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Abstract
The rapid development of modern science, technology, and industrialization has promoted the birth of more large and complex
engineering structures.When the finite element (FE) method is used for dynamic analysis of these structures, such as high-rise
buildings, aircraft, and ships, the structural FE models often contain millions of degrees of freedom. This will lead to great
hardware and computing costs, which is often unacceptable in the engineering field. Therefore, many FE model reduction
technologies have been developed, among which dynamic condensation and component mode synthesis are the most widely
used methods. This paper reviews the historical processes and general theoretical framework of these two main categories
of FE model reduction technologies and briefly summarizes the latest applications of these methods in the engineering field.
Current bottlenecks in dynamic condensation and component mode synthesis methods, as well as solutions found in literature,
are also briefly discussed. Finally, this paper gives a conclusion and brief prospects for future research. This review aims
to comprehensively introduce the two most widely used methods of FE model reduction technologies and hopes to provide
suggestions and guidance for developing new model reduction technologies.
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Abbreviations

FEM Finite element method
SFE Stochastic finite element
SFEM Stochastic finite element method
WFEM Wave and finite element method
DC Dynamic condensation
CMS Component mode synthesis
DOFs Degrees of freedom
P–C Polynomial chaos
FGM Functionally graded materials
NSEMR-II Neumann series expansion-based second-

order model reduction
IRS Improved reduced system method
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IIRS Iterated improved reduced system method
DIRS Dynamic improved reduced system method
IOR Iterative order reduction method
SEREP System equivalent reduction expansion pro-

cess
C-B Craig-Bampton method
ECB Enhanced Craig-Bampton method
B-H Benfield-Hruda method
MD Mode displacement method
MA Mode acceleration method
MTA Modal truncation augmentation method
COC Cross-orthogonality checks
MAC Modal assurance criterion
MCS Monte Carlo simulation
ERMT Equivalent reduced model technique
BIW Body-in-white
ANN Artificial neural network
CDLA Coupled dynamic loads analysis
ROMs Reduced order models
FRF Frequency response function
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S-CC mode System-level characteristic constraint mode
L-CC mode Local-level characteristic constraint mode
CFD Computational fluid dynamics

1 Introduction

The FEM is a numerical calculation method proposed and
developed in recent decades. The idea of this method is to
discretize the continuous structure into an aggregate of finite
elements and nodes for analysis and transform the analysis
of infinite unknowns into the analysis of finite unknowns.
The FEM is suitable for the analysis of many kinds of
problems such as statics, dynamics, and multi-physical field
coupling, and therefore widely used in various engineer-
ing fields. However, for the analysis of large and complex
structures such as cars, aircraft, ships, buildings, and other
engineering structures [1–3], due to the large number of ele-
ments, the calculation time can be very long. In addition, the
requirements of computational server are particularly high
for structures that require multiple-feedback iterative opti-
mization. For example, Fan et al. [4] established a fine finite
element model of a shaking table. The model was meshed by
8-node hexahedral elements with about 20,000,000 DOFs.
The calculation was carried out on a YH supercomputer that
includes thousands of blade computing nodes which con-
tain 12 Intel processors and 48 GB of shared memory. It
took about 20,700 s to calculate the first 100 characteris-
tic values of the structure. Fan et al. [5] updated the FE
model of the SGIII prototype laser facility, making its DOFs
reach 154,171,842, and spent 92,868 s to calculate the first
100 order modes of the structure through parallel calculation
using 2,048 processors. At present, large fine finite element
models [6, 7] are ubiquitous in engineering fields. The large
amount of time and hardware costs has become the biggest
challenge for FEM applications.

In order to obtain reduced finite element models, the
dynamic condensation and component mode synthesis
(CMS) methods have been proposed. Dynamic condensa-
tion methods are mainly divided into the Guyan reduction
method [8], the Kidder method [9], the improved reduc-
tion system (IRS) method [10], and the system equivalent
reduction expansion process (SEREP) method [11], while
CMS methods are mainly divided into the fixed interface
component mode synthesis method [12], the free interface
componentmode synthesismethod [13], and themixed inter-
face component mode synthesis method [14].

The significant difference between dynamic condensa-
tion and CMS is that the dynamic condensation technology
reduces the FE model in the physical space, while the

CMS method completes this work in the modal space [15].
Therefore, they have been applied in different engineering
fields. In particular, dynamic condensation is specialized for
experiment and FE analysis correlation, virtual sensing, and
iterative updating of the FEmodel [16–19]. CMS, as its name
implies, is a model reduction technology for components or
substructures. Taking the aircraft production as an example to
illustrate the concept of the substructure, aircraft components
such as the nose, fuselage, and wings can be designed and
produced by different production teams before final assem-
bly. These components are called substructures in product
design and analysis. When the entire aircraft structure needs
to be analyzed, only the FE model of the substructure estab-
lished by each development team needs to be integrated,
which benefits the information security between the devel-
opment teams. In addition, when a single substructure needs
frequent design modifications, the CMS method has unique
advantages [15]. The concept of substructure is a key feature
of the CMS method. Therefore, the CMS method is widely
used in the analysis, design, and production of aircraft, vehi-
cles, satellites, and other structures.

In recent decades, dynamic condensation and CMSmeth-
ods have been widely used in various engineering fields to
obtain reduced finite element models. This paper aims to
review the two finite element model reduction techniques
through three aspects, i.e., the historical process, general the-
oretical framework, and latest applications. At the end of this
paper, the problems and solutions of the twomodel reduction
technologies are summarized, and the future development is
prospected.

2 FEModel Reduction Techniques

Considering a dynamic problem, the FE equation of motion
without damping is

Mü + Ku � F (1)

whereM andK are the structural mass and stiffnessmatrices,
and u and F are the vectors of generalized coordinates and
external loads, respectively. It is worth mentioning that the
following reduction techniques are also applicable to the cal-
culation of the proportional damping system. The problem
of the non-classical damping (non-proportional damping)
vibration system will be further discussed later. There are
various methods that can be employed to reduce the size of
the FE model and produce the transformation matrix.

2.1 Dynamic Condensation

M ∈RN×N and K ∈RN×N are positive or semi-positive def-
inite matrices, where N is the number of degrees of freedom

123



Review on the Theories and Applications of Dynamic Condensation and Component Mode Synthesis Methods… 363

(DOFs) in the original model. In the dynamic condensa-
tion, a small proportion of the dominant DOFs, known as
“master DOFs”, are retained in the reduced model, while the
remaining DOFs, known as “slave DOFs”, are eliminated.
Generally, the number of master DOFs, Nm, is much smaller
than the total DOFs, that is, Nm < < N . Therefore, when
the slave DOFs are eliminated, the size of the original model
can be significantly reduced. In Eq. (1), the stiffness matrix,
mass matrix, displacement vector, and force vector can be
divided into blocks according to the master and slave DOFs.
It should be emphasized that theDOFs of the nodes subjected
to external load are generally selected as the master DOFs.
The specific selection criteria of the master DOFs will be
discussed in detail in Sect. 3.1. Therefore, it is assumed that
the external load acting on the slave DOFs is zero,

[
Mmm Mms

Msm Mss

]{
üm
üs

}
+

[
Kmm Kms

K sm K ss

]{
um
us

}
�
{
Fm

0

}

(2)

where the subscripts “m” and “s” denote themaster and slave,
respectively.

2.1.1 The Guyan Reduction

In the 1960s, Guyan [8], as a pioneer in the field of reduc-
tion technology, proposed the well-known Guyan reduction
method.Almost at the same time, similarmethodswere intro-
duced by Irons [20, 21] and is generally referred to as static
reduction (sometimes also referred to as the Irons-Guyan
reduction, eigenvalue economizer, or mass condensation). In
addition, Guyan reduction is also the first dynamic conden-
sation method that provides other scholars with an important
idea of model reduction. Since then, various new dynamic
condensation methods have been proposed [9–11, 22, 23].

The basis of Guyan reduction may follow the procedure
used in Ref. [24] for the stiffness matrix. The vector of slave
DOFs us can be expressed in terms of the master DOFs um
as

us � −K−1
ss K smum (3)

As a result, the total DOFs u can now be approximated as

u �
{
um
us

}
�
{

I
−K−1

ss K sm

}
um � TGum (4)

where TG is the coordinate transformation matrix of Guyan
reduction. Actually, the transformation matrix is used to
transform the space of total DOFs to the master DOFs, and
during this transformation, theDOFs is significantly reduced.

As a result, following the method of coordinate transforma-
tion, the reduced mass and stiffness matrices are given by

(5)

MG � TT
GMTG � Mmm − KmsK−1

ss Msm

− MmsK−1
ss Ksm + KmsK−1

ss MssK−1
ss K sm

KG � TT
GKTG � Kmm − KmsK−1

ss K sm (6)

The reliability of Guyan reduction in structural static anal-
ysis has been proven in engineering applications for decades.
It is worthmentioning that the defaultmethod in the superele-
ment static analysis of commercial finite element software
NASTRAN is the Guyan reduction. In addition, it can also
provide sufficiently accurate results in some dynamic anal-
yses. For instance, a small avionics box that is included in
an aircraft dynamic landing analysis may have modal fre-
quencies higher than the range of interest and will respond
“statically.” In this case, the physical stiffness and mass of
the box are important, but the dynamic mass (i.e., local fre-
quency) is irrelevant to the solution objective. Another case
when static condensation is sufficient for dynamic analysis
is that the physical DOFs that are retained are sufficient to
represent the dynamic response of interest. For example, a
simply-supported beam with 100 grids statically reduced to
50 grids (i.e., every other grid) will be sufficient for dynamic
analysis that only requires a few dozen modes.

However, since the inertia effects associated with the
slaveDOFs have been ignored, natural frequencies andmode
shapeswill be different from those of the originalmodel [25].
Themagnitude of the differenceswould depend on howmuch
the inertia effects are neglected. Therefore, even if the orig-
inal FE model perfectly describes the physical system (with
the exact match of natural frequencies and mode shapes), the
Guyan reduction introduces errors andwill affect the reliabil-
ity of the reduced model. Hughes’s comments [26] also well
revealed this fact: “A disadvantage of reduction techniques
such as the Irons-Guyan procedure is that there is no guar-
antee that the eigenvalues and eigenvectors of the reduced
problem will be good approximations of those of the origi-
nal problem.” In order to effectively evaluate the reliability of
the reducedmodel and calculate the relative eigenvalue error,
a simple and effective error estimation method for Guyan
reductionwas proposed byKim [27, 28]. There are also other
scholars who proved that the relative eigenvalue error could
be avoided indirectly by using some iterative processes [22,
23, 29].

In the past two decades, scholars have carried out research
in different fields using the Guyan reduction [30–34]. Li
et al. [30] studied the damage detection of jacket-type off-
shore structures based on the Guyan reduction technology
when spatially incomplete lower-order modes were given.
The comparison between damage detection results based on
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Fig. 1 Damage detection results based on theGuyan reduction approach
with 36 translational DOFs: a without iteration; b with iteration [30]

the Guyan reduction and preset damage results is displayed
in Fig. 1. The numerical results reveal that the iterativeGuyan
reduction can accurately locate the damage and evaluate the
damage degree.

For complicated periodic structures such as corrugated
core panels, laminated structures, and honeycomb-cored
structures, the complicated geometry of the periodic cells
leads to a huge FE model, which increases the computa-
tional consumption. When studying the sound transmission
of honeycomb panels, Yang et al. [31] reduced the model
size of three-dimensional periodic cells based on the Guyan
reduction. Figure 2 shows the finite element model of a peri-
odic cell, and the master nodes retained by the simplified
model are marked with red dots. After the Guyan reduction,
the DOFs of the reduced model are only one-third of that of
the full model, while the error is less than 0.01%.

The spectral stochastic finite element method based on
Polynomial Chaos (P–C) expansion is the most widely used
method for the analysis of structural parameter uncertainty.
The drawback of this method is the exponential growth of
the computational cost with dimensionality, i.e., the number
of random parameters and the order of the expansion. There-
fore, how to improve computational efficiency is an urgent
problem to be solved. Panayirci et al. [32] discussed the appli-
cation of Guyan reduction in stochastic finite element (SFE)
analysis and carried out the numerical calculation of a large
building model. Table 1 shows the comparison of calculation
time between standard P–C and Guyan P–C in the numeri-
cal example. It is noted that Guyan P–C can significantly
improve computational efficiency.

y

z
skin

x

core

skin

Fig. 2 FE model of a periodic cell with the master nodes marked by red
dots [31]

Table 1 Comparison of computational time (in seconds). Reproduced
with permission [32]

Case Standard P–C Guyan P–C

A Step1 3 4

Step2 20 35

Step3 223 2

Step4 392 1

Total CPU time 638 42

B Step1 4 7

Step2 80 153

Step3 893 3

Step4 1281 2

Total CPU time 2258 165

C Step1 8 11

Step2 153 305

Step3 1738 4

Step4 4061 3

Total CPU time 5960 323

D Step1 – 88

Step2 – 1255

Step3 – 5

Step4 – 1709

Total CPU time – 3057
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Model reduction is a problem that must be solved in the
process of spacecraft finite element model verification. Dur-
ing the test for the model correlation of spacecraft, Mercer
et al. [33] compared different reduction methods (includ-
ing the Guyan reduction and SEREP) and proposed a sensor
arrangement method in the experiment. Dynamic analysis of
nonlinear structural systems is often difficult due to the large
number of DOFs. With the in-depth study of reduction tech-
nology, scholars gradually found the application prospect
of Guyan reduction in nonlinear systems. Zhang et al. [34]
presented an investigation on the performances of nonlinear
rotor-bearing-foundation systems with reduced rotor models
obtained by the Guyan reduction and the mode superposi-
tion methods. The steady-state responses obtained using the
reduced rotor models are compared with the responses of
the original unreduced system, which shows that the Guyan
reduction has good accuracy in the low-frequency range.

2.1.2 The Kidder Method

In the Guyan reduction, the transformation matrix TG is
obtained by considering only the static equation of the struc-
ture. To reduce the errors caused by ignoring the effect of
inertia in the Guyan reduction, Kidder [9] proposed a new
reduction method in 1973 by introducing the mass of DOFs
to improve the accuracy of the Guyan reduction. In Kidder’s
method, the generalized eigenvalue problem of the structural
system is firstly given out

[
Kmm Kms

K sm K ss

]{
um
us

}
� λ

[
Mmm Mms

Msm Mss

]{
um
us

}
(7)

where λ � ω2 is the eigenvalue of the structural system, and
ω is the natural frequency.

Thus, from the second row, the slave DOFs us can be
expressed as

us � (K ss − λMss)
−1(λMsm − K sm)um (8)

It is noted that Eq. (8) is the exact form of us considering
the effect of inertia. Substituting Eq. (8) into the first row
of Eq. (7), and introducing the Neumann series expansion to
deal with the inverse matrix (Kss − λMss)−1, the final Kidder
transformation matrix TK can be obtained as

u �
{
um
us

}

�
{

I(
K−1

ss + λK−1
ss MssK−1

ss

)
(λMsm − K sm)

}
um�T K um

(9)
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Fig. 3 Transferred FRF (Hyb, τ a)—Case 1: damped FE model [36]

based on which, the reduced mass and stiffness matrices in
the Kidder method are

MK � TT
K MT K , K K � TT

K KT K (10)

Obviously, due to the retention of the first-order inertia
term, the Kidder method is more accurate than the Guyan
reduction. However, the accuracy of the Kidder method
depends on the selection of λ. In other words, the Kidder
method is accurate at the initial frequency corresponding
to the selected initial eigenvalues, and still maintains good
accuracy in its nearby frequencies. However, when it is far
from the initial eigenvalues, the accuracy of the natural fre-
quency and mode shape of the reduced model will gradually
decrease. The above limitation has also been mentioned in
Refs. [25, 35].

Due to its limitations, the Kidder method has very limited
engineering applications and theoretical research. Gener-
ally, theoretical simulation data and measurement data are
not compatible in terms of the type and number of DOFs.
Although the finite element model can provide complete
information of DOFs, the traditional vibration test can
only obtain limited information of DOFs. Therefore, it is
necessary to expand the experimental data. Based on the
generalized Kidder method, Maia and Silva [36] proposed a
frequency response function expansionmethodwhich avoids
the need for modal identification because it directly uses the
measured translation frequency response. Figure 3 shows the
experimental results of this method. The results show that
this expansion technique has not only high accuracy but also
strong robustness to noise.
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2.1.3 Improved Reduction SystemMethods (IRS, DIRS
and IIRS)

In 1989, O’Callaghan [10] improved the Guyan reduction
by proposing an improved reduction system (IRS) method.
The method improves the transformation from the Guyan
reduction by including the inertia terms as pseudo-static
forces. The transformation matrix is obtained by gradually
approximating the displacement with the mode shape. By
introducing binomial series expansion on frequency, Gordis
[37] further generated the transformation of the standard IRS
method. The theoretical derivation of the previous part of the
IRS method is the same as the Kidder method. The second
row of Eq. (9) can be further written as

us � −K−1
ss

[
K sm + λ

(
MssK−1

ss K sm − Msm

)
+o(λ2)

]
um

(11)

where λ can be approximated by the Guyan reduction as

λMGum � KGum , λum � M−1
G KGum (12)

SubstitutingEq. (12) intoEq. (11), the transformation rela-
tionship in IRS can be obtained as

us �
[
−K−1

ss K sm + K−1
ss

(
Msm − MssK−1

ss K sm
)
M−1

G KG

]
um

(13)

The above equation defines the transformation relation-
ship between slave and master DOFs in the IRS method.
Although it is strictly correct onlywhen the coordinate vector
is the mode shape, it may be applied as a general transfor-
mation which may be conveniently written as

T I RS � TG + SMTGM−1
G KG , S �

[
0 0
0 K−1

ss

]
(14)

It is worth noting that compared with the Guyan method,
the IRS reduced mass matrix is not easy to pass the cross-
orthogonality check (COC), and its reduced stiffness matrix
is even more rigid [37]. Therefore, in 1995, Friswell [22]
further proposed the dynamic improved reduction system
(DIRS) method and the iterated improved reduction system
(IIRS)method. TheDIRSuses the dynamic reduction instead
of the Guyan reduction as the basic transformation, and the
IIRS generates the correction term iteratively by introduc-
ing an iterative scheme and using the current best estimation
of the reduced model. It has been proven that the natural
frequencies of the reduced models of DIRS and IIRS con-
verge to the natural frequencies of the original model [23,
38]. In addition, the calculation accuracy and convergence

of the DIRS method largely depend on the selection of mas-
ter DOFs. The IIRS method greatly improves the adverse
effect of the selection of master DOFs.

The DIRS method can be regarded as an improvement of
the dynamic reduction method [39]. The Guyan reduction is
correct only statically (zero frequency). Under a determined
frequency �, the reduced model of dynamic reduction is
accurate, and the transformation can be given as

u �
{
um
us

}
�
{

I

−(
K ss − �2Mss

)−1(
K sm − �2Msm

)
}

· um � Tdum (15)

As for the DIRS, it is basically the same as that of the
standard IRS method, except that the slave DOFs are written
as a power series in (λ − �2). The transformation can be
expressed as

us � −D−1
ss

[
Dsm +

(
λ − �2

)(
MssD−1

ss Dsm − Msm

)]
um

(16)

in which, Dss � Kss − �2Mss, and Dsm � Ksm − �2Msm.
The reduced model based on the dynamic reduction to the
first order in (λ − �2) satisfies

(
λ − �2

)
MGum � DGum ,

(
λ − �2

)
um � M−1

G DGum

(17)

where DG � KG − �2MG. Therefore, the transformation
matrix of DIRS can be obtained

T DI RS � Td + SdMTdM
−1
G KG , Sd �

[
0 0
0 D−1

ss

]
(18)

The transformation of Eq. (14) relies on the reduced mass
and stiffness matrices obtained from the Guyan reduction.
Once the transformation has been computed, an improved
estimate of these reducedmatrices can be updated. Therefore,
the iterative calculation can be used to improve the calcula-
tion accuracy of the IRS method. The iterative calculation
can be

T I I RS, i+1 � TG + SMT I I RS, iM
−1
I I RS, i K I I RS, i (19)

where the subscript “i” denotes the ith iteration. It should be
noted that the iterative initialization of Eq. (19) is the Guyan
reduction method, and the first iteration is the IRS method,
that is

T I I RS, 0 � TG , T I I RS, 1 � T I RS ,

M I I RS, 0 � MG , K I I RS, 0 � KG (20)
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Fig. 4 Comparison of damage identification results for scenario A of the FGM plate using different dynamic condensation techniques: a noise-free;
b with noise [35]

In addition, the iterated IRS technique proposed by Blair
et al. [40] is different from Eq. (19) as

T I I RS, i+1 � TG + SMTGM−1
I I RS, i K I I RS, i (21)

where the Guyan transformation is retained in the second
termof the right-hand side. The algorithmdefined byEq. (21)
converges to yield reducedmass and stiffnessmatrices that do
not reproduce the eigenvalues of the full system. In addition,
the DIRSmethod can be easily extended to the iterative form
similar to Eq. (19).

The IRS method has been widely used in damage identi-
fication, structural nonlinearity, topology optimization, and
many other fields because of its high accuracy [41–47].
Dinh-Cong et al. [35] studied the damage identification of
functionally graded materials (FGM) by using six reduc-
tion techniques, i.e., the Guyan reductionmethod, the Kidder
method, the Neumann series expansion-based second-order
model reduction (NSEMR-II) method, the IRS method, the
IIRSmethod, and the iterative order reduction (IOR)method.
The FGM damage identification results of different reduc-
tion techniques are shown in Fig. 4. The results show that the
IIRS method can effectively solve the problem of structural
damage identification, while the Kidder method has a poor
damage identification effect.
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Fig. 5 Poincaré map for the pinned beam with 16 DOFs [41]

Friswell et al. [41] studied the finite element model reduc-
tion of structures with local nonlinearities using the IRS
method,which is the first application of the IRSmethod in the
field of structural nonlinearity. Figure 5 shows the Poincaré
map of the reduced nonlinear model, which is very similar to
the full model. Based on the section damage modeling of the
IIRS method, an effective method for cross-sectional dam-
age localization and quantification in beams was proposed
by Hosseinzadeh et al. [42] This method can be applied by
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Fig. 6 FEM model of the front part of a vehicle frame [43]

Fig. 7 3D presentation of MAC values [43]

utilizing incomplete modal data or installing a limited num-
ber of sensors for damage identification. The results show
that the method not only can accurately locate all simulated
damage but also has good robustness to noise.

In order to improve the calculation efficiency of large-
scale finite element models, Xie et al. [43] studied the model
reduction of vehicles by using the IIRS method. Only 66
nodes are selected as the master nodes which are high-
lighted in Fig. 6. Only the translational DOFs of the master
nodes are retained in the reduction process. Figure 7 shows
a three-dimensional representation of modal assurance crite-
rion (MAC) values between the reduced and the original full
models. It is found that the IIRS method tends to generate
better reduction approximation.

Based on the stochastic finite element method (SFEM)
and the IIRS method, Ni et al. [44] performed the stochastic
dynamic response analysis of marine risers with uncertain
mass density and elastic modulus. Figure 8 shows the SFEM
results with and without model reduction. These results are
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Fig. 8 Response statistics of the displacement at the critical point along
the y-direction from the SFEM with/without mode reduction: a mean
value; b variance [44]

consistent with the results obtained by Monte Carlo simula-
tion (MCS), while the calculation time required for the full
model and reduced model is 5974 s and 1944s, respectively.
These results show that the IIRS method has no significant
impact on the accuracy of random response analysis but sig-
nificantly shortens the calculation time.

2.1.4 System Equivalent Reduction Expansion Process
(SEREP)

In 1989, O’Callahan et al. [11] proposed the system equiv-
alent reduction expansion process (SEREP). Different from
the above-mentioned three methods, SEREP is developed
based on modal coordinates. O’Callahan and Li [48] further
improved the SEREP technique by introducing the concept
of generalized inverse. The SEREP is a reduction transfor-
mation based on a subset of the modes of the full model,
and the reduced model exactly describes the selected modes
at the chosen master DOFs [49]. It allows matching the
DOFs between numerical mode shapes and experimental
mode shapes without losing dynamic characteristics. The
essence of SEREP method is to establish a transformation
matrix obtained by modal reduction. The generalized eigen-
value problem of structural systems can be written as

[
Kmm Kms

K sm K ss

]{
Φm

Φs

}
q � λ

[
Mmm Mms

Msm Mss

]{
Φm

Φs

}
q (22)
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inwhich,Φm andΦs are themodalmatrices of themaster and
slaveDOFs, respectively, and q is the generalized coordinate.
The relationship between coordinates in physical space and
modal space is

{
um
us

}
�
{

Φm

Φs

}
q (23)

from which, by eliminating the rows corresponding to the
slave DOFs, one can have

q � Φ+
mum (24)

where the superscript “ + ” represents the generalized inverse
ofmatrix.As a result, the transformationmatrixTS of SEREP
is

T S �
{

Φm

Φs

}
Φ+

m (25)

In general, the modal matrices have orthogonality, so
the reduced mass and stiffness matrices for SEREP can be
obtained as

MS � TT
SMT S � (

Φ+
m

)T
Φ+

m ,

K S � TT
SKT S � (

Φ+
m

)Tdiag(λ)Φ+
m (26)

It should be emphasized that the SEREP method can han-
dle free and clamped boundary conditions for both finite
element numerical models and experimental data [50]. In
addition, an important feature of SEREP is that it is not nec-
essary to model the structure by FEM in advance. Based
on the modal shape of theoretical analysis or experimental
measurement, the reduced dynamic system can be obtained
arbitrarily, as shown in Eq. (26). On the contrary, by using
the SEREP transformation matrix of the coupled FE model,
the unmeasured DOFs can be predicted from the measured
experimental mode, which is known as the virtual sensing
[11].

The SEREP method uses mode shapes instead of static
equations to generate a reduced matrix. Therefore, it is
widely used in damage detection and fault identification,
active control, model reduction of complex systems, cross-
orthogonality check between analytical and experimental
modal vectors, linear and nonlinear forced response stud-
ies, and analytical model improvement [51–60]. Ghannadi
andKourehli [51] proposed amodel-based structural element
damage detection and severity identification method, using
the extended mode shape data based on the SEREP method
to train the artificial neural network to solve the problem of
limited number of sensors. Figure 9 shows the comparison
between the predicted results and the actual results in three

different cases of 30-element plane truss. It can be observed
that the method can predict the severity and location of dam-
age accurately.

Fault detection of rotating machinery is a classical sub-
ject of rotor dynamics. Sanches and Pederiva [52] proposed
a time-domain identification method based on correlation
analysis and the SEREP model reduction to estimate the
concurrent faults synchronized with the speed of rotor.
Numerical examples and experimental data were used to ver-
ify the feasibility of the method.

The DOFs in FE models of rotor shaft structures are usu-
ally huge, so it is often very difficult to actively control due
to the time delay caused by high calculation costs. Das and
Dutt [53, 54] reduced the rotor shaft system model by the
SEREPmethod and then successfully used the reducedmodel
to control the rotor shaft actively. The results show that the
reduction model can greatly reduce the computational cost
of active control.

There are many asymmetric factors in the propeller shaft
system, such as the gyro effect, internal damping, and journal
support. A large number of states of these high-order models
and the existence of asymmetry make the post-processing
of the system complex. Ganguly and Roy [55] solved these
limitations by using the improved SEREP method to reduce
the hollow propeller shafting model. Figure 10 compares the
steady-state time response for the full and reduced models
in the unstable zone considering the spin speed of rotor as
2000 rpm. The comparative results show a perfect reduction
of the full model system.

Engineering structures are prone to fatigue failure under
the action of working impulse. Obtaining the overall stress
information is the key to estimating the residual fatigue life
of structures. Unfortunately, it is very difficult to install sen-
sors at the key locations of fatigue, and sensors are usually
damaged by the working environment. For the fatigue analy-
sis of engineering structures, virtual sensing is usually used.
In order to predict the global vibration response of the inter-
stage piping system of the compound compressor,Mendonsa
et al. [56] proposed an extended virtual sensing methodol-
ogy based on the SEREP method. The specific steps of the
virtual sensing technology are introduced in Fig. 11. Simi-
lar virtual sensing methods were also applied to predict the
residual fatigue life of offshore structures [57]. Based on the
SEREPmethod, Thibault et al. [58] proposed a computation-
ally efficient technique-equivalent reduced model technique
(ERMT), which utilizes reduced linear component models
assembled with discrete nonlinear connection elements to
perform nonlinear forced response analysis.

In addition, the SEREP method is also applied to the
model reduction of the fluid–structure coupling system. Lal
et al. [59] proposed a reduced-order model based on the
parallel method of SEREP and polynomial chaos expan-
sion to analyze the fluid–structure coupling system with
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Fig. 9 Results of damage prediction for space truss with 25 elements: a damage element is 25; b damage elements are 22, 23, 24, and 25; c damage
elements are 1, 4, 6, 7, 8, and 9 [51]

random parameter uncertainty. Numerical results reveal that
the proposed method results in a significant reduction in
computational cost for dynamic analysis without compro-
mising on accuracy. Sarkar and Venkatraman [60] applied
the SEREP method to the model order reduction of linear
unsteady aerodynamic problems. The numerical results show
that this method is more effective than the proper orthogonal
decomposition (POD) method in determining the response
of the unsteady aerodynamic model of the vibrating airfoil
cascade.

2.2 Component Mode Synthesis (CMS) Method

The component mode synthesis (CMS) method, also known
as the dynamic substructure method, relies on a combina-
tion of physical and mode base vectors to form the reduced
subspace [61–65]. The basic idea is to “divide and conquer”,
that is, to divide the original structure into some substructures
according to certain rules, and perform relevant operations
(design, modeling, model reduction, etc.) on the substruc-
tures. In the process of the substructure from segmentation
to assembly, the reduction of DOFs must run through all the
time. At the same time, the accuracy of the analysis must be
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Fig. 10 Time-response plot for unstable zone at � � 2000 rpm: a full model; b reduced model [55]

guaranteed and converge with the increase in the number of
DOFs involved. The ideal situation is to obtain high accu-
racy with the least participation DOFs The implementation
process is relatively simple, which is the original intention of
the CMS method. With the deepening of research, the CMS
method mainly develops into three types according to the
constraints on the interface of substructures: the fixed inter-
face component mode synthesis method [12, 66], the free
interface component mode synthesis method [67–70], and
the mixed interface component mode synthesis method [14].

2.2.1 Fixed Interface Component Mode Synthesis Method
(the Craig–Bampton Method)

The fixed interface component mode synthesis method was
firstly proposed by Hurty [66] in 1965. The fixed-interface
principal mode, constraint mode, and rigid body mode are
used to form a complete mode set of the substructure, and the
displacement coordination among the substructures is real-
ized through the interface coordinates. Craig and Bampton
[12] improved the Hurty method and formed the most widely
usedCraig-Bamptonmethod at present. Theypointed out that
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Fig. 11 Flowchart of the methodology proposed for dynamic response prediction in the compressor’s interstage pipe [56]

as long as the number of constraint modes exceeds the rigid
body DOFs of the substructure, the rigid body modes of the
substructure will be included in the constraint modes. There-
fore, it is not necessary to introduce the rigid body modes of
the substructure into the hypothetical mode set alone.

The basic principle of the fixed interface component mode
synthesis method is that all the interfaces between substruc-
tures are constrained, and then themodes of each constrained
substructure can be obtained. According to the connection
conditions of the interface, the non-independent modal coor-
dinates are eliminated, and the comprehensive equation of

the overall structure is obtained. Firstly, a diagram shown in
Fig. 12 is used to explain the concepts of substructure and
interfaceDOFs.As shown in thefigure, the overall structureS
is divided into substructureS1 and substructureS2, connected
by the interface boundary (the red line in Fig. 12). The nodes
on the interface boundary are called interface nodes, and the
DOFs of interface nodes are called interface DOFs. Nodes
outside the interface boundary are called interior nodes, and
their DOFs are called interior DOFs.

For each substructure, the equation of motion is written in
terms of the interface and interior DOFs as
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S

Interface DOFs Interior DOFs

S2S1

Node linked with the rest of the structure

Fig. 12 Schematic diagram of the definition of substructure and inter-
face DOFs

[
M I I M I B
MBI MBB

]{
üI
üB

}
+

[
K I I K I B
K BI K BB

]{
uI
uB

}
�
{

F I
FB + RB

}

(27)

where the subscripts “I” and “B” denote interior and inter-
face DOFs of the substructure, respectively; and RB is the
connection load between substructures. When analyzing a
substructure, it is equivalent to the external load of the sub-
structure.

Different from the dynamic condensation methods, the
DOFs of interior nodes are composed of two parts as

uI � uI B + uI I (28)

where uIB is produced by the interface DOFs, which can be
approximated by the Guyan reduction as

uI B � −K−1
I I K I BuB (29)

As for uII , actually, it can be obtained using the mode
superposition principle under completely constraining the
interface DOFs of the substructure, i.e., uB � 0. Therefore,
the equation of motion for the constrained substructure can
be obtained as

M I I üI I + K I I uI I � F I (30)

Solving the eigenvalue problem of Eq. (30), the displace-
ment in physical space can be transformed to the normalized
mode space as

uI I � Φ I I ν̃N �
{
ΦL

I I , ΦH
I I

}{ xN

xH

}
≈ ΦL

I I xN (31)

where ṽN is the coordinate vector in normalized mode space.
It can be seen from the above equation that the normalized
modes are divided into the lower-order (with superscript
“L”) and higher-order (with superscript “H”) parts; and in
dynamic analysis, the high-order parts are usually truncated.
As a result, the displacement vector of the substructure can
be expressed as

(32)

u �
{
uI

uB

}
�
[

ΦL
I I −K−1

I I K I B

0 I

]{
xN

uB

}

�
[

ΦL
I I Φ I B

0 I

]{
xN

uB

}
� Φc

{
xN

uB

}
� Φc

{
P I

P B

}

where Φc is the first transformation matrix in the fixed inter-
face component mode synthesis, based on which, the mass,
stiffness and external load matrices become

M � ΦT
c MΦc �

[
I M I B

MBI MBB

]
, K � ΦT

c KΦc �[
�I I 0
0 K BB

]

F � ΦT
c

{
F I

FB + RB

}
�
{ (

ϕL
I I

)T
F I

ϕT
I BF I + FB + RB

}
(33)

Finally, the equation of motion for substructures after the
first transformation is

M P̈ + K P � F (34)

where P � {PI ,PB}T is the coordinate vector in the modal
space. Actually,P is a generalized coordinate vector, because
PI � xN is the normalized mode coordinate, while PB � uB
is just the physical coordinate.

The equation of motion for the whole structure can be
obtained by combining the equations of motion for all sub-
structures as

[
M1 0
0 M2

]{
P̈1

P̈2

}
+

[
K 1 0
0 K 2

]{
P1

P2

}
�
{
F1

F2

}
(35)

where the subscripts “1” and “2” represent substructures 1
and 2, respectively. The overall coordinate vector is

{
P1

P2

}
�
{
P I , 1 P B, 1 P I , 2 P B, 2

}T
(36)

123



374 Y. Sun et al.

where according to the continuity conditions between sub-
structures, one can have PB,1 � PB,2. As a result, the
coordinate vector of the whole structure can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P I , 1

P B, 1

P I , 2

P B, 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎣
I 0 0
0 0 I
0 I 0
0 0 I

⎤
⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

P I , 1

P I , 2

P B

⎫⎪⎬
⎪⎭ � T cP (37)

where Tc is the second transformation matrix, based on
which, the final reduced FE model is

M P̈ + K P � F (38)

where.

M� TT
c

[
M1 0
0 M2

]
T c, K� TT

c

[
K 1 0
0 K 2

]
T c,

F � TT
c

{
F1

F2

}
�

⎧⎪⎪⎪⎪⎪⎨
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(
ϕL
I I , 1

)T
F I , 1(

ϕL
I I , 2

)T
F I , 2

ϕT
I B, 1F I , 1 + FB, 1 + ϕT

I B, 2F I , 2

+FB, 2 + RB, 1 + RB, 2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(39)

in which, RB,1 + RB,2 � 0, because they are internal forces
for the whole structure.

Another issue worth discussing is data recovery. Based on
the above reduced equation of motion, the dynamic analysis
of the structure system can be conducted.After that, themode
shape of the structure in the modal space should be converted
to the physical space by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uI , 1

uB, 1

uI , 2

uB, 2

⎫⎪⎪⎪⎬
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�
[

Φc, 1 0
0 Φc, 2

]
T cP (40)

This method of directly using the modal coordinate trans-
formation matrix is called the mode displacement (MD)
method [71]. Thismethod ignores the influence of high-order
modes. If there are many higher-order components in the
practical vibration, the calculation accuracy will be reduced.
Other data recovery technologies will be discussed in detail
in Sect. 3.3.

In recent years, scholars have also done a lot of research
on the engineering application of the fixed interface compo-
nent mode synthesis method [72–80]. Vizzini et al. [72] used
the C-B method to reduce the order of the Volvo V40 body-
in-white (BIW) structure model and carried out the vibration
analysis. The results show that the simulation time can be
reduced by 90% by using the CMS method instead of the

complete finite element model. In order to predict the dam-
age of composite laminates,Mahmoudi et al. [73] proposed a
damage location and quantificationmethod based on the arti-
ficial neural network (ANN) and theCraig-Bamptonmethod.
Thismethod only needs tomonitor the stress state of the com-
posite structure. Figure 13 compares the results provided by
the full damage model with those given by the ANNs. The
ANNs show good agreement with the results obtained via
the full model.

Generally, the control of a large-scale adaptive civil
engineering structure is often challenging due to signal trans-
mission delay. Wagner et al. [74] developed a decentralized
control scheme to solve this problem. The scheme subdi-
vides the large structure into local substructures using the
Craig-Bampton method and controls the substructures sepa-
rately. Taking the control of an adaptive high-rise structure
as an example, the effectiveness of the scheme was illus-
trated. Reducing the complex model of multiple physical
fields is an important step in the design and optimization
of high-tech systems. Nachtergaele et al. [75] extended the
classical Craig-Bampton method to the thermo-mechanical
system to reduce themodel of the thermo-mechanical system.
Based on a simple thermal actuator model, the effectiveness
of this method was verified. Figure 14 shows the accurate
calculation results of the thermal-driven approach. Junge
et al. [76] applied the Craig-Bampton method to simulate the
low-frequency vibration acoustic behavior of fluid–structure
coupled systems. It is shown that the method is capable of
significantly accelerating the solution process, while intro-
ducing only a small additional error.

For nonlinear high-rise buildings, Fang et al. [77] pro-
posed an adaptive modified numerical method based on the
Craig-Bampton method to simplify the model and solve the
structural dynamic response efficiently. This method can be
applied to the judgment of nonlinear structural members
of high-rise buildings under strong earthquake excitation.
Figure 15 shows the displacement of structural roof under
620-gal ground acceleration. The results obtained by the
adaptive modified Craig-Bampton method and the time step
integration method are in good agreement. In addition,
the Craig-Bampton method is widely used in the field of
aerospace. Thomas et al. [78] developed a hybrid stickmodel
based on the Guyan method and the Craig-Bampton method,
and took the Bombardier aircraft platform as an example
to carry out a dynamic aeroelastic analysis. Based on an
enhanced Craig-Bampton (ECB) method, Lim et al. [79]
conducted a coupled dynamic load analysis (CDLA) of the
satellite to predict its maximum response (acceleration, dis-
placement, and stress). By combining the Craig-Bampton
method with the Monte Carlo simulation, Remedia et al.
[80] proposed an analytical method to evaluate the dynamic
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response of large structural components in the medium fre-
quency range. This method has been applied to the dynamic
response analysis of the modern satellite SSTL 300 S1.

2.2.2 Free Interface Component Mode Synthesis Method

It is noted from the fixed interface component mode syn-
thesis method that although the DOFs of the FE model
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Fig. 15 Roof displacements:AMCB adaptivemodifiedCraig-Bampton;
TSI time step integration [77]

are reduced significantly, they highly depend on the DOFs
of the interface. To solve this problem, in the late 1960s,
Hou [67] and Goldman [81] proposed a free interface com-
ponent mode synthesis method almost at the same time.
However, this method completely ignores the influence of
higher-order truncatedmodes, and the convergence and accu-
racy of the results are relatively poor. In 1971, MacNeal [68]
obtained the first-order approximate residual flexibility of
the substructure through the static equilibrium relationship
and used the residual flexibility to approximate the influ-
ence of higher-order modes on the dynamic characteristics
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of the substructure. In 1975, Rubin [69] improved the Mac-
Neal method and introduced the concept of residual inertia
on the basis of residual flexibility to obtain the second-order
approximate residual flexibility to correct the influence of
higher-order truncatedmodes. In 1976, Craig andChang [13]
further improved the free-interface method, pointed out that
the residual flexibility can be used as a Ritz vector, and pro-
posed that the interface force of the substructure can be used
as generalized coordinates and be eliminated by the coordi-
nation condition of interface force, so as to greatly reduce the
final DOFs. This is the free interface method often applied
today.

Also taking the structure composed of two substructures
as an example, the equation of motion is[
M I I M I B

MBI MBB

]{
üI

üB

}
+

[
K I I K I B

K BI K BB

]{
uI

uB

}
�
{

0
FB

}

(41)

where FB is the force on the interface. For the free interface
method, uB � 0 is no longer valid. Therefore, the eigenvalue
problem for the overall DOFs of the substructure should be
solved. Similar to the fixed interface method, to reduce the
model, the higher-ordermodes are truncated. However, in the
free interface method, the influence of higher-order modes
is approximated by the residual flexibility. Thus, the first
transformation matrix can be expressed by

Φ f �
{

ϕL
N Ψ

}
�
[

ϕL
N I Ψ I

ϕL
N B Ψ B

]
(42)

where ψ is the residual flexibility matrix. As a result, the
reduced model after the first transformation is

M̃ P̈+K̃ P � F̃ (43)

where P � {PL , FB}T, in which PL is the reduced normal-
ized modal coordinate, and force FB on the interface can be
viewed as a generalized coordinate.

The basis of the second transformation is the interface
force equilibrium condition F B,1 � − F B,2. Combining the
two substructures, the generalized coordinate becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P L , 1

FB, 1

P L , 2

FB, 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎣
I 0 0
0 0 I
0 I 0
0 0 −I

⎤
⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

P L , 1

P L , 2

FB, 1

⎫⎪⎬
⎪⎭ � T f 1

⎧⎪⎨
⎪⎩

P L , 1

P L , 2

FB, 1

⎫⎪⎬
⎪⎭ (44)

According to the first transformation given by Eq. (42), in
each substructure, the boundary displacements are{
uB, 1 � ϕL

N B, 1P L , 1 + ψ B, 1FB, 1

uB, 2 � ϕL
N B, 2P L , 2 + ψ B, 2FB, 2

(45)
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Fig. 16 Schematic diagram of the cantilever plate with two substruc-
tures

where uB,1 should be equal to uB,2 according to the displace-
ment compatibility condition. As a result, the relationship
between the interface force FB and the reserved modal coor-
dinate PL can be obtained as

FB, 1 � −FB, 2

� (Ψ B, 1 + Ψ B, 2)
−1
{
−ϕL

N B, 1 ϕL
N B, 2

}{ P L , 1

P L , 2

}

� L−1
1 L2

{
P L , 1

P L , 2

}
(46)

based on which, the generalized coordinate can be rewritten
as⎧⎪⎨
⎪⎩

P L , 1

P L , 2

FB, 1

⎫⎪⎬
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{
I2k×2k

L−1
1 L2

}{
P L , 1

P L , 2

}
= T f 2

{
P L , 1

P L , 2

}
(47)

where T f 2 is the second transformation matrix.
It can be noted from Eq. (47) that the DOFs of the reduced

model for thewhole structure depend only on the lower-order
modes selected in the first transformation, and the inter-
face DOFs are eliminated, which can significantly reduce the
dimension of the matrices compared with the fixed interface
method. Tomake the comparisonmore clearly, an example of
a cantilever plate with two substructures are given, as shown
in Fig. 16. The natural frequencies of the plate computed by
the twomethods are shown in Table 2. In the calculation, a�
0.4 m, b� 0.2 m and h� 0.005m. The material properties of
the plate are E � 210 GPa, υ � 0.3, and ρ � 7300 kg/m3. In
the fixed interface method, the first two modes are selected
for Substructure I, and the first four modes are selected for
Substructure II. There are 33DOFs on the interface. The total
DOF in the fixed interface method is 2 + 4 + 33 � 39, which
is much smaller than the dimension (i.e., 600) of the full FE
model. As for the free interface method, the total DOF of the
reduced model is just 6, while the natural frequencies are in
good agreement with those of the fixed interface model.

The free interfacemethod is widely used in different fields
[82–88]. Fan et al. [82] applied the free interface method to
the wave and the finite element method to reduce the compu-
tational costwhilemaintaining accuracy. Figure 17 shows the
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Table 2 Natural frequencies (Hz) of the cantilever plate obtained by
different models

Mode
number

Full FE model
(DOFs � 660)

Fixed
interface
model (DOFs
� 39)

Free interface
model (DOFs
� 6)

1 27.74 27.76 27.98

2 118.82 119.56 119.54

3 172.54 173.25 173.24

4 386.11 392.03 389.15

5 482.43 486.84 494.20

6 739.25 760.82 760.50
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Fig. 17 Efficiency for different models to obtain acceptable results:
overall CPU time and retained DOFs, both in the logarithmic scale
[82]

calculation cost of different models in the free wave analysis.
The results show that the free interface method can greatly
reduce the CPU computing time in the free wave analysis.

Folding wings are composed of inner wings and outboard
wings. They are widely used in missiles. By extending the
connection relationship between the inner wings and the
outer wings, Ning et al. [83] established the nonlinear aeroe-
lastic models of folded wing structure by using the free
interface method. According to the wind tunnel test results,
the flutter characteristics of wings with different freeplay
angles were analyzed. The results showed that the free inter-
face method can be used to establish the governing equations
and analyze the characteristics of nonlinear aeroelastic sys-
tems.

For offshore platforms with excitation load equipment,
the fully coupled method is usually used to predict the
dynamic characteristics of offshore platforms. However, the
calculation cost is relatively high. Based on the free inter-
face method, the dynamic analysis of offshore platform with
compressor unit was carried out by Zhao et al. [84]. The
results showed that the calculation results of the free interface

method and fully coupled method were basically consis-
tent, the calculation time was saved by more than 50%, and
the storage space was saved by more than 60%. Li [85]
applied the free interface method to the electrostatic anal-
ysis of two-dimensional quantum mechanics and calculated
the charge concentration and potential distribution of several
nanostructures and devices. The results showed that com-
paredwith the direct finite element analysis, the free interface
method canobtain accurate results and lower calculation cost.
Chiello et al. [86] proved that the free interface component
mode synthesis technique can effectively solve the structural
and acoustic response of elastically-supported baffled plates
excited by plane waves or diffuse fields.

Cable vibration in cable-stayed bridges is a very impor-
tant research field. Based on the free interface method, Chen
et al. [87] established a general numerical model of cable net
with small DOFs for free and forced vibration analysis. By
treating each cable as a substructure and reducing the order,
the computational cost was greatly reduced. An example of
a cable-stayed bridge verified the effectiveness and accuracy
of the method.

The complex eigenvalue analysis is a widely used tech-
nique to investigate the stability of a dynamical system with
frictional contact. In the case of brake systems, it is the most
frequently employed method to study the propensity of the
brake to generate squeal noise.However, complex eigenvalue
analysis often requires high computational cost. In order to
solve this problem, Brizard et al. [88] applied the free inter-
face method in the study of frictional contact. The results
showed that the free-interface method can reduce a lot of
calculation time.

2.2.3 Mixed Interface Component Mode Synthesis Method

There is a question on how to determine the utilization of the
fixed interface method and the free interface method. The
case was raised from the literature [89]: if a substructure is
very stiff at one interface but relatively flexible at others, the
combination of these two methods needs to be used for each
of such substructures.

The mixed interface component mode synthesis method
is a theory between the fixed interface component mode
synthesis method and the free interface component mode
synthesis method. This method was first proposed by Ben-
field and Hruda [14] in 1971, which is also usually called
the B-H method. The B-H method does not consider the
influence of the slave substructure on the principal modes
of the free interface of the master substructure, so the accu-
racy of the calculation result is not high. In 1985, Jezequel
[90] applied dynamic tests and other test methods to obtain
the mechanical model of the mixed interface substructure by
applying loads on the interface of the substructure. Then he
[91] introduced the generalized interface coordinates, further
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standardized the mixed interface component mode synthe-
sis method, and qualitatively analyzed the error caused by
the truncated higher-order modes. Later, Qiu [92] further
improved the mixed interface component mode synthesis
method and obtained an accurate mixed interface compo-
nent mode synthesis method. There are too many branches
in the mixed interface component mode synthesis method,
but the core ideas of them are almost the same.

The first coordinate transformation of the mixed inter-
face component mode synthesis method is the same as those
of the fixed interface method and the free-interface method.
The second coordinate transformation should be carried out
according to the coordination conditions between different
interfaces. It is assumed that the substructure has internal
DOFs, fixed interface DOFs, and free interface DOFs at the
same time. The equation of motion is

(48)

⎡
⎢⎣ M I I M I A M IC

M AI M AA M AC

MC I MCA MCC

⎤
⎥⎦
⎧⎪⎨
⎪⎩

üI

üA

üC

⎫⎪⎬
⎪⎭

+

⎡
⎢⎣ K I I K I A K IC

K AI K AA K AC

KC I KCA KCC

⎤
⎥⎦
⎧⎪⎨
⎪⎩

uI

uA

uC

⎫⎪⎬
⎪⎭ �

⎧⎪⎨
⎪⎩

0
FA

FC

⎫⎪⎬
⎪⎭

where uA is the DOF of the free interface, uC is the DOF of
the fixed interface, and FA and FC are the interface forces.
In the mixed interface component mode synthesis method,
the assumed mode is composed of three parts as

Φm �
[

ϕL
m Ψd Ψc

0 0 I

]
�
⎡
⎢⎣

ϕL
m, I Ψd , I Ψc, I

ϕL
m, A Ψd , A Ψc, A

0 0 I

⎤
⎥⎦ (49)

whereϕm is themixed interface principalmode. To obtain the
normalized mode ϕm, the eigenvalue problem of the follow-
ing equation of motion by setting uc � 0 should be solved.

[
M I I M I A
M AI M AA

]{
üI
üA

}
+

[
K I I K I A
K AI K AA

]{
uI
uA

}
�
{

0
FA

}
(50)

The residual flexibilitymatrixψd can be obtained byMac-
Neal’s approximation as

ψd �
⎛
⎝[ K I I K I A

K AI K AA

]−1

− ϕL
m

(
ΛL

m

)−1(
ϕL
m

)T⎞⎠BT (51)

where ΛL
m is the eigenvalue corresponding to the mixed-

interface main mode ϕL
m .

In Eq. (49), ψc is the constraint mode, which can be
obtained by the Guyan method

ψc � −
[
K I I K I A

K AI K AA

]−1{
K IC

K AC

}
(52)

Also taking a structure with two substructures as an exam-
ple, the dynamic equations of the two substructures are
combined in the modal coordinate system as

[
	

M1 0

0
	

M2

]{
P̈1

P̈2

}
+

[
	

K 1 0

0
	

K 2

]{
P1

P2

}
�
{

	

F1
	

F2

}
(53)

where P � {PI , PA, uc}T. The coordination conditions for
the generalized coordinate should be

uA, 1 � uA, 2, P A, 1 � −P A, 2, uC , 1 � uC , 2 (54)

based on which, the relationship between different general-
ized coordinates that is similar to Eq. (46) can be obtained
as

(55)

P A, 1 � −P A, 2 � (
Ψ d , A, 1 + Ψ d , A, 2

)−1

·
{

−ϕL
m, A, 1 ϕL

m, A, 2 −Ψ c, A, 1 + Ψ c, A, 2

}

·

⎧⎪⎨
⎪⎩

P I , 1

P I , 2

uC

⎫⎪⎬
⎪⎭

As a result, the second transformation matrix is
Tm

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
−LmϕL

m, A, 1 LmϕL
m, A, 2 Lm

(−ψc, A, 1 + ψc, A, 2
)

0 0 I
0 I 0
LmϕL

m, A, 1 −LmϕL
m, A, 2 −Lm

(−ψc, A, 1 + ψc, A, 2
)

0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Lm =
(
ψd , A, 1 + ψd , A, 2

)−1

(56)

From the above reduced matrices of the overall system,
it can be seen that the interface force of the substructure is
related not only to the principal mode coordinates but also
to the fixed interface DOFs. This method is an organic com-
bination of the fixed interface method and the free interface
method. The final reserved DOFs of the system are the prin-
cipal mode DOFs and fixed interface DOFs. Generally, the
number of fixed interface DOFs can be a small quantity, so
the number of final system equations can be greatly reduced.

The application of the mixed interface component mode
synthesis method is similar to those of the fixed interface
method and the free interfacemethod in the engineering field.
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Table 3 Summary of advantages,
disadvantages and application of
DC and CMS methods

Advantage Disadvantage Application

DC Guyan Simple Low accuracy for
dynamic problems

1. Damage detection
2. Stochastic FE

analysis
3. Model reduction

Kidder Applicable for dynamic
analysis

Accuracy depends on
initial eigenvalues

1. Model reduction

IRS High precision Relatively high
computing cost

1. Topology
optimization

2. Stochastic FE
analysis

3. Damage detection

SEREP Allow experiment to
match the FE model

The pseudoinverse will
cause errors

1. Virtual sensing
2. Update of FE model
3. Damage detection
4. Active control

CMS Fixed
interface

Simple framework Depends on interface
DOFs

1. Product design
2. Damage detection
3. Decentralized

control

Free
interface

No interface DOFs Complex process 1. Free-wave analysis
2. Nonlinear

aeroelasticity
3. Model reduction

Mixed
interface

Few interface DOFs Complex process 1. Model reduction

And because the program of the mixed interface component
mode synthesis method is more complex, the mixed inter-
face component mode synthesis method is less used in the
engineering field.

2.3 Summary of the DCMethod and the CMSMethod

In Sects. 2.1 and 2.2, twomodel reduction techniques, i.e., the
dynamic condensation method and the CMS method, have
been introduced in detail. In this section, a table (Table 3) is
used to briefly summarize the advantages and disadvantages
of these two kinds of methods.

3 Some Problems of Dynamic Condensation
and CMSMethods

With thewide application of dynamic condensation andCMS
methods in the engineering fields, scholars have also found
some limitations and problems. Next, the main difficulties
encountered are discussed. Some solutions are also proposed.

3.1 Selection Criteria of Master DOFs in Dynamic
Condensation

The most important factor affecting the accuracy of dynamic
condensation technology is the selection of master DOFs.

They determine the matching degree between reduced and
full FE models [50]. Therefore, how to choose the master
DOFs, and how many master DOFs should be selected are
important issues. In the engineering fields, engineers often
select the master DOFs based on experience. Unfortunately,
for complex structural systems, the determination of master
DOFsmay not always be obvious. In addition, it is not always
reliable to rely on engineers’ intuition to select the master
DOFs. In order to solve this problem, scholars [93–98] have
done a lot of research on the selection of master DOFs and
put forward some selection criteria. The specific selection
criteria are as follows.

(1) The total number of master DOFs should not be too
small and should be at least 2–3 times the number
of accurate modes calculated. For inexperienced engi-
neers, the number of master DOFs can be increased to
3.5 times the number of accurate modes, which can
reduce the error caused by the improper selection of
master DOFs.

(2) According to the characteristics of different structures
and loads, the master DOFs should be set on the main
deformation or vibration position.

(3) The master DOFs should be set on the element nodes
with relatively high stiffness and relatively small mass.
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Table 4 Frequencies (Hz)
reproduced with permission
[107]

Mode number Substructure A Substructure B C-B model Full model Difference (%)

1 53.767 19.392 10.162 10.156 0.053

2 163.213 64.216 26.435 26.312 0.470

3 214.125 132.634 58.668 53.431 9.802

4 247.779 148.990 111.776 74.330 50.377

5 258.358 188.709 – – –

6 321.073 223.086 – – –

(4) For axisymmetric models, the master DOFs can be set
at a position parallel to the central line.

(5) The master DOFs should be set at the load action posi-
tion.

(6) The master DOFs should be set at the result response
position.

(7) The master DOFs should not be set on the zero point of
a certain mode of the structure.

(8) The selection of master DOFs tends to be displacement
DOFs rather than rotational DOFs.

In addition, scholars [99–101] have further developed “au-
tomatic” selection methods for master DOFs, which are easy
to be directly applied to the computer program of dynamic
condensation. These methods can automatically select the
master DOFs and are widely used in the engineering fields.

It is worth mentioning that the arrangement of sensors
in the modal identification experiment is closely related to
the selection criteria of master DOFs in dynamic condensa-
tion. The two important physical and dynamic characteristics
are both represented, i.e., the spatial incompleteness of the
described DOFs of a model and the modal incompleteness
of the dynamic behavior that the model represents. It is well
known that in modal experiments, due to the mass effect,
the number of sensors that can be arranged is limited. It
is very important to use limited sensors to obtain as much
experimental modal information as possible. The selection
of master DOFs in dynamic condensation is essentially the
same as the arrangement of sensors, i.e., to select limited
master DOFs to retain the modal information of the model
as much as possible. Therefore, the arrangement of sensors
in the experiment can also refer to the selection criteria of
master DOFs in dynamic condensation.

3.2 Interface DOF Reduction andMode Selection
Criteria of the C–BMethod

It must be emphasized that, in the C-B method, the final
dimension of the reducedmodel depends greatly on the inter-
face DOFs. Therefore, when the structure scale is very large
and complex, it will lead to a very large number of interface
DOFs between substructures. In order to solve this defect

of the Craig-Bampton method, Craig and Chang [102] pro-
posed three methods to reduce the interface DOFs between
substructures, namely, the main mode coordinate reduc-
tion, the Guyan reduction, and the improved Ritz reduction.
Castanier et al. [103] developed the system-level character-
istic constraint (S-CC) mode method, which can reduce the
DOFs of the interface before assembling the substructure
model. Hong et al. [104] proposed an interface reduction
technology, which uses local-level characteristic constraint
(L-CC) modes to reduce the DOFs of the interface. Another
interface-reduction technique is reported in [105], where
the Guyan mode is replaced by the mode computed with
fixed-interface neighbors. The interface-reduction methods
significantly broaden the application range of the Craig-
Bampton method.

In addition, Kuether et al. [106] proposed a selection cri-
terion for the fixed interface modes of substructure. If the
accuracy of the frequency band of interest is to be ensured,
it is necessary to select at least all fixed interface modes of
substructure within 1.5–2 times the maximum frequency of
interest. TakingRef. [107] as an example to explain this selec-
tion criterion, in which the natural frequency of the overall
structure within 0–30 Hz needs to be calculated, the structure
is divided into two substructures, and the natural frequen-
cies of the two substructures under fixed interface are given
in Table 4. According to the selection criterion, the fixed
interface modes of the substructures should be selected up to
60 Hz. That is to say, the first mode of Substructure I and the
first two modes of Substructure II should be selected. The
comparison between the natural frequencies obtained by dif-
ferent models is shown in Table 4. It can be seen from the
table that within 30 Hz, the natural frequencies obtained by
the C-B method are accurate; while beyond the interested
range of frequency, the error increases seriously.

3.3 Data Recovery Technologies

As mentioned earlier, when there are many high-order com-
ponents in the practical vibration, the calculation accuracy
of the MD method will be reduced. Therefore, scholars have
developed high-precision data recovery technologies, i.e., the
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mode acceleration (MA) method and the modal truncation
augmentation (MTA) method.

In order to improve the accuracy of substructure data
recovery technologies, the influence of higher-order trun-
cated modes needs to be considered. The MA method [71]
reduces the influence of high-order truncated modes by
adding a static correction to the MD method. According to
the first row of Eq. (27), the internal displacement uI can be
obtained as

uI � −K−1
I I M I B üB − K−1

I I M I I üI − K−1
I I K I BuB + K−1

I I F I

(57)

Based on the MD recovery, the internal displacement can
be expressed by

uMD
I � ϕL

I I xN + ϕ I BuB (58)

from which, the internal acceleration can be computed as

üI � ϕL
I I ẍN + ϕ I B üB (59)

Solving the first line of Eq. (34) by means of Eq. (33), the
modal accelerations can be obtained as

ẍN �
(
ϕL
I I

)T
F I −

(
ϕL
I I

)T
(M I B + M I Iϕ I B)üB − �I I xN

(60)

Substitution of Eq. (60) into Eq. (59) gives

üI � ϕL
I I

(
ϕL
I I

)T
F I − ϕL

I I

(
ϕL
I I

)T
(M I B + M I Iϕ I B)üB

− ϕL
I I�I I xN + ϕ I B üB

(61)

which is then substituted into Eq. (57), and the internal dis-
placement by the MA method can be obtained as

uMA
I � uMD

I + Gd

[
F I −

(
M I B − M I I K

−1
I I K I B

)
üB

]
(62)

where the residual flexibility matrix of the truncated modes
Gd is given by

Gd � K−1
I I − ϕL

I I�
−1
I I

(
ϕL
I I

)T
(63)

The MA method has become the most widely used data
recovery technology because of its simple program and high
precision. In addition, a new data recovery technology, the
MTA [108] method, was proposed in 1997. This method sup-
plements the C-B constraint modes and the fixed-interface
modes with a set of pseudo eigenvectors. The accuracy of

the MTAmethod is very high, but it requires additional com-
putational effort to calculate the pseudo eigenvectors.

3.4 High-Order Residual Modes (Residual Flexibility)
of Free Interface Method

In Hou’s method, the influences of the higher-order modes
of the substructure are completely ignored, resulting in
unacceptable accuracy and computational efficiency of the
method. The reasonable construction of higher-order resid-
ual modes (residual flexibility) can reduce the calculation
error caused by the truncation of higher-order modes and
accelerate the convergence speed.

In order to take into account the residual higher-order
modes, MacNeal [68] introduced the concept of first-order
approximate residual flexibility. If the steady-state response
of the substructure is considered, Eq. (41) can be expressed
by

Ku � F + ω2Mu (64)

where u is the amplitude of u. In the above equation, if the
influence of inertial force is neglected, the first-order approx-
imation of u can be obtained as

1u � K−1F � GF �
(
GL + 1Gd

)
F (65)

where the left superscript “1” indicates the first-order approx-
imation, G is the flexibility matrix of substructure, and GL

is the flexibility matrix corresponding to the lower-order
reserved mode that can be computed by

GL � ϕL
N�−1

L

(
ϕL
N

)T
, 1Gd � G − GL � K−1 − ϕL

N�−1
L

(
ϕL
N

)T
(66)

which, actually, is the residual flexibility matrix used in the
MA method.

Then, the residual mode expression of MacNeal approxi-
mation is

1Ψ � 1Gr BT �
[
K−1 − ϕL

N�−1
L

(
ϕL
N

)T]
BT (67)

Rubin [69] considered the dynamic influence and obtained
the second-order approximation of the vibration amplitude
by using the results of the first-order approximation as

2u � G
(
F + ω2M1u

)
� G

(
I + ω2MG

)
F (68)

Considering the dynamic influence, the contribution of
the lower-order reserved modes of the substructure to the
response is
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2uL � GL

(
I + ω2MG

)
F (69)

based onwhich, the second-order approximation of the resid-
ual flexibility matrix is

2Gd � (G − GL)
(
I + ω2MG

)
(70)

As a result, Rubin’s second-order approximation of the
residual mode is

2Ψ � 2GdBT � (G − GL)
(
I + ω2MG

)
BT (71)

Qiu et al. [109] derived the exact residual mode expres-
sion of undamped system using the analytical method. It is
composed of the first-order, second-order and higher-order
approximations of residual modes as

Ψ q � Ψ 1 + ω2Ψ 2 + ω4Ψ 3 (72)

where ψ1 is the first-order residual mode in MacNeal’s
approximation,ψ1 +ω2ψ2 is the second-order residualmode
in Rubin’s approximation, and ω4ψ3 is the remaining term
of the exact residual term of Rubin’ s approximation [110].

Although the approximationmethods fromQiu andRubin
have higher accuracy than the first-order approximation
method from MacNeal’s method, the synthesis equation
derived by the exact residual mode and Rubin’s approxima-
tion contains nonlinear terms, which makes the calculation
more complex. The synthesis equation obtained by Mac-
Neal’s approximation is linear, and the calculation accuracy
can fully meet the engineering needs. Therefore, in practi-
cal application, the free interface method generally adopts
MacNeal’s approximation.

3.5 Rigid BodyMode of Free Interface Method

It should be noted that in Eq. (67), the residual mode of the
substructure requires the inverse of its stiffness matrix. The
stiffnessmatrix of the free substructure with rigid bodymode
is a singular matrix and cannot be inversed. For this case,
there are two common treatment methods. The first one is to
use the inertia relief attachment mode as the approximation
of the truncated high-order mode of the substructure. This
method has high calculation accuracy, but the calculation
process is relatively complex, so it is less used. The second
one is the frequency shifting technique [111], with which
the singularity of the stiffness matrix of the substructure is
eliminate, and the residual modes of the substructure are still
used to approximate the truncated high-order modes. The
basic formula of the frequency shifting technique is

K f � K + αM (73)

where K f is the stiffness matrix after the frequency shift; K
andM are the stiffnessmatrix andmassmatrix before the fre-
quency shift, respectively; and α is the amount of frequency
shift. After the frequency shift treatment, the mode shape of
the structure does not change. The correct eigenvalue can be
obtained by subtracting the amount of frequency shift from
the eigenvalue after the frequency shift. It can be seen from
the characteristics of the frequency shift method that whether
the structure has rigid body mode or not, the frequency shift
treatment will not affect its dynamic characteristics, which
provides a theoretical basis for the application of the fre-
quency shift technology in the free-interface method.

When a free substructure in the system needs frequency
shift, other substructuresmust also have frequency shiftswith
the same amount. The determination of the frequency shift
amount is generally by experience. When the frequency shift
amount is much larger than the low-order frequency of the
structure, due to the influence of the computer’s effective
word length and rounding error, the large number operation
will cause large errors and even lead to wrong calculation
results. Therefore, the frequency shift amount should not be
too large. At present, some scholars [112–114] have studied
the amount of frequency shift and obtained some conclu-
sions. In general, taking the square of the lower-order mode
frequency as the frequency shift amount can eliminate the
singularity of the stiffness matrix and ensure better accuracy.

3.6 Non-classical Damping System CMSMethod

The aboveCMSmethods are usually for undamped structures
or structures with proportional damping. Although these
methods have achieved great success in subsequent engineer-
ing applications, the actual structures are usually damped and
often do not accord with the proportional damping assump-
tion. In particular, composite materials are widely used in
modern engineering structures, resulting in the above CMS
methods gradually showing their limitations. Therefore, the
research of theCMSmethod for non-classical damping struc-
tures has attracted more and more attention and become the
development trend of the modern CMS method.

For non-classical damped structures, it is usually neces-
sary to transform their physical equations into state space
and establish the modal base of substructures by solving
their complex modes. Craig and Bampton [12] first pro-
posed the CMSmethod for non-classical damping systems in
1968. Hasselman and Kaplan [115] improved on the basis of
[12] and compensated the response of high-order truncated
complex modes by defining generalized additional residual
modes. Considering the influence of residual modes, Craig
and Chung [116] proposed a free interface complex mode
method for non-classical damped structures. Some schol-
ars have also improved the mode truncation method of the
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non-classical damping CMS method in calculation accu-
racy, including the first-order approximation method which
only considers the inertia-relief modes of subcomponents
[117–120] and the second-order approximation method tak-
ing both static flexibility and dynamic effects of truncated
modes into account [121, 122].

The above methods are based on the complex modal anal-
ysis of non-classical damped structures by transforming the
vibration equation from physical space to state space, and
then use the obtained complex modes for modal synthesis.
However, this will double the dimensions of the undamped
system. In order to solve this limitation, Xiang et al. [123]
constructed the modal subspace by using the Schur vector
insteadof the complexmode formodal synthesis,which com-
pletely avoids the complex modal analysis and improves the
calculation efficiency. However, unlike the complex mode,
the Schur vector cannot describe the modal characteristics of
general damping structures in the physical sense, which lim-
its its application. By introducing the residual static vector
related to an external load and viscoelastic damping force,
De Lima et al. [124] improved the classical C-B method and
extended it to a large-scale viscoelastic damping system.Tak-
ing the aeronautical engineering structure as an example, the
effectiveness of this method for complex viscoelastic struc-
tures is verified.By introducing residual attachmentmodes of
the system matrix, Li and Hu [111] proposed a model reduc-
tion method of a viscoelastic damping system based on the
free interface CMS method. The accuracy and effectiveness
of the proposedmethod are verified by numerical calculation.
TheCMSmethod of the above non-classical damping system
makes up for the defects of the traditional CMS method.

3.7 Model ReductionMethods for Geometrically
Nonlinear Structures

Thin structures, such as beams, plates, and shells, will gen-
erate large-amplitude vibration with geometric nonlinearity
due to their relatively low bending stiffness. Geometric non-
linearity, in terms of its nature, is a kind of distributed
nonlinearity, which means that all DOFs of the model are
nonlinearly coupled [125]. On the contrary, other types of
nonlinearities, such as those related to contact, are related to
local nonlinearity. For the latter case, this review has men-
tioned the application of dynamic condensation and CMS
methods. However, these two methods do not perform well
in the presence of geometric nonlinearity because they typ-
ically do not capture the relevant bending/torsion-stretching
coupling [126]. Formodel reduction of geometrically nonlin-
ear structures, nonlinear mapping methods are usually used,
including but not limited to nonlinear regular modes, implicit
condensation, quadratic manifolds, spectral submanifolds,
direct normal forms, etc. This section will briefly introduce

the application of these methods in model reduction of geo-
metrically nonlinear structures.

The nonlinear normal mode is defined as a nonlinear
extension of the concept of linear normal mode [127], which
provides a strictmathematical and geometric tool for describ-
ing the behavior of geometrically nonlinear systems. Based
on the nonlinear normal mode method, Kerschen et al. [128]
obtained a reduced order nonlinear FE model of Morane-
Saulnier Paris aircraft and calculated the nonlinear normal
mode of the aircraft. Kuether et al. [129] proposed a method
combining reduced-order modeling and numerical continua-
tion to estimate the nonlinear normal modes of geometrically
nonlinear FEmodels and calculated the reduced order model
with hardening nonlinearity of the exhaust panel cover struc-
ture to prove the speed advantage of the new method. Haller
and Ponsioen [130] proposed a unified method for nonlinear
modal analysis of dissipative oscillation systems based on
the nonlinear normal mode.

Implicit condensation was first proposed by Ewan and
Hollkamp [131]. Sometimes it is also called the applied
force method because it relies on applying a set of selected
static forces on the FE model and constructing a stress man-
ifold as the first step of deriving the reduced order model.
Based on implicit condensation, Frangi and Gobat [132]
reduced the order of the geometrically nonlinear FE model
of softening disk ring gyroscope and studied the influence
of nonlinear stiffness in micro-electro-mechanical system
resonator. The slow-fast decomposition proposed by Haller
and Ponsioen [133] for the first time provides mathematical
proof for implicit condensation and quadraticmanifold. Shen
et al. [134] compared three methods (implicit condensation,
quadratic manifold, direct normal form) for model reduction
of geometrically nonlinear structures in the general frame-
work of FE programs. The implicit condensationmethod and
quadratic manifold method both require slow-fast assump-
tions, and they cannot predict the correct nonlinear typewhen
the assumptions are not realized. The direct normal form
method has the invariance property embedded without any
additional assumptions.

The quadratic manifold method based on modal deriva-
tive was first proposed in [126, 135]. The main idea is to
derive a nonlinear mapping by using the modal derivatives
as a quadratic dependence on the master coordinates to pass
from the FE nodes to a reduced subspace built on a quadratic
manifold. Jain and Tiso [136] introduced a new method to
generate training sets for hyper-reduction of geometrically
nonlinear structural dynamics problems without the need for
full solution snapshots, thus greatly reducing the computa-
tional cost of the quadratic manifold method. The example
shows that the effective speed-up value of the method in the
literature [136] is 44.38, while that of the classical method
is 0.73 (The higher is the effective speed-up value, the more
favorable is the given reduction method). Vizzaccaro et al.

123



384 Y. Sun et al.

[137] compared the application of two nonlinear mapping
methods (the normal form theory and the quadratic manifold
method with modal derivatives) in reducing the order of geo-
metrically nonlinear models. The investigation results show
that only when the slow/fast assumption between master and
slave coordinates is true, the results predicted by the quadratic
manifold method with modal derivatives converge to those
provided by the normal form theory. This result completely
conforms to the general theorem provided in [133].

The spectral submanifold was first proposed by Haller
and Ponsioen [130] in 2016. The spectral submanifold is an
invariant manifold asymptotic to the nonlinear regular mode
and the smoothest nonlinear continuation of the spectral sub-
space of a linearized system along the nonlinear regular
mode. Based on the theory of spectral submanifold, Li et al.
[138, 139] constructed a reduced-order model of harmon-
ically excited mechanical systems with internal resonance.
The periodic response and quasi-periodic responses of the
structure were calculated using the reduced order model.
Cenedese et al. [140] developed a data-driven nonlinear
model reduction method based on spectral submanifolds and
applied it to geometrically nonlinear mechanical systems.

The direct normal form method was proposed [141] in
2021, which allows direct calculation of nonlinear mapping
and enables one to pass from the FE DOFs to the invari-
ant manifold of the system tangent to the linear counterpart
of the origin. This method bypasses the steps of eigenmode
projection, so it is suitable for order reduction of large geo-
metrically nonlinearmodels (millions ofDOFs). Opreni et al.
[142] reduced the geometrically nonlinear FE model of large
micro-electro-mechanical structures with internal resonance
based on the direct normal form method.

It is worth noting that the advantage of the direct normal
form method is that its ROMs is explicit, and the implemen-
tation in [141] is non-intrusive (without the need to enter new
calculations at the elementary level in the code). However,
the direct normal formmethod can only assume proportional
damping and is limited to nonlinear problems related to the
quadratic and cubic displacement [134, 141, 142], so the
results will deteriorate at very large amplitudes. In contrast,
themodel reduction based on spectral submanifold is suitable
for general dynamic systems [130, 138–140], even for sys-
tems with asymmetric damping and stiffness matrices [143]
and configuration constraints. Li et al. [143] reduced the non-
linear model with asymmetric damping and stiffness matrix
(a cantilever pipe conveying fluid) based on the spectral sub-
manifold. In addition, in Jain and Haller’s latest research
[144], a calculation method for automated construction of
spectral submanifold was proposed, which bypasses the step
of calculating all eigenmodes (writing equations of motion
in modal coordinates). Therefore, the spectral submanifold
method is also suitable for order reduction of large geomet-
rically nonlinear models.

3.8 Interface CouplingMechanism of Substructure
in CMSMethod

The second coordinate transformation in the CMS method
is obtained by assuming that the substructure is completely
fixed. However, the common connection methods (bolted
connection, riveting, etc.) in engineering structures usually
do not meet the assumption of completely fixed connection,
which will lead to an incorrect estimation of the stiffness of
the reduced order model. An interface coupling mechanism
of the free interface method for elastic connection conditions
was proposed in the literature [83]. When the substructure is
elastically connected, the interface coordination condition of
the free interface method is FB,1 � − FB,2 and uB,1 � uB,2
+ δ. Therefore, Eq. (45) can be rewritten as

ϕL
N B, 1P L , 1 + Ψ B, 1FB, 1 � ϕL

N B, 2P L , 2 + Ψ B, 2FB, 2 + δ

(74)

where δ is the relative displacement. The internal force can be
expressed by the parameter δ. Equation (46) can be rewritten
as

FB, 1 � −FB, 2

� (
Ψ B, 1 + Ψ B, 2

)−1
{

−ϕL
N B, 1 ϕL

N B, 2 I
}⎧⎪⎨
⎪⎩

P L , 1

P L , 2

δ

⎫⎪⎬
⎪⎭

� L−1
1 L̃2

⎧⎪⎨
⎪⎩

P L , 1

P L , 2

δ

⎫⎪⎬
⎪⎭

(75)

Therefore, the second transformation matrix can be
obtained as

T̃ f �

⎡
⎢⎢⎢⎣

I 0 0
−L−1

1 ϕL
N B, 1 L−1

1 ϕL
N B, 2 L−1

1

0 I 0
L−1
1 ϕL

N B, 1 −L−1
1 ϕL

N B, 2 −L−1
1

⎤
⎥⎥⎥⎦ (76)

based on which, one can have

T̃
T
f

[
M̃1 0
0 M̃2

]
T̃ f

⎧⎪⎨
⎪⎩

P̈ L , 1

P̈ L , 2

δ̈

⎫⎪⎬
⎪⎭

+ T̃
T
f

[
K̃ 1 0
0 K̃ 2

]
T̃ f

⎧⎪⎨
⎪⎩

P L , 1

P L , 2

δ

⎫⎪⎬
⎪⎭ � T̃

T
f

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕL
N B, 1FB, 1

Ψ B, 1FB, 1

ϕL
N B, 2FB, 2

Ψ B, 2FB, 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(77)
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It is noted that, the generalized force related to the gener-
alized coordinate δ is

(78)

L−1
1 Ψ B, 1FB, 1 − L−1

1 ψ B, 2FB, 2

� −L−1
1

(
Ψ B, 1 + Ψ B, 2

)
FB, 2 � −FB, 2

which is then substituted into Eq. (77), the generalized force
related to generalized coordinate δ is retained, and the elastic
connected force is considered by

(79)

T̃
T
f

[
M̃1 0
0 M̃2

]
T̃ f

⎧⎪⎨
⎪⎩

P̈ L , 1

P̈ L , 2
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⎫⎪⎬
⎪⎭

+ T̃
T
f

[
K̃ 1 0
0 K̃ 2

]
T̃ f

⎧⎪⎨
⎪⎩

P L , 1

P L , 2

δ

⎫⎪⎬
⎪⎭ +

⎧⎪⎨
⎪⎩

0
0

FB, 2

⎫⎪⎬
⎪⎭ � 0

In general, the internal force is related to the relative dis-
placement δ. For linear case, the generalized force is the
product of the generalized displacements and the linear stiff-
ness, that is, FB,2 � keδ, where ke is the linear stiffness. As
a result, Eq. (79) can be further written as

(80)
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⎞
⎟⎠
⎧⎪⎨
⎪⎩

P L , 1

P L , 2

δ

⎫⎪⎬
⎪⎭

� 0

The above equation shows that various connection meth-
ods in engineering structures can be approximately satisfied
by arbitrarily adjusting the linear stiffness ke. A similar
method was also proposed to deal with the elastic connection
between substructures [145]. However, the accuracy of this
method is not very high, and the linear stiffness ke is also
difficult to determine. At present, there is little research on
this problem, which is also one of the future development
trends of the CMS method.

4 Conclusions

In this paper, two main categories of model reduction tech-
nology, i.e., dynamic condensation and CMS methods, are
reviewed. The historical development, theoretical frame-
work, and the latest application of the two categories ofmodel
reduction methods are introduced. Finally, some important

open issues of the two categories of methods are discussed.
Based on the above review, we believe that some inter-
esting and valuable research needs to be improved and
expanded further. Some discussions on the prospects for fur-
ther research are summarized as follows.

(1) Large dimensional system equations in state space often
lead to time delay of active control. Dynamic conden-
sation has good potential in reducing the dimension of
system equations. However, there are still few studies on
the application of dynamic condensation in active con-
trol. It is necessary to study the cooperation between
dynamic condensation and active control methods.

(2) The application of the CMS method in multifield prob-
lems is introduced above. However, this part of the
literature is still limited.Especially in thefieldof compu-
tational fluid dynamics (CFD), high computational cost
and hardware cost are common problems. The combina-
tion of the CMS method and CFD has great application
prospects.

(3) How to correctly create the interface coordination con-
ditions between substructures is another field that needs
to be explored in future research. The second coordinate
transformation in theCMSmethodneeds to establish the
transformation matrix based on the interface displace-
ment coordination. This assumption is more consistent
with the case of completely fixed connection between
substructures. However, for the common connection
methods in engineering, such as bolt, riveting and other
connection methods, the classical assumption cannot be
accurately analyzed. Therefore, it is necessary to study
the interface coordination conditions of various connec-
tion methods in practical engineering.

(4) In terms of engineering application, the most promising
CMS method should be the mixed interface component
mode synthesismethod. But so far, themostwidely used
method is the C-B method. The reason is that the C-B
method has a simple program and convenient applica-
tion. In addition, the mixed interface component mode
synthesis method does not have a unified framework
recognized by the engineering community. Therefore,
developing a recognized and simple unified framework
for the mixed interface method has become an urgent
problem to be solved.
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