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Abstract
In this paper, a transversely isotropic piezoelectric half-space with the isotropy axis parallel to the z-axis is considered under
rotation on a rigid circular disk bonded to the surface of the piezoelectric medium. This is a type of Reissner–Sagoci mixed
boundary value problem. By utilizing the Hankel transform, the mixed boundary value problem is simplified into solving a
pair of dual integral equations. Full-field analytical expressions for displacement, stresses, and electric displacement inside
the half-space are obtained. The shear stresses and electric displacement on the surface are found to be singular at the edge
of the rigid circular disk, and the stress intensity factors and electric displacement intensity factor are defined. Numerical
results show that material properties and geometric size have significant effects on displacement, shear stresses, and electric
displacement.

Keywords Piezoelectric half-space · Circular disk · Reissner–Sagoci problem · Stress intensity factor · Electric displacement
intensity factor

1 Introduction

The static Reissner–Sagoci problem has been studied in
isotropic elasticity to determine the displacement and stress
fields in the interior of a semi-infinite elastic body when
a rigid circular disk of radius a completely bonded to the
surface of the half-space is forced to rotate about an axis nor-
mal to the undeformed surface [1]. Reissner and Sagoci [1]
firstly studied the problem by employing a system of oblate
spherical coordinates and obtained an explicit solution of the
tangential displacement and stress on the half-space surface.
Sneddon [2] provided the complete solution for the elastic
field inside the half-space by using Hankel transforms and
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dual integral equations.Hanson andPuja [3] solved theReiss-
ner–Sagoci problem for a transversely isotropic half-space by
applying the potential theory of Fabrikant [4].

Piezoelectric materials have been widely used in trans-
ducers, sensors, and actuators because of their intrinsic
electro-mechanical coupling effect. Due to the brittleness
and low fracture toughness of piezoelectric materials, the
stress concentration caused by inharmonious contact, such
as contact between the piezoelectric components and other
components, could lead to structural failure [5]. Some the-
oretical investigations have been conduced to obtain the
solution of the elastic and electric fields around the contact
region of piezoelectric ceramics [6–8].

While many studies have focused on the Reissner-Sagoci
problems for either isotropic or transversely isotropic mate-
rials, few have offered an analytical solution for the fullfield
both on the surface and inside the half-spaces. In this work,
by employing an approach similar to Sneddon’s [9], the
mixed boundary value problem is solved analytically, and
full-field solutions for displacement, shear stresses, and elec-
tric displacement are obtained. The shear stresses and electric
displacement are found to be singular at the edge of the
circular disk, and the stress intensity factors (SIFs) and elec-
tric displacement intensity factor (EDIF) are determined.
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Fig. 1 A piezoelectric half-space subjected to a constant torsion on a
rigid circular disk bonded to the surface of the medium

Although Xiong et al. [5] has studied the problem by inte-
grating the point force potential functions and expressing the
electro-elastic fields by elementary functions, the singularity
properties of the torsional contact problem has not been ana-
lyzed due to the complicated expression of the solution. The
simpler-form analytical solution obtained in this work seems
to be easier and more convenient for singularity analysis at
the edge of the circular disk, and the present work provides
basic benchmarking and fundamental understanding of tor-
sional contact phenomena.

2 Problem Statement andMethod
of Solution

Consider a transversely isotropic piezoelectric half-space in
the cylindrical coordinate system (r , θ , z), as shown in Fig. 1.
The piezoelectric half-space is subjected to a constant torsion
on a rigid circular disk of radius a bonded to the surface of
the medium at z � 0.

In this problem, the axis of symmetry is parallel to the
z− axis, and the displacement vector only contains the non-
vanishing component, i.e., uθ � uθ (r , z), as presented by
Ding and Chen [7]. We have

ur � uz � 0, � � 0

σrr � σθθ � σzz � σzr � 0, Dr � Dz � 0

uθ � uθ (r , z)

(1)

whereur , uz anduθ are displacements,� is electric potential,
σrr , σθθ , σzz and σzr are stresses, and Dr and Dz are electric
displacements. It is noted that the solution of the electric

potential is zero, i.e.,� � 0, as given in Eq. (1), and the
proof is given in Appendix A.

The non-vanishing components of stresses σθ z , σθr and
electric displacement Dθ are:

σθ z(r , z) � C44
∂uθ (r , z)

∂z

σθr (r , z) � C66r
∂

∂r

[
uθ (r , z)

r

]

Dθ (r , z) � e15
∂uθ (r , z)

∂z

(2)

where C44 and C66 are elastic constants, and e15 is piezo-
electric constant.

The equations of elastic equilibrium and Gauss’s law of
electrostatics in three dimensions and in the absence of body
forces and free electric volume charge are given by

∂σθr

∂r
+

∂σθ z

∂z
+ 2

σθr

r
� 0 (3-1)

∂Dr

∂r
+

∂Dz

∂z
+
Dr

r
� 0 (3-2)

It is noted that Eq. (3-2) is automatically satisfied given
that Dr � Dz � 0, as shown in Eq. (1).

Substituting Eq. (2) into Eq. (3-1) leads to the equilibrium
equation in the following form

C66

(
∂2uθ

∂r2
+
1

r

∂uθ

∂r
− uθ

r2

)
+ C44

∂2uθ

∂z2
� 0 (4)

The boundary conditions of the mixed boundary value
problem are:

uθ (r , 0) � f (r ) � θ0 · r , � � 0 (0 ≤ r ≤ a) (5-1)

σθ z(r , 0) � 0, Dz � 0 (r > a) (5-2)

where θ0 is the angle of rotation of the circular rigid disk.
Applying the Hankel integral transform of the first order

of uθ (r , z) in the radial direction, one has

Uθ (s, z) �
∫ ∞

0
uθ (r , z)J1(rs)rdr (6-1)

uθ (r , z) �
∫ ∞

0
Uθ (s, z)J1(rs)sds (6-2)

where J1() is the Bessel function of the first kind and of order
one. The partial differential Eq. (4) is reduced to

C44
∂2Uθ (s, z)

∂z2
− s2C66Uθ � 0 (7)
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and the solution satisfying the regularity condition at infinity
can be obtained as

Uθ (s, z) � A(s)e−sλz (8)

The displacement can be obtained as

uθ (r , z) �
∫ ∞

0
A(s)e−sλz J1(rs)ds (9)

where λ �
√
C66

/
C44, and A(s) is the unknown function to

be determined by the mixed boundary conditions.
The non-vanishing stresses σθ z ,σθr and electric displace-

ment Dθ are:

σθ z(r , z) � −λC44

∫ ∞

0
s A(s)e−sλz J1(rs)ds (10)

Dθ (r , z) � e15
C44

σθ z(r , z) � −λe15

∫ ∞

0
s A(s)e−sλz J1(rs)ds

(11)

σθr (r , z) � −C66

∫ ∞

0
s A(s)e−sλz J2(rs)ds (12)

where J2() is the Bessel function of the first kind and of order
two.

The satisfaction of the mixed boundary conditions leads
to the following dual integral equations

∫ ∞

0
A(s)J1(rs)ds � f (r ) � θ0 · r (0 ≤ r ≤ a) (13-1)

∫ ∞

0
s A(s)J1(rs)ds � 0 (r > a) (13-2)

from which the unknown function A(s) can be determined.
Following the procedure of Sneddon [9], it is assumed that

A(s) �
∫ a

0
g(t) sin(ts)dt , g(0) � 0 (14)

and the solution of g(t) can be obtained as

g(t) � 2

π

∫ t

0

d

dr
[r f (r )]

dr√
t2 − r2

� 4θ0
π

t (0 ≤ t ≤ a)

(15)

from which it can be seen that the assumption g(0) � 0 is
satisfied automatically.

The torque T whichmust be applied to produce prescribed
boundary conditions can be expressed as

T � −
∫ 2π

0

∫ a

0
σθ z(r , 0)r · rdrdθ (16)

The substitution of σθ z(r , 0) into the above equation leads
to

T � 2πμ0

∫ a

0
r2

∫ ∞

0
s A(s)J1(rs)dsdr (17)

where μ0 � √
C44C66.

By using the relation

∫ a

0
r2 J1(rs)dr � a2

s
J2(sa) (18)

we have the expression for the torque T as

T � 2πμ0a
2
∫ ∞

0
A(s)J2(sa)ds (19)

The substitution of Eq. (14) into Eq. (19) leads to the
expression

T � 4πμ0

∫ a

0
g(t)tdt (20)

in which the following integral identity is used:

∫ ∞

0
sin(ts)J2(sa)ds � 2t

a2
(21)

FromEqs. (14) and (15), we can get the expression of A(s)
as

A(s) � 4θ0
π

∫ a

0
t sin(ts)dt � 4θ0

πs2
[sin(sa) − sa cos(sa)]

(22)

and the torque T as

T � 4πμ0

∫ a

0
g(t)tdt � 16μ0θ0

∫ a

0
t2dt � 16μ0θ0a3

3
(23)

The displacement on the surface (z � 0) can be deter-
mined as

uθ (r , 0) � 4θ0
rπ

∫ a

0

t2√
r2 − t2

dt � 4θ0
rπ

×
[∫ a

0

√
r2 − t2dt − a

√
r2 − a2

]

� 2θ0
π

[
r arcsin

(a
r

)
− a

r

√
r2 − a2

]
(r > a)

(24)

The shear stress σθ z on the surface (z � 0) is

σθ z(r , 0) � − 4μ0θ0r

π
√
a2 − r2

(0 ≤ r < a) (25)
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It is noted that for the special case when C44 � C66, i.e.,
for a homogeneous isotropic elastic problem, we have μ0 �
C44, and the result in Eq. (25) agrees with the classical results
for the Reissner–Sagoci problem of isotropic elasticity [1, 2].

The shear stress σθr on the surface is

σθr (r , 0) � −C66

r2
4θ0
π

×
[
m

√
r2 − m2 − a

r2 − 2a2√
r2 − a2

H (r − a)

]
(26)

wherem � min(r , a) andH( ) is theHeavyside step function.
When 0 ≤ r < a, σθr (r , 0) � 0; and when r > a, we have

σθr (r , 0) � −4θ0C66

π

a√
r2 − a2

(a
r

)2
(r > a) (27)

The electric displacement Dθ on the surface (z � 0) is

Dθ (r , 0) � − 4e15μ0θ0r

πC44
√
a2 − r2

(0 ≤ r < a) (28)

It is evident that the shear stresses σθ z(r , 0) and σθr (r ,
0) are singular near the inside and outside edges of the rigid
disk, respectively. This square-root singularity at the edge of
the circular disk is similar to the singularity observed in crack
problems in a piezoelectric medium [10, 11].

The shear stress intensity factors Kθ z and Kθr can be
defined as

Kθ z � lim
r→a−

√
2(a − r )σθ z(r , 0) � −4μ0θ0

π

√
a (29)

Kθr � lim
r→a+

√
2(r − a)σθr (r , 0) � −4C66θ0

π

√
a (30)

Similarly, the electric displacement is singular near the
inside edge of the rigid disk, and the electric displacement
intensity factor can be defined as

KDθ � lim
r→a−

√
2(a − r )Dθ (r , 0) � −4θ0e15λ

π

√
a (31)

It is shown from Eqs. (29–31) that the stress intensity fac-
tors and electric displacement intensity factor are dependent
onmaterial properties of the piezoelectricmedium, the radius
of the circular rigid disk, and the rotation angle.

3 Full-Field Solutions in the Half-Space

Once the expression of A(s) has been obtained as in Eq. (22),
the full-field solutions for the displacement uθ , the shear
stresses σθ z , σθr and the electric displacement Dθ can be

obtained as

uθ (r , z) � 4θ0
π

[∫ ∞

0

1

s2
sin(sa)e−sλz J1(rs)ds

−a
∫ ∞

0

1

s
cos(sa)e−sλz J1(rs)ds

]
(32)

σθ z(r , z) � −4μ0θ0

π

[∫ ∞

0

1

s
sin(sa)e−sλz J1(rs)ds

−a
∫ ∞

0
cos(sa)e−sλz J1(rs)ds

]
(33)

σθr (r , z) � −4θ0C66

π

[∫ ∞

0

1

s
sin(sa)e−sλz J2(rs)ds

−a
∫ ∞

0
cos(sa)e−sλz J2(rs)ds

]
(34)

Dθ (r , z) � e15σθ z(r , z)
/
C44 (35)

By using the following integral identity [2]:

I1 �
∫ ∞

0

1

s2
sin(sa)e−sλz J1(rs)ds

� a

[
λ0R sin(θ + φ) − λ20 sin(2θ )

2ρ

+
ρ

2
tan−1

(
R sin φ + λ0 sin θ

R cosφ + λ0 cos θ

)]
(36-1)

where the quantities λ0, R, θ , and φ are defined by the rela-
tions

λ20 � 1 + ξ2, ξ � λz
/
a, ξ tan θ � 1, ρ � r / a

R4 � (ρ2 + ξ2 − 1)2 + 4ξ2, 2ξ cot 2φ � ρ2 + ξ2 − 1
(36-2)

and

I2 �
∫ ∞

0

1

s
cos(sa)e−sλz J1(rs)ds � 1

r
Re

[√
r2 + z∗2 − z∗

]
(37)

where z∗ � λz − ia, and “Re” denotes the real part of a
complex number.

The exact solution for the displacement uθ (r , z) can be
given as

uθ (r , z) � 4θ0
π

[I1 − aI2] (38)

Similarly, the shear stresses σθ z(r , z), σθr (r , z) and the
electric displacement Dθ (r , z) can be obtained as

σθ z(r , z) � −4θ0μ0

πr

[
Im

[√
r2 + z∗2 − z∗

]
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−a + aRe

(
z∗√

r2 + z∗2

)]
(39)

σθr (r , z) � −2θ0C66

πr2

{
Im

(√
r2 + z∗2 − z∗

)2

−2aRe

⎡
⎢⎣

(√
r2 + z∗2 − z∗

)2
√
r2 + z∗2

⎤
⎥⎦

⎫⎪⎬
⎪⎭ (40)

Dθ (r , z) � −4θ0
πr

e15

√
C66

C44

[
Im

[√
r2 + z∗2 − z∗

]

−a + aRe

(
z∗√

r2 + z∗2

)]
(41)

Equations (38–41) give the full-field solutions for the
displacement, shear stresses, and electric displacement in
analytical form. Some integral identities are used during the
derivation of Eqs. (38–41), and are provided in Appendix B.

It is noted that the explicit analytical solutions for full-
field displacement, stresses, and electric displacement, as
shown in Eqs. (38–41), are given in quite different form from
those provided by Xiong et al. [5], who solved the problem
by integrating point force potential functions. Despite the
methodological differences, a numerical analysis shows that
the analytical solution presented in this paper is equivalent to
the expressions given in [5]. The shear stress intensity factors
and electric displacement intensity factor are defined for the
first time to characterize the singular fields near the edge of
the rigid circular disk, and the solution appears to be new.
The method of the current work allows a much simpler form
of the solution, and the result obtained is easy to be used for
numerical calculation and engineering design.

4 Numerical Results and Discussions

In this section, some numerical examples are given to show
the influences of material properties and torsional load on
displacement and shear stresses. The normalized displace-
ments uθ (r , z)

/
(θ0a) at the surface and inside the half-space

are displayed in Fig. 2 for the case λ2 � C66
/
C44 � 2. It

is clear that the displacement on the surface (z/ a � 0) is
proportional to the rotation angle θ0 from the center to the
edge of the circular rigid disk, as shown in Eq. (5–1). The
displacement uθ

/
(θ0a) decreases as the normalized depth

z/ a increases. When the depth ratio z/ a � Inf., the dis-
placement vanishes, i.e., when the depth is sufficiently large,
the displacement disappears. In the figure, “Inf.” denotes a
very large number. The variation of uθ (r , z)

/
aθ0 versus r / a

for different values of λ2 when z/ a � 0.3 is displayed in
Fig. 3. The displacement uθ (r , z)

/
aθ0 increases from zero

to a maximum value and then decreases to zero as the radial
distance from the center of the disk increases.
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u
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0
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z/a = 2.0

z/a = Inf.

Fig. 2 Variation of uθ (r , z)
/
aθ0 versus r / a for different values of z/ a

when λ2 � C66
/
C44 � 2

Fig. 3 Variation of uθ (r , z)
/
aθ0 versus r / a for different values of λ2

when z/ a � 0.3

Figures 4 and 5 respectively show the variations of the nor-
malized shear stresses −σθ z(r , z)

/
μ0 and −σθr (r , z)

/
μ0

versus r / a for different values of z/ a when λ2 � 2. The nor-
malized shear stress on the surface−σθ z(r , 0)

/
μ0 under the

circular disk increases from zero at the center and approaches
to infinity at the inside edge of the disk, and the normalized
shear stress −σθ z(r , 0)

/
μ0 vanishes on the surface outside

of the disk (r / a > 0), as shown in Fig. 4.
It can be observed in Fig. 5 that the shear stress on the

surface σθr (r , 0)
/

μ0 under the circular disk r / a < 1 is zero,
the shear stress is singular at the outside edge of the circular
disk, and the magnitude of −σθr (r , 0)

/
μ0 decreases from

infinity to zero as the distance from the center of the disk
increases. It is noted that the shear stresses σθ z(r , z) and
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Fig. 4 Variation of −σθ z(r , z)
/

μ0 versus r / a for different values of
z/ a when λ2 � C66

/
C44 � 2
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Fig. 5 Variation of −σθr (r , z)
/

μ0 versus r / a for different values of
z/ a when λ2 � C66

/
C44 � 2

σθr (r , z) are of negative values. Inside the half-space, the
values of −σθ z(r , z)

/
μ0 and −σθr (r , z)

/
μ0 increase from

zero to a maximum value then decrease as r / a increases.
The magnitude of the shear stresses decreases as the depth
z/ a increases, and the shear stresses are very small when the
normalized depth z/ a > 2.0.

The variations of−σθ z(r , z)
/

μ0θ0 and−σθr (r , z)
/

μ0θ0
versus r / a for different values of λ2 when z/ a � 0.3
are shown in Fig. 6 and Fig. 7, respectively. It is illus-
trated that the normalized shear stresses −σθ z(r , z)

/
μ0θ0

and −σθr (r , z)
/

μ0θ0 increase from zero to a maximum
value and decrease as the distance from the center of
the disk r / a increases. The magnitude of the shear stress
−σθ z(r , z)

/
μ0θ0 decreases as the value of λ2 increases,

Fig. 6 Variation of −σθ z(r , z)
/

μ0θ0 versus r / a for different values of
λ2 when z/ a � 0.3

Fig. 7 Variation of −σθr (r , z)
/

μ0θ0 versus r / a for different values of
λ2 when z/ a � 0.3

while the magnitude of −σθr (r , z)
/

μ0θ0 increases as λ2

increases from 0.25 to 1.0, and then decreases as λ2 increases
from 1.0 to 4.0.

5 Conclusions

Utilizing Hankel transforms and dual integral equations, an
analytical solution for the static Reissner-Sagoci problem in
a transversely isotropic piezoelectric half-space is provided.
The Full-field displacement, stresses and electric displace-
ment are obtained in analytical form. It is found that the
shear stresses on the surface, σθ z(r , 0) and σθr (r , 0), are
singular near the inside and outside edges of the rigid disk,
respectively. The shear stress intensity factors and electric
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displacement intensity factor are dependent onmaterial prop-
erties, the radius of the circular disk, and the rotation angle.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (11872203) and the Creative Research
Groups (51921003). The start-up support funding from Nanjing Uni-
versity of Aeronautics and Astronautics is acknowledged. The authors
thank the editor and reviewers for the constructive comments which are
helpful for the improvement of the manuscript.

Appendix A

This section is to prove that the electric potential for this
torsional problem is zero.

Assuming that the electric potential is �(r , z), and the
electric displacement Dr � −ε11�, r , Dz � −ε33�, z , then
the satisfaction of Gauss’s law of electrostatics

∂Dr

∂r
+

∂Dz

∂z
+
Dr

r
� 0 (A1)

leads to the following partial differential equation

ε11

(
∂2�

∂r2
+
1

r

∂�

∂r

)
+ ε33

∂2�

∂z2
� 0 (A2)

The solution of this equation is in the form

�(r , z) �
∫ ∞

0
ξ B(ξ )e−γ ξ z J0(ξr )dξ (A3)

where γ �
√

ε11
/

ε33, ε11, ε33 are dielectric constants, and
B(ξ ) is unknown functions to be determined.

Under the boundary conditions

� � 0 (0 ≤ r ≤ a)

Dz � 0 (r > a)
(A4)

the following dual integral equations

∫ ∞

0
ξ B(ξ )J0(ξr )ds � 0 (0 ≤ r ≤ a) (A5-1)

∫ ∞

0
ξ2B(ξ )J0(ξr )ds � 0 (r > a) (A5-2)

lead to the solution B(ξ ) � 0, and then we have � � 0.

Appendix B

Some useful identities [12] are used in the derivation of
analytical solutions for displacement, stresses and electric

displacement:

(B1)

∫ ∞

0
cos(ts)J1(rs)ds � 1

r

[
1 − t · H (t − r )√

t2 − r2

]

�
{

1
r (r > t)

1
r

[
1 − t√

t2−r2

]
(r < t)

∫ ∞

0
sin(ts)J1(rs)ds � t

r

[
H (r − t)√
r2 − t2

]
�

{
0 (r < t)
t

r
√
r2−t2

(r > t)

(B2)

For the following Abel-type integral equation

∫ r

0

tg(t)√
r2 − t2

dt � r f (r ) (0 ≤ r ≤ a) (B3)

The solution is

g(t) � 2

π

∫ t

0

d

dr
[r f (r )]

dr√
t2 − r2

(0 ≤ t ≤ a) (B4)

∫ a

0
r2 J1(rs)dr � a2

s
J2(sa) (B5)

∫ ∞

0
sin(ts)J2(sa)ds � 2t

a2
(B6)

∫ ∞

0
J2(rs) cos(ts)ds � (r2 − 2t2)H (r − t)

r2
√
r2 − t2

(B7)

∫ ∞

0
e−sp J1(rs)ds � 1

r

[
1 − p√

r2 + p2

]
(B8)

∫ ∞

0
sin(ts)e−sλz J1(rs)ds � −Im

[∫ ∞

0
e−sp J1(rs)ds

]

(B9)

where p � λz + it , and “Im” denotes the imaginary part of a
complex number.

d

dt

[
r2 arcsin

(
t

r

)]
�

√
r2 − t2 +

t2√
r2 − t2

(B10)

∫ a

0

[√
r2 − t2 +

t2√
r2 − t2

]
dt � r2 arcsin

(a
r

)
(B11)

(B12)

∫ a

0

t2√
r2 − t2

dt �
∫ a

0
(−t)d

√
r2 − t2

�
∫ a

0

√
r2 − t2dt − a

√
r2 − a2

From Eqs. (B11) and (B12), one has

∫ a

0

√
r2 − t2dt � 1

2

[
a
√
r2 − a2 + r2 arcsin

(a
r

)]
(B13)
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∫ ∞

0

1

x
e−αx Jv(βx)dx �

(√
α2 + β2 − α

)v

vβv
(B14)

∫ ∞

0
e−αx Jv(βx)dx �

β−v
(√

α2 + β2 − α
)v

√
α2 + β2

(B15)

∫ ∞

0
e−sz∗ J1(rs)ds � 1

r

√
r2 + z∗2 − z∗√

r2 + z∗2
(B16)

∫ ∞

0

1

s
e−sz∗ J2(rs)ds � 1

2r2

[√
r2 + z∗2 − z∗

]2
(B17)

∫ ∞

0
e−sz∗ J2(rs)ds �

[√
r2 + z∗2 − z∗

]2
r2

√
r2 + z∗2

(B18)

where z∗ � λz − ia.

I2 �
∫ ∞

0

1

s
cos(sa)e−sλz J1(rs)ds � 1

r
Re

[√
r2 + z∗2 − z∗

]
(B19)

I3 �
∫ ∞

0

1

s
sin(sa)e−sλz J1(rs)ds � 1

r
Im

[√
r2 + z∗2 − z∗

]
(B20)

(B21)

I4 �
∫ ∞

0
cos(sa)e−sλz J1(rs)ds

� 1

r

{
1 − Re

(
z∗√

r2 + z∗2

)}

(B22)

I5 �
∫ ∞

0

1

s
sin(sa)e−sλz J2(rs)ds

� 1

2r2
Im

[√
r2 + z∗2 − z∗

]2

(B23)

I6 �
∫ ∞

0
cos(sa)e−sλz J2(rs)ds

� 1

r2
Re

⎡
⎢⎣

(√
r2 + z∗2 − z∗

)2
√
r2 + z∗2

⎤
⎥⎦
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