezoelectric beams. We also develop formulas to calculate
the induced potential and deformation of bilayer cantilever
piezoelectric microbeams under force load and voltage load.
Our findings show that the induced electric potential reaches
its highest value at the intrinsic thickness under force load.
In contrast, the generated deflection increases as the piezo-
electric layer thickness decreases under a constant voltage.At
small scales, the electric potential and deflection predicted by
strain gradientmodels are lower than the classicalmodel. The
strain gradient models accurately capture the size-dependent
electromechanical coupling characteristics of bilayer piezo-
electric microbeams.
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Appendix A: The Representation
of transversely isotropic tensors
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Appendix B: The determined constants
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