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Abstract
This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates
using the C1 nodal natural element method (C1 nodal NEM). Based on Koiter’s theorem and the von Mises and two-surface
yield criteria, a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of
strain-hardening thin plates, and the C1 nodal NEM is adopted for discretization. Additionally, König’s theory is used to
deal with time integration by treating the generalized plastic strain increment at each load vertex. A direct iterative method
is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at
each iteration. Kinematic shakedown load factors are directly calculated in a monotonically converging manner. Numerical
examples validate the accuracy and convergence of the developedmethod and illustrate the influences of limited and unlimited
strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.

Keywords Shakedown analysis · Kinematic theorem · Strain-hardening · Triangular sub-domain stabilized conforming nodal
integration · C1 nodal natural element method

1 Introduction

Thin plate structures are widely used in aerospace, aviation,
nuclear energy, shipbuilding and other engineering fields.
The precise and reliable computation of the plastic limit-
bearing capacity is a very important issue for optimizing the
design and safety assessment of thin plate structures under
cyclic loading. Compared to traditional linear elastic meth-
ods, applying plastic theory to evaluate the bearing capacity
of plates not only fully utilizes materials’ plastic proper-
ties, but also has important theoretical research and practical
application value in terms of reducing costs and saving
resources. Shakedown analysis is a significant branch of plas-
tic mechanics that provides a direct and effective method for
investigating the structural plastic failure load under repeated
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loading, without involving the load change history needed in
elastic–plastic incremental analysis, and is just connected to
the applied external load and structure’s material characteris-
tics.Koiter’s theorem [1] (kinematic or upper bound theorem)
and Melan’s theorem [2] (static or lower bound theorem) are
two fundamental theories of shakedown analysis, where the
kinematically admissible strain field is modified to solve the
minimum shakedown load in the former, and the statically
admissible residual stress field is optimized to calculate the
maximum shakedown load in the latter. The obtained shake-
down loads are important parameters that truly reflect the
safety margin of structures and have already been used in
many design codes and regulations of engineering structures
[3].

Up to now, theoretical researches and engineering appli-
cations of shakedown analysis have progressed significantly.
However, investigations of shakedownanalysis for thin plates
remain relatively scarce compared to their limit analysis.
Theoretical and experimental works have been limited by
structural geometry, boundary conditions, loading charac-
teristics, etc., and few achievements have been reported.
Notable studies include those byLi et al. [4], Chinh [5, 6], and
Yu et al. [7]. With the rapid development of computer tech-
nologies and numerical calculation methods, some scholars
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have combined mature numerical methods with mathemati-
cal programming theorems of shakedown analysis, focused
on developing highly efficient optimization algorithms and
excellent numerical solution procedures, and published some
interesting and remarkable findings. Such works include
investigations by Qian and Wang [8], Atkociunas et al. [9],
Tran [10], Zheng et al. [11], Blazevicius et al. [12], and
Zhou et al. [13]. However, these studies have not consid-
ered the strain-hardening of materials in the shakedown
analysis for plates. In fact, many metals and alloys exhibit
obvious strain-hardening properties. The shakedown load is
sometimes influenced by taking into account the material’s
strain-hardening effect, and the conservative shakedown load
may be obtained when ignoring strain-hardening. Relevant
studies include those of Feng and Liu [14], Zhang [15], Xu
[16], Simon [17], Ma et al. [18] and Peng et al. [19]. Thus, it
is necessary to further develop excellent solution algorithms
using accurate and efficient numerical methods and adopt
them to study the influence of material’s strain-hardening on
the shakedown failure loads of plates.

TheC1 natural elementmethod (C1 NEM) [20] is a unique
and fascinating meshless method derived from the natu-
ral element method (NEM) [21], which does not require
complex matrix operations, only relies on scattered nodal
information without nodal mesh data or artificial parame-
ters and has been successfully applied to study the limit
and shakedown analyses of thin plates [13, 22, 23]. While
the background integration carried out over each Delaunay
triangle in the NEM and C1 NEM provides high accuracy
and stability, it also carries the drawbacks of a tremendous
amount of computation and inconvenient post-processing,
so it is considered to be far from the optimal selection. The
stabilized conforming nodal integration (SCNI) with strain
smoothing stabilization proposed by Chen et al. [24] effec-
tively overcomes the shortcomings of background integration
used in theNEM, and Zhou [25] adopted the nodal NEM [26]
with SCNI and Sibson interpolation to obtain accurate upper
bound shakedown load multipliers for elastic-perfectly plas-
tic plane structures. Base on the sub-domain stabilized con-
forming integration (SSCI) developed from SCNI by Wang
and Chen [27] for numerical analysis of thin plates, Zhou
[28] further proposed the triangular sub-domain stabilized
conforming nodal integration (TSNI) scheme and applied the
numerical method named C1 nodal NEM combining advan-
tages of TSNI and C1 shape functions to study linear elastic
analysis of thin plates. The exact numerical results obtained
imply that the C1 nodal NEM is also ideal for kinematic
shakedown analysis of strain-hardening thin plates.

This paper proposes an innovative numerical solution
method using the C1 nodal NEM for kinematic shakedown
analysis of strain-hardening thin plates. Based on Koiter’s
theorem and the von Mises and two-surface yield criteria,
the associated mathematical programming formulation is

established. The C1 nodal NEM is used to discretize this
formulation, in which the C1 shape functions are utilized to
approximate the trail function of residual displacement incre-
ment, and the TSNI scheme is adopted for numerical inte-
gration. Time integration involves treating the generalized
plastic strain increment at each load vertex, and the nonlin-
ear mathematical programming formulation is linearized and
solved directly by revising the objective function and equality
constraints iteratively. Ultimately, the accuracy and conver-
gence of the proposed method are demonstrated through
numerical examples, and the influences of limited and unlim-
ited strain-hardening models on the kinematic shakedown
load factors of thin square and circular plates are illustrated.

2 Kinematic Shakedown Analysis Based
on the Two-Surface Yield Criterion

Suppose the studied thin plate described with problem
domain Ω � S× h0 and displacement boundary Γu satisfies
the Kirchhoff assumption, where the mid-plane S is set to
coincide with the xy-plane and perpendicular to the z-axis,
and h0 stands for the thickness of plate. The classic kine-
matic shakedown theorem (Koiter’s theorem) is expressed as
[3, 13, 25]: If there exists a kinematically admissible strain
rate cycle that causes the external work rate from imposed
loads to exceed the structural plastic dissipation work rate,
shakedown does not occur. Accordingly, this paper estab-
lishes the following mathematical programming formulation
for the kinematic shakedown analysis of strain-hardening
plates [13, 28]:

s � min
κ̇p

∫ T

0

∫
Ω

D
(
κ̇p)dΩdt (1)

∫ T

0

∫
Ω

MeTκ̇pdΩdt � 1 (2)

�κp �
∫ T

0
κ̇pdt � B̃(�a) in Ω (3)

�a �
∫ T

0
ȧdt in Ω (4)

�a � 0 on Γu (5)

where s is the kinematic shakedown load factor, T means the
loading cycle time, κ̇p represents the vector of generalized
plastic strain rate, and D(κ̇p) denotes the plastic dissipation
work rate. According to the von Mises yield criterion, and
using the two-surface yield criterion to control the yield sur-
face and the movement of its center, D(κ̇p) can be written as
[15, 16]:
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D
(
κ̇p) � MP

√
(κ̇p)TQ−1κ̇p + hP

√
(�κp)T Q−1(�κp) (6)

In Eqs. (1)–(6), Me stands for the vector of virtual gener-
alized pure elastic stress field produced by the independently
variable external applied load P , �κp and �a, respectively,
represent the vectors of generalized plastic strain increment
and residual displacement increment generated after one
loading cycle during the time interval t ∈ [0, T ], B̃ denotes
the generalized strain–displacement relationshipmatrix, ȧ �{

ẇ θ̇x θ̇y

}T
stands for the vector of kinematically admis-

sible displacement velocity field, and ẇ, θ̇x � ẇ, x and
θ̇y � ẇ, y , respectively, mean the rate of deflection, and the
rates of rotation in the x- and y-directions. MP � Yh20/4 rep-
resents the plastic limit bending moment and hP � h̃h20/4, Y
denotes the yield stress of material, h̃ is the material’s hard-
ening limit, Q means a positive-definite symmetric constant
matrix, and its inverse matrix is Q−1 � 2D/3, where D
denotes a constant matrix introduced to deal with the plastic
incompressibility condition [13, 22].

Equation (1) defines the objective function of this nonlin-
ear minimization problemwith time integration, which satis-
fies the equality constraints named normalization, geometric
compatibility, cumulative displacement and displacement
boundary conditions in Eqs. (2)–(5), respectively. In Eqs.
(1)–(5), the classic assumptions of small deformation, con-
stant elastic modulus and quasi-static loading are adopted.

3 C1 Nodal Natural Element Method

The C1 nodal natural element method (C1 nodal NEM) pro-
posed and named by Zhou [28] is a recent variant of the C1

NEM [20]. This novel numerical method is also based on
the Voronoi diagram and Delaunay triangulation of scattered
nodes, adopts the Galerkin method to discretize the global
system equation, applies a transformation of the C1 natural
neighbor interpolation to approximate theC1 shape functions
and utilizes the TSCI scheme to perform numerical integra-
tion. This paper will firstly present the C1 shape functions
and TSCI scheme.

3.1 C1 Shape Functions

NP scattered nodes are used to discretize the mid-plane
S of the studied thin plate, and n nodes are searched as
the natural neighbor nodes of point x ∈ R

2 situated on S
using the empty circumcircle criterion adopted in the Sibson
interpolation [21]. The obtained Sibson shape functions of
these n nodes are described as φ1(x), φ2(x), · · · , φn(x) ,

and � �
(

φ1(x), φ2(x), · · · , φn(x)

)
is assumed as the

natural neighbor coordinate of point x. Embedding � in

the Bernstein–Bézier representation of a cubic simplex to
approximate the C1 shape functions Ψ (�) obtained from
the C1 natural neighbor interpolation, the trial function for
deflection ŵ(�) of the thin plate can be written in the fol-
lowing matrix form [20]:

ŵ(�) �
n∑

I�1

Ψ I (�)a I � Ψ T(�)a (7)

with the following defined vectors:

Ψ T(�) � BT(�)T (8)

a �
[
w1 θ1x θ1y · · · wn θnx θny

]T
(9)

Ψ T(Ψ ) � [Ψ1(�) Ψ2(�) Ψ3(�) · · ·
Ψ3n−2(�) Ψ3n−1(�) Ψ3n (�)

]
(10)

where B(�) is the column vector of Bernstein–Bézier basis
function. T stands for the relationship matrix relating the
column vector of Bézier ordinates b and nodal degrees of
freedom a, and b � Ta. wn � w(xn), θnx � w, x

(xn), and θny � w, y(xn), respectively, are the displacement
and rotations of node n. Ψ3n−2(�), Ψ3n−1(�) and Ψ3n(�),
respectively, represent the C1 shape functions for nodal dis-
placement wn , and rotations θnx and θny of node n.

To evaluate the generalized strain–displacement relation-
ship matrix B̃ in Sect. 3.2, the first-order derivative Ψ T

,α(�)

(α � x , y) of C1 shape functions Ψ T(�) is simply required
to be calculated, which can be expressed as [20]:

Ψ T
,α(�) � BT

,α(�)T (11)

where B,α(�) denotes the first-order derivative of the
Bernstein–Bézier basis function B(�). Further details on
calculating and introducing the C1 shape functions were pro-
vided by Sukumar and Moran [20]. The obtained C1 shape
functions possess the Kronecker delta property of nodal
function and nodal rotation values, allowing displacement
boundary conditions in the C1 nodal NEM to be treated as
easily and precisely as in the finite element method (FEM).

3.2 TSCI Scheme

Based on the principle of Voronoi diagram, the mid-plane
S discretized by NP scattered nodes can be divided into a

series of domains Sr
(
S � ⋃NP

r�1 Sr
)
, with each Sr relating

to a node xr . To ensure numerical precision and stability
for the numerical solution problems of thin plates with high-
order partial differential equations, each domain Sr is further
divided into RS nonoverlapping triangular sub-domains Srs
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(
S � ⋃NP

r�1 Sr � ⋃NP
r�1

⋃RS
s�1Srs

)
around node xr , with

each Srs relating to a virtual node xrs . The smoothed gen-
eralized strain κ̃i j (xrs) of virtual node xrs can be written as
[27]:

κ̃i j (xrs) � 1

Ars

∫
Srs

κi j (xrs)dS

� 1

2Ars

∫
Srs

{
w, i j + w, j i

}
dS

� 1

2Ars

∫
Γrs

{
w, i n j + w, j ni

}
dΓ (12)

where i , j � {x , y}; Γrs and Ars stand for the boundary
and area of triangular sub-domain Srs , respectively, and ni
denotes the unit outward normal of boundary Γrs .

Substituting the trial function of deflection ŵ(�) in Eq. (7)
into Eq. (12), the vector of smoothed generalized strain κ̃

(xrs) can be calculated as:

κ̃(xrs) �
np∑
I�1

B̃ I (xrs)a I (13)

κ̃(xrs) �
[
κ̃x (xrs) κ̃y(xrs) 2κ̃xy(xrs)

]T
(14)

B̃ I (xrs)

� − 1

Ars

∫
Γrs

⎡
⎢⎣

ψ3I−2, x (xrs)n1 ψ3I−1, x (xrs)n1 ψ3I , x (xrs)n1
ψ3I−2, y(xrs)n2 ψ3I−1, y(xrs)n2 ψ3I , y(xrs)n2

ψ3I−2, x (xrs)n2 + ψ3I−2, y(xrs)n1 ψ3I−1, x (xrs)n2 + ψ3I−1, y(xrs)n1 ψ3I , x (xrs)n2 + ψ3I , y(xrs)n1

⎤
⎥⎦dΓ

(15)

where np is the number of natural neighbor nodes for
integral points on the boundary Γrs of triangular sub-domain
Srs . It is important to point out that the C1 shape functions
cannot be directly calculated when integral points are
located on the Delaunay triangle boundaries. Zhou [28]
proposed a strategy to slightly offset the coordinate of each
Voronoi diagram vertex and properly set the offset factor
γ to guarantee computational accuracy and overcome C1

shape function calculation difficulties.
Compared to the C1 NEM using background integration,

the C1 nodal NEM adopting the TSCI scheme has obvious
advantages in the following aspects [28]: (a) In evaluating
the generalized strain–displacement relationship matrix B̃ I

(xrs) in Eq. (15), only the unit outward normals of bound-
aries and the first-order derivatives of C1 shape functions
are needed, and the second-order derivatives of C1 shape
functions are not required. (b) The TSCI scheme adopted

in the C1 nodal NEM is beneficial to the construction of
generalized plastic strain increment with high precision and
good stability for kinematic shakedown analysis of plates. (c)
By using the C1 nodal NEM, the nodal values, such as gen-
eralized plastic strain increment and generalized dissipation
work rate, can be directly obtained through simple algebraic
calculation, eliminating the need to derive these values from
the relevant values at integral points with approximation
techniques as in the C1 NEM and FEM [13, 29], and leading
to much simpler post-processing of numerical results.

4 Kinematic Shakedown Analysis
of Strain-Hardening Plates

4.1 Discretized Formulation

Building upon the above-mentioned fascinating properties
and advantages, the C1 nodal NEM is utilized to discretize
the objective function, normalization condition and geomet-
ric compatibility in Eqs. (1)–(3). The corresponding discrete
expressions are as follows:

s � min
˙̃κp

(xrs )

∫ T

0

NP∑
r�1

RS∑
s�1

Ars

{
MP

√[ ˙̃κp
(xrs)

]T
Q−1

[ ˙̃κp
(xrs)

]

+hP

√[
�κ̃p(xrs)

]TQ−1[�κ̃p(xrs)
]}

dt (16)

∫ T

0

NP∑
r�1

RS∑
s�1

Ars

[
M̃

e
(xrs)

]T[ ˙̃κp
(xrs)

]
dt � 1 (17)

�κ̃(xrs) �
∫ T

0

˙̃κp
(xrs)dt � B̃(xrs)(�a) (18)

König’s theory [30] is used to deal with the time inte-
gration in Eqs. (16)–(18). The smoothed generalized plastic

123



Kinematic Shakedown Analysis for Strain-Hardening Plates with the C1 Nodal Natural Element…

strain increment�κ̃(xrs) produced during one loading cycle
is calculated as the sum of smoothed generalized plastic
strain sub-increments κ̃

p
k(xrs) generated by load vertices Pk

(k � 1, 2, . . . , l), where l � 2v denotes the total num-
ber of load vertices Pk(k � 1, 2, . . . , l), with v being the
number of basis loads applied to the structure. Finally, the dis-
crete mathematical programming formulation for kinematic
shakedown analysis of strain-hardening plates can be written
as:

s �
NP∑
r�1

RS∑
s�1

Ars

l∑
k�1

MP

√[
κ̃
p
k(xrs)

]T
Q−1[κ̃p

k(xrs)
]

+
NP∑
r�1

RS∑
s�1

ArshP

√[
�κ̃p(xrs)

]T Q−1[�κ̃p(xrs)
]

(19)

NP∑
r�1

RS∑
s�1

Ars

l∑
k�1

[
M̃

e
(xrs)

]T[
κ̃p(xrs)

] � 1 (20)

�κ̃p(xrs) �
l∑

k�1

κ̃
p
k(xrs) �

[
B̃(xrs)

]
(�a) in Ω (21)

�a � 0 on Γu (22)

4.2 Iterative Algorithm

Using the Lagrange multipliers λ and Lrs to substitute Eqs.
(20)–(21) into Eq. (19), respectively, the following improved
objective function can be obtained:

L
(
κ̃
p
k(xrs), �a, λ, Lrs

)

�
NP∑
r�1

RS∑
s�1

Ars

{
l∑

k�1

MP

√[
κ̃
p
k(xrs)

]T
Q−1[κ̃p

k(xrs)
]}

+
NP∑
r�1

RS∑
s�1

Ars

{
hP

√
(�a)T

[
B̃(xrs)

]T
Q−1

[
B̃(xrs)

]
(�a)

}

+λ

{
1 −

NP∑
r�1

RS∑
s�1

Ars

l∑
k�1

[
M̃

e
k(xrs)

]T[
κ̃
p
k(xrs)

]}

+
NP∑
r�1

RS∑
s�1

LT
rs

{
l∑

k�1

κ̃
p
k(xrs) −

[
B̃(xrs)

]
(�a)

}
(23)

According to the minimization condition of Eq. (23), let
∂L/∂ κ̃

p
k(xrs) � 0, ∂L/∂(�a) � 0, ∂L/∂λ � 0, and

∂L/∂Lrs � 0. The solution expression for the h-th itera-
tion can be constructed as:

ArsMP

μh
k (xrs)

Q−1
[
κ̃
ph
k (xrs)

]
− λh Ars

[
M̃

e
k(xrs)

]
+ Lh

rs � 0

(24)

(25)
NP∑
r �1

RS∑
s �1

Ars h̃P
μh (xrs)

[
B̃ (xrs)

]T
Q−1

[
B̃ (xrs)

]
(�a)h

−
NP∑
r �1

RS∑
s �1

[
B̃ (xrs)

]T
Lh
rs � 0

NP∑
r�1

RS∑
s�1

Ars

l∑
k�1

[
M̃

e
k(xrs)

]T[
κ̃
ph
k (xrs)

]
� 1 (26)

l∑
k�1

κ̃
ph
k (xrs) �

[
B̃(xrs)

]
(�a)h (27)

with the following defined intermediate variables:

μh
k (xrs) �

√[
κ̃
p(h−1)
k (xrs)

]T
Q−1

[
κ̃
p(h−1)
k (xrs)

]
(28)

μh(xrs) �
√[

(�a)h−1]T[B̃(xrs)
]T

Q−1
[
B̃(xrs)

]
(�a)h−1

(29)

In Eqs. (24)–(27), the vectors of smoothed generalized
plastic strain sub-increment κ̃

p(h−1)
k (xrs) and residual dis-

placement increment (�a)h−1 are obtained at the (h − 1)-th
iteration with known values. This iterative solution expres-
sion forms a series of linear equations about the unknowns of
smoothed generalized plastic strain sub-increment κ̃ph

k (xrs),
residual displacement increment (�a)h and Lagrange mul-
tipliers λh and Lh

rs .
The iterative formula in Eqs. (24)–(27) can be imple-

mented meaningfully and smoothly under the condition
that the intermediate variables μh

k (xrs) and μh(xrs) defined
in Eqs. (28)–(29) are nonzero in each iteration. Thus,
it is necessary to check the values of μh

k (xrs) and μh

(xrs) before proceeding with each iteration. In the initial
iteration (h � 0), the entire thin plate is assumed to be in
a fully nonyielding state, with μ̂0

k(xrs) � μ0
k(xrs) � 1 and

μ̂0(xrs) � μ0(xrs) � l (k � 1, 2, . . . l, r � 1, 2, . . .NP,
s � 1, 2, . . .RS). For the h-th iteration, the following defi-
nitions are adopted:

μ̂h
k (xrs) �

{
μh
k (xrs), μh

k (xrs) > β1

β1, μh
k (xrs) ≤ β1

(30)

μ̂h(xrs) �
{

μh(xrs), μh(xrs) > β2

β2, μh(xrs) ≤ β2
(31)

In Eqs. (30)–(31), the positive decimals β1 and β2 are sig-
nificantly smaller than the integer 1 and are typically defined
as:
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β1 �
(
10−5 ∼ 10−8

)

×
l∑

k�1

NP∑
r�1

RS∑
s�1

μ1
k(xrs)/(l×NP×RS) (32)

μ1
k(xrs) �

√[
κ̃
p0
k (xrs)

]T
Q−1

[
κ̃
p0
k (xrs)

]
(33)

β2 �
(
10−5 ∼ 10−8

)
×

NP∑
r�1

RS∑
s�1

μ1(xrs)/(NP×RS) (34)

μ1(xrs) �
√[

(�a)0
]T[

B̃(xrs)
]T

Q−1
[
B̃(xrs)

]
(�a)0 (35)

Referring to the series of transformations and eliminations
described by Zhou et al. [13, 25], Eqs. (24)–(27) can be fur-
ther simplified into the following linear equations involving
κ̃
ph
k (xrs), (�a)h , and λh :

NP∑
r�1

RS∑
s�1

Ars

[
B̃(xrs)

]T[
Ê
h
(xrs)

][
B̃(xrs)

]
(�a)h

�
NP∑
r�1

RS∑
s�1

Arsλ
h
[
B̃(xrs)

]T[
Â
h
(xrs)

][
B̂
h
(xrs)

]
(36)

κ̃
ph
k (xrs) �

[
H̃

h
k (xrs)

]−1[
Â
h
(xrs)

]{[
B̃(xrs)

]
(�a)h − λh{[

B̂
h
(xrs)

]
−
[
Â
h
(xrs)

]−1[
M̃

e
k(xrs)

]}}
(37)

NP∑
r�1

RS∑
s�1

Ars

l∑
k�1

[
M̃

e
k(xrs)

]T[
κ̃
ph
k (xrs)

]
� 1 (38)

with the intermediate matrices defined as follows:

H̃
h
m(xrs) � MP

μ̂h
m(xrs)

Q−1 (39)

(40)Â
h
(xrs) �

{
l∑

m�1

[
H̃

h
m (xrs)

]−1
}

−1

(41)

B̂
h
(xrs) �

l∑
m�1

[
H̃

h
m (xrs)

]−1 [
M̃

e
m (xrs)

]

�
{

l∑
m�1

[
M̃

e
m (xrs)

]T [
H̃

h
m (xrs)

]−1
}

T

(42)

Ê
h
(xrs) � h̃P

μ̂h (xrs)
Q−1 +

{
l∑

m�1

[
H̃

h
m (xrs)

]−1
}

−1

� h̃P
μ̂h (xrs)

Q−1 + Â
h
(xrs)

To solve Eqs. (36)–(38), we define the residual displace-
ment increment (�a)h at the h-th iteration as:

Fig. 1 Model sketch and nodal arrangement of a square plate: a simply
supported boundary with repeated uniform pressure q; b 441 regular
nodes [13]

(�a)h � λh(�a1)h (43)

By substituting Eq. (43) into Eq. (36), we can obtain the
following linear control equation:

K h(�a1)h � Fh (44)

where

K h �
NP∑
r�1

RS∑
s�1

Ars

[
B̃(xrs)

]T[
Ê
h
(xrs)

][
B̃(xrs)

]
(45)

Fh �
NP∑
r�1

RS∑
s�1

Ars

[
B̃(xrs)

]T[
Â
h
(xrs)

][
B̂
h
(xrs)

]
(46)

By introducing the displacement boundary condition of
Eq. (22) to modify the matrix K h and column vector Fh in
Eqs. (45)–(46), and solving Eq. (44), we can obtain the inter-
mediate vector of residual displacement increment (�a1)h .
Then, substitutingEq. (43) into Eq. (37), the smoothed gener-
alized plastic strain sub-increment κ̃ph

k (xrs) at iteration step
h can be calculated as:

κ̃
ph
k (xrs) � λh

[
H̃

h
k (xrs)

]−1[
Ĉ
h
(xrs) + M̃

e
k(xrs)

]
(47)

where

Ĉ
h
(xrs) �

[
Â
h
(xrs)

]{[
B̃(xrs)

]
(�a1)h − B̂

h
(xrs)

}
(48)
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Table 1 Comparison of
kinematic shakedown load
factors and computational times
for a clamped square plate under
different loading cases and
material models

Loading cases Material models Numerical solutions(
MP/qa2

) Times (s)

C1 nodal NEM C1 NEM C1 nodal NEM C1 NEM

0 ≤ q ≤ qmax h̃ � 0 9.773 9.454 863 817

h̃ � 0.05Y 9.780 9.456 757 788

h̃ � 0.40Y 9.782 9.456 726 778

h̃ � 0.75Y 9.782 9.456 – –

h̃ � 1.25Y 9.782 9.456 – –

h̃ � +∞ 9.782 9.457 – –

−qmax ≤ q ≤ qmax h̃ � 0 4.891 4.728 725 778

h̃ � 0.05Y 4.891 4.728 – –

h̃ � 1.25Y 4.891 4.728 – –

h̃ � +∞ 4.891 4.728 – –

Table 2 Comparison of
kinematic shakedown load
factors and computational times
for a simply supported square
plate under different loading
cases and material models

Loading cases Material models Numerical solutions(
MP/qa2

) Times (s)

C1 nodal NEM ACM C1 nodal NEM ACM

0 ≤ q ≤ qmax h̃ � 0 6.281 6.250 [13] 220 222

h̃ � 0.05Y 6.595 6.562 226 229

h̃ � 0.40Y 8.794 8.750 236 239

h̃ � 0.75Y 9.033 8.972 1055 1009

h̃ � 1.25Y 9.033 8.972 – –

h̃ � +∞ 9.034 8.973 – –

−qmax ≤ q ≤ qmax h̃ � 0 4.517 4.486 [13] 1045 1008

h̃ � 0.05Y 4.517 4.486 – –

h̃ � 1.25Y 4.517 4.486 – –

h̃ � +∞ 4.517 4.486 – –

By substituting κ̃
ph
k (xrs) in Eq. (47) into Eq. (38), we can

derive the Lagrange multiplier λh as:

λh � 1
∑NP

r�1
∑RS

s�1 Ars

{[
B̂
h
(xrs)

]T[
Ĉ
h
(xrs)

]
+

{∑l
k�1

[
M̃

e
k(xrs)

]T[
H̃

h
k (xrs)

]−1[
M̃

e
k(xrs)

]}} (49)

Substituting the obtained (�a1)h and λh back into Eqs.
(43) and (47)–(48), the residual displacement increment
(�a)h and the smoothed generalized plastic strain sub-
increment κ̃

ph
k (xrs) can be obtained. According to Eqs.

(28)–(31), the following intermediate variables can be fur-
ther calculated as:

μh+1
k (xrs) �

√[
κ̃
ph
k (xrs)

]T
Q−1

[
κ̃
ph
k (xrs)

]
(50)

μh+1(xrs) �
√[

(�a)h
]T[

B̃(xrs)
]T

Q−1
[
B̃(xrs)

]
(�a)h

(51)

μ̂h+1
k (xrs) �

{
μh+1
k (xrs), μh+1

k (xrs) > β1

β1 , μh+1
k (xrs) ≤ β1

(52)

μ̂h+1(xrs) �
{

μh+1(xrs), μh+1(xrs) > β2

β2 , μh+1(xrs) ≤ β2
(53)

123



S. Zhou et al.

Fig. 2 Iterative convergence processes of kinematic shakedown load
factors for a square plate: a clamped; b simply supported

Finally, the shakedown load factor sh at iteration step h
can be written as:

sh �
NP∑
r�1

RS∑
s�1

Ars

[
l∑

k�1

MPμ̂
h+1
k (xrs) + hPμ̂

h+1(xrs)

]
(54)

According to the anticipated computational accuracy, two
error tolerances,vol1 and vol2, are set in the iterative solu-
tion program, and the iteration will be terminated when the
following convergence conditions are achieved:

∥∥∥(�a)h − (�a)h−1
∥∥∥/
∥∥∥(�a)h−1

∥∥∥ ≤ vol1,
∣∣∣sh − sh−1

∣∣∣/sh−1 ≤ vol2

(55)

5 Numerical Examples

In this section, computer codes are developed based on the
iterative algorithm proposed above with C1 nodal NEM for
the kinematic shakedown analysis of thin square and circular
plates. The perfectly elasto-plastic (h̃ � 0), limited kine-
matic hardening (h̃ � 0.05Y , 0.40Y , 0.75Y , 1.25Y ) and
unlimited kinematic hardening (h̃ � +∞) material mod-
els are considered. The numerical results and computational
times obtained using the C1 NEM and the rectangular non-
conforming plate elementACM[31, 32] are also provided for
comparison. A two-point quadrature scheme is employed on
each boundary line of the triangle sub-domain in theC1 nodal
NEM, a three-point quadrature rule is adopted over each
Delaunay triangle in theC1 NEM, and a 3× 3 quadrature rule
is used over each finite element in the ACM. The computa-
tional times listed below are counted from the same Lenovo
computer (Intel(R) Core(TM)2@3.0GHz). In the numerical
calculation, the relevant parameters are set as follows: offset
factor γ � 1.0 × 10−5 [28], yield stress Y � 200 MPa,
Young’s modulus E � 2.1 × 105 MPa, Poisson’s ratio
v � 0.3 and error tolerances vol1 � vol2 � 1.0 × 10−4.
Two loading cases 0 ≤ q ≤ qmax and −qmax ≤ q ≤ qmax

involving repeated uniform transverse pressure q are consid-
ered, where qmax denotes a specific maximum magnitude of
pressure q, and the reference value of pressure q is set as
1.0N/m2.

5.1 Square Plate

The clamped (ẇ � ∂ẇ/∂x � ∂ẇ/∂y � 0) and simply
supported (ẇ � 0) thin square plates under the repeated uni-
form pressure q are studied as the first example. The model
sketch is displayed in Fig. 1a, where the length 2a � 1 m
and the thickness h0 � 0.01 m , and the 441 regular nodes
displayed in Fig. 1b are adopted for the numerical calcula-
tion. The obtained numerical results and the computational
times using the C1 nodal NEM, C1 NEM and ACM are listed
in Tables 1 and 2, respectively.

It can be seen that: (1) In various loading cases and mate-
rial models, the kinematic shakedown load factors obtained
using the C1 nodal NEM agree well with those from the C1

NEM and ACM under the same condition, with minimal dif-
ferences. (2) In the cumulative loading case 0 ≤ q ≤ qmax,
the limited and unlimited strain-hardening models tend to
increase the kinematic shakedown load factors compared to
the perfectly elasto-plastic model. For instance, using the
C1 nodal NEM, the load factors for the clamped square
plate increase by 0.072% and 0.092% for h̃ � 0.05Y and
h̃ � 0.40Y , 0.75Y , 1.25Y , +∞, respectively, and for the
simply supported square plate, they increase by 4.999%,
40.010%, 43.815%, and 43.831% for h̃ � 0.05Y , h̃ �
0.40Y , h̃ � 0.75Y , 1.25Y , and h̃ � +∞, respectively. (3)
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Fig. 3 Distributions of plastic
dissipation work rates for a
square plate at shakedown limit
states (106 N m): a clamped,
h̃ � 0, 0 ≤ q ≤ qmax;
b clamped, h̃ � 1.25Y ,
0 ≤ q ≤ qmax; c clamped, h̃ � 0
and h̃ � 1.25Y ,
−qmax ≤ q ≤ qmax; d simply
supported, h̃ � 0, 0 ≤ q ≤ qmax;
e simply supported, h̃ � 1.25Y ,
0 ≤ q ≤ qmax; f simply
supported, h̃ � 0 and h̃ � 1.25Y ,
−qmax ≤ q ≤ qmax

(a)                               (b)

                (c)                               (d)

                 (e)                                (f)
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Fig. 4 A clamped circular plate: a under uniform pressure q; b 801
nodes [13]

In the alternating loading case −qmax ≤ q ≤ qmax, the load
factors obtained for the limited and unlimited kinematic hard-
eningmodels are equal to those of the perfectly elasto-plastic
model under the same condition. (4) In general, the compu-
tational times using the C1 nodal NEM are comparable to
those using the C1 NEM and ACM. As per Zhou et al. [25],
the costs of the nodal NEM in shakedown analysis of plane
structures are approximately one-ninth to one-third of those
of the NEM. However, owing to more triangular sub-domain
partitions and numerical integrations on the boundary lines
in each triangular sub-domain in the C1 nodal NEM com-
pared to the nodal NEM, the computational efficiency of the
C1 nodal NEM remains relatively unchanged from that of the
C1 NEM.

Figure 2 displays the iterative convergence processes of
kinematic shakedown load factors for some loading cases
and material models using the C1 nodal NEM, C1 NEM and
ACM, which indicates that the proposed iterative algorithm
ensures rapid and monotonic convergence of obtained kine-
matic shakedown load factors to stable minima after 19–103
iterations.

As mentioned in Sect. 3.2, the nodal generalized plastic
dissipationwork rates in the kinematic shakedownanalysis of
plates can be directly obtained using the C1 nodal NEM, and
the C1 nodal NEM offers obvious advantages in numerical
result post-processing compared to the C1 NEM and ACM.
Figure 3 shows the distributions of plastic dissipation work
rates obtained directly through the C1 nodal NEM for a thin
square plate under different loading cases and material mod-
els, which visually illustrates the cumulative and alternating
plastic damage modes of the square plate at shakedown limit
states.

5.2 Circular Plate

A clamped thin circular plate with the radius R � 1 m and
the thickness h0 � 0.01 m under the repeated uniform pres-
sure q is examined as the second example. The model sketch
and 801 regular nodal arrangement adopted in the numerical
calculation are displayed in Fig. 4. By adopting the perfectly
elasto-plastic model, Yu et al. [7] employed the unified yield
criterion to deduce the analytical solution under the loading
case 0 ≤ q ≤ qmax, while Zhou et al. [13] utilized the C1

NEM to solve the numerical results under the loading cases
0 ≤ q ≤ qmax and −qmax ≤ q ≤ qmax. This paper uses the
proposed method with the C1 nodal NEM and C1 NEM to
concurrently determine the kinematic shakedown load fac-
tors of this plate, with the results summarized in Table 3.

It shows that: (1) The kinematic shakedown load factor
obtained by the C1 nodal NEM is closer to the analytical
solution of Yu et al. [7] than that obtained by the C1 NEM,
which is in good agreement with the conclusion of Zhou [28]
that the C1 nodal NEM has better computational accuracy
than the C1 NEM in the linear elastic analysis of plates. The
results obtained by the C1 nodal NEM and C1 NEM match
well with each other under the same condition, indicating the
proposed method in this paper has high computational accu-
racy. (2) In the cumulative loading case 0 ≤ q ≤ qmax, the
load factors using the C1 nodal NEM increase by 5.003%,
22.248%, and 22.371% for h̃ � 0.05Y , h̃ � 0.40Y , and
h̃ � 0.75Y , 1.25Y , +∞, respectively, compared to the per-
fectly elasto-plastic model. This suggests that the shakedown
load obtainedmaybe conservativewhen thematerial’s strain-
hardening effect is disregarded. (3) In the alternating loading
case −qmax ≤ q ≤ qmax, the results for limited and unlim-
ited kinematic hardening models align with the perfectly
elasto-plastic model.

Figure 5 displays the distributions of plastic dissipation
work rates obtained using the C1 nodal NEM,which are sym-
metrical and reasonable, revealing the plastic failure modes
of this clamped circular plate at shakedown limit states.

6 Conclusions

This paper proposes a novel numerical approach using the
C1 nodal NEM to evaluate the kinematic shakedown load
factors of strain-hardening plates based on the von Mises
and two-surface yield criteria and adopts it to implement
kinematic shakedown analysis of thin square and circular
plates with perfectly elasto-plastic, limited kinematic hard-
ening and unlimited kinematic hardening material models.
The numerical results for kinematic shakedown load factors
align closely with theoretical solution and numerical val-
ues obtained using the C1 NEM and ACM. Compared to
the perfectly elasto-plastic model, the limited and unlimited
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Table 3 Comparison of
kinematic shakedown load
factors for a clamped circular
plate under different loading
cases and material models

Loading cases Material models Numerical solutions
(
MP/qR2

)

C1 nodal NEM C1 NEM Yu et al. [7]

0 ≤ q ≤ qmax h̃ � 0 12.172 12.487 [13] 12.23

h̃ � 0.05Y 12.781 13.110 –

h̃ � 0.40Y 14.880 14.967 –

h̃ � 0.75Y 14.895 14.967 –

h̃ � 1.25Y 14.895 14.967 –

h̃ � +∞ 14.895 14.970 –

−qmax ≤ q ≤ qmax h̃ � 0 7.448 7.483 [13] –

h̃ � 0.05Y 7.448 7.483 –

h̃ � 1.25Y 7.448 7.483 –

h̃ � +∞ 7.448 7.483 –

Fig. 5 Distributions of plastic
dissipation work rates for a
clamped circular plate at
shakedown limit states
(106 N m): a h̃ � 0,
0 ≤ q ≤ qmax; b h̃ � 1.25Y ,
0 ≤ q ≤ qmax; c h̃ � 0 and
h̃ � 1.25Y , −qmax ≤ q ≤ qmax

(a)                               (b)

                                 (c)
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kinematic hardeningmodels somewhat increase the obtained
load factors of thin square and circular plates in cumulative
loading cases, but haveno impact in alternating loading cases.
The distributions of plastic dissipation work rates effectively
illustrate the cumulative and alternating plastic failuremodes
of thin square and circular plates at shakedown limit states.
Numerical examples demonstrate the proposed numerical
method’s benefits of high accuracy, rapid convergence and
convenient post-processing capabilities.
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