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Abstract
In this paper, a topology optimization model for transient thermo-elastic coupling problems is proposed. Based on the method
of solid isotropic material with penalization, the coupled equations of transient thermomechanical field are established. In
this model, the objective is to minimize the global structural compliance with volume and maximum temperature constraints
during the working time. To efficiently restrict the maximum temperature of the transient thermo-elastic structure in time
and spatial dimensions, the regional temperature control scheme is constructed using the aggregation function. The adjoint
variable method is adopted to derive the sensitivity of objective function and constraints, and the design variables are updated
through the method of moving asymptotes to obtain clear optimal topologies. The effects of the duration and magnitude of
the thermal and structural loads on the optimization results are discussed through several numerical examples.

Keywords Topology optimization · Transient thermo-elastic problems · Temperature constraints · Aggregation function

1 Introduction

Complex multi-physics fields, especially the coupling of
mechanics and heat transfer, are a prominent issue in the
design of modern engineering structures [1–4]. With high
heat conduction demand for various mechanical and elec-
tronic components, a rational temperature range of the
working environment should be considered. Due to the insuf-
ficient heat dissipation capacity, equipment may be damaged
or users can be injured when the temperature exceeds the
rated value. Meanwhile, structures should also withstand
certain mechanical loads to prevent possible damage or com-
plete fracture. How to advance a reasonable design approach,
which can realize both temperature control and structural per-
formance, is becoming a significant and challenging issue.

Topology optimization approaches evolved from an aca-
demic exercise into a forceful andpractical tool andhavebeen
extensively explored to solve prominent problems for the
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conceptual design stage of engineering structures in the past
decades, including the homogenization method [5], the den-
sitymethod [6, 7], the evolutionarymethod [8, 9], the level set
method (LSM) [10], and the novel moving morphable com-
ponent method (MMC) [11, 12]. Rodrigues and Fernandes
[13] introduced an efficient optimization procedure of the 2D
linear thermal-elastic structure using amaterial-basedmodel.
Sigmund and Torquato [14] utilized a numerical homoge-
nization method to obtain composite materials with extremal
thermal expansion coefficients. Then, a concurrent topology
optimizationmethodwas proposed tominimize the structural
compliance of thermo-elastic structures under thermal and
mechanical loads [15, 16]. To characterize the dependence of
the thermal stress loads upon the design variables, the penal-
ization of thermal stress coefficient (TSC) was introduced to
solve thermo-elastic problems with multiphase conditions
[17]. The LSM based on a unified topological sensitivity
was presented to solve the large-scale computational stress-
constrained problems in thermo-elastic optimization [18]. In
contrast to a volume constraint, Zhu et al. [19] presented a
temperature-constrained method for thermo-elastic coupling
problems. Furthermore, Meng et al. [20] proposed a stress-
stabilizing control scheme to achieve volume minimization
in thermo-elastic topology optimization. Numerical results
in their work indicated that the proposed method can signif-
icantly reduce the temperature of the optimization structure.
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Therefore, topology optimization is a promising tool for
achieving the ideal design of thermo-elastic structures. All
the above-mentioned studies for thermo-elastic structures
focused on uniform temperature fields or steady-state heat
conduction problems.

In fact, most heat transfer phenomena are essentially
transient in nature, which has received relatively more con-
cerns due to their significance in recent years. Turteltaub
[21] extended the method of solid isotropic material with
penalization (SIMP) for transient heat conduction topology
optimization, aiming to minimize the difference between
actual and desired values of heat compliance at a prescribed
time. Using a global heat compliance measure, the mini-
mization of the peak value of transient heat compliance was
implemented by Zhuang and Xiong [22, 23]. As mentioned
by Wu et al. [24], a temperature control function for a tran-
sient heat conduction structure was proposed. The topology
optimization model can precisely reflect the transient effect
and generate adequate transient topological structures. Zhao
et al. [25] investigated a non-Fourier transient heat con-
duction topology optimization method considering global
thermal dissipation energy minimization. Li et al. [26] pro-
posed a multi-material topology optimization method for
transient heat conduction structures with several different
optimization functions. These scholars have conducted in-
depth studies around the transient heat conduction problem
but have yet to extend their research to the transient prob-
lem of thermo-elastic coupling structures. Several scholars
have paid attention to the transient thermo-elastic coupling
problem and conducted related studies in recent years [27,
28]. However, these studies tend to solve the problem with
the dynamic response as the objective function and the
volume fraction as the constraint, thus neglecting the tem-
perature control problem, which is of great concern to us.
Therefore, how to achieve temperature control of transient
thermo-elastic coupling structures by topology optimization
still needs to be solved.

In this paper, a topology optimization design method for
transient thermo-elastic structures is proposed. The regional
temperature control scheme is developed to effectively con-
strain the maximum temperature value for the optimal
topologies with the influences of heat loading time, mate-
rial volume fraction, and maximum temperature constraint.
Meanwhile, theminimization of structure compliance is con-
sidered as the objective function to increase the capacity of
the topology results to withstand mechanical and thermal
expansion loads. Several numerical examples are investi-
gated to validate the proposed method.

2 Formulation of the Optimization Problem

2.1 Finite Element Parameterization

Figure 1 shows a generalized domain for transient lin-
ear thermo-elastic coupling optimization problem in two
dimensions, which contains a design domain � with fixed
displacement boundary �d and temperature boundary �T .
The invariable surface force f is exerted on boundary �f ,
and the time-dependent heat flux q(t) is imposed on bound-
ary �q. All material properties are presumed to be isotropic.
The transient thermo-elastic coupling problems can be spec-
ified as the following governing equations:

{
−∇ · σ (u(�T (t))) � f

u(t) � 0 on �d
(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρc
∂T (t)

∂t
− ∇ · k(∇T (t)) � Q(t)

−k
∂T (t)

∂n
� q(t) in �q

T (t) � T f on �T

T (t)|t�0 � T0

(2)

where σ is a stress tensor, t is the time variable of the transient
process, u(t) is the displacement vector, T (t) is the struc-
tural temperature field, ρ is the material density, c denotes
the specific heat of the material, Q(t) represents the internal
heat energy generated, n is the unit outward normal vector
of boundary, Tf is the prescribed temperature on boundary
�T , �T (t) � T (t) − Tr , Tr is a reference temperature, k
denotes the heat conduction coefficient, and T0 is the initial
temperature.

In this article, the solution process of transient thermo-
elastic coupling problems is based on the following assump-
tions. First, the externalmechanical loadof the thermo-elastic

Fig. 1 Generalized thermo-elastic structural design domain
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structure is static. Second, the heat energy is transferred
by diffusion while the effect of convection and radiation is
ignored. Third, the thermo-elastic coupling is one-way, in
which the effect of structural deformation with respect to the
heat transfer in the temperature field is negligible. Fourth,
the thermo-elastic structure is considered to assume a small
temperature variation range over time compared with the ref-
erence temperature so that inertia and damping effects can
be neglected. Consequently, due to thermal expansion, the
thermal stress analysis procedure is based on a quasi-static
problem. When calculating the displacement and stress at a
certain moment, the thermal load at that moment is regarded
as static to solve the equilibrium equation.

With the above assumptions, the transient thermo-elastic
problems can be considered as a combination of thermal and
mechanical problems. Based on the application of the varia-
tional principle andfinite elementmethod (FEM), the thermal
problem is governed by the discretized equation of transient
heat conduction, which can be described as follows:

C(ρ)Ṫ (t) + K T (ρ)T (t) � P(t) (3)

whereT is the node temperature vector,P(t) denotes the time-
dependent nodal thermal load vector, KT (ρ) is the global
heat conductivity matrix, C(ρ) is the heat capacity matrix, ρ
represents the density variable, and Ṫ is the derivative vector
of the node temperature.

Based on a finite difference technique used to discretize
the entire time step, Ṫ is given by:

Ṫ � T k+1 − T k

�t
+ O(�t) (4)

where �t � tk+1 − tk ; Tk+1 and Tk are the temperatures at
the kth and the (k + 1)th levels, respectively.

Using a parameter θ , the temperature field and thermal
load vector are, respectively, interpolated as follows:

T k+θ � θT k+1 + (1 − θ )T k (5)

Pk+θ � θ Pk+1 + (1 − θ )Pk (6)

Substituting Eqs. (4–6) into Eq. (3) yields:

(C + θ�tK T )T k+1 � [C − (1 − θ )�tK T ]T k

+ �t(θ Pk+1 + (1 − θ )Pk) (7)

Using the above method, a discrete iterative approach can
be obtained to calculate the temperature field for a specified
time with a known initial temperature field. The quasi-static
thermo-elastic relations are similar to the static problem,
and the solved displacement and thermal stress are time-
dependent. Therefore, the mechanical problem is described

as follows:

Km(ρ)U(t) � Fm + Fth(ρ, t) (8)

where U(t) denotes the nodal displacement vector; Km(ρ)is
the mechanical stiffness matrix; and Fm and Fth (ρ, t) are
mechanical load vector and thermal expansion load vector,
respectively.

The thermal expansion load Fth(ρ,t) can be assembled by
accumulating the element thermal load as follows:

Fth(ρ, t) �
Ne∑
e�1

E(ρe)
∫

�e

BT
e D0εe(ρe)d�e (9)

εe(ρe) � α(ρe)�Te(t)ω (10)

where Ne is the total number of elements, E(ρe) is Young’s
modulus, �e represents the element domain, Be is the strain
displacement matrix, D0 indicates the coefficient matrix
for an element,εe(ρe) is the thermal strain vector for the
element,α(ρe) is the material thermal expansion coefficient,
and ω is a vector defined as {1, 1, 0}T for 2D problems.

It is worth noting that E(ρe) and α(ρe) are both concerned
with the element density variables. Thus, by using the thermal
stress coefficient (TSC), the parameters are combined into the
single thermal stress coefficient:

β(ρe) � E(ρe)α(ρe) (11)

Substituting Eq. (11) into Eq. (9), the thermal expansion
load Fth(ρ,t) can be expressed as follows:

Fth(ρ, t) �
Ne∑
e�1

ξ (ρe)
∫

�e

BT
e D0�Te(t)ωd�e (12)

By adopting thewell-knownSIMPmethod,Young’smod-
ulus E(ρe), thermal conductivity coefficient λ(ρe), thermal
stress coefficient β(ρe), and heat capacity coefficient c(ρe)
of each designable element e are interpolated as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E(ρe) � EII + ρ
p1
e (EI − EII)

λ(ρe) � λII + ρ
p2
e (λI − λII)

c(ρe) � cII + ρ
p3
e (cI − cII)

β(ρe) � βII + ρ
p4
e (βI − βII)

(13)

where p1, p2, p3, and p4 represents the SIMP internal penal-
izationparameter,EI,λI, cI, andβI areYoung’smodulus, heat
conductivity, heat capacity and thermal stress coefficient of
material-I, respectively, and EII, λII, cII, and βII are Young’s
modulus, heat conductivity, heat capacity, and thermal stress
coefficient of material-II, respectively.
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According to Eq. (11), βI and βII are written as follows:{
βI � EIαI

βII � EIIαII
(14)

where αI and αII represent thermal expansion coefficient of
material-I and material-II, respectively.

2.2 Optimization Model

In this paper, the optimization objective is to minimize
the global structural compliance over the entire time inter-
val with volume and temperature constraints. By using the
density-based approach, the topology optimizationmodel for
transient thermo-elastic coupling problems is formulated as
follows:

find ρ

min ϕ �
∫ t f

0
χ (ρ, t)dt �

∫ t f

0
UT(t)KmU(t)dt

s.t. Km(ρ)U(t) � Fm + Fth(ρ, t), t ∈ [
0, t f

]
C(ρ)Ṫ (t) + K T (ρ)T (t) � P(t)
Ne∑
e�1

ρeve ≤ f · V0

Tj (t) ≤ Ts ( j � 1, 2, . . . , N j )

0 ≤ ρe ≤ 1 (e � 1, 2, . . . , Ne)

(15)

where ϕ represents the accumulated global structural com-
pliance, ve is the elemental volume, f denotes the occupied
volume fraction of the material, V0 is the volume of the solid
material in the design domain, Tj(t) is the temperature of the
jth node in the temperature-controlled area with respect to
time t, j is the number of grid nodes, Nj is the total number
of grid nodes for the temperature-controlled domain, and Ts

is the value of temperature constraint.

2.3 Regional Temperature Control Scheme

The necessity of considering temperature constraints have
previously explained in the introduction, which are imple-
mented by making the maximum temperature in the design
domain lower than a given constant. However, for transient
thermo-elastic structures, the maximum temperature value
varies in both time and space dimensions, and this discontin-
uous nature can complicate the solution of the optimization
problem. In addition, the design domain has been discretized
into meshes by the FEM, resulting in a certain number of
nodes with each corresponding to a temperature value, which
generates a large number of temperature constraints. More-
over, the simultaneous presence of multiple heat sources
with high temperature in the design domain complicates the

computational process for determining the maximum tem-
perature.

Therefore, all the temperature values are aggregated into a
region value at any given moment, and the region values are
aggregated at allmoments into a total value in the timedimen-
sion. In this way, the multiple temperature constraints are
transformed and equated to a single constraint in the region
of interest, typically the region near the heat source. Based
on the smooth approximation theory, the regional temper-
ature control function can be expressed in the form of an
aggregation function as follows [29]:

γt �
∫
�
Tj (t)eξTj d�∫
�
eξTj d�

, δt �
∫ t f
0 γteξγt dt∫ t f
0 eξγt dt

(16)

where γ t and δt represent the spatial temperature function
and the time temperature function, respectively, and ξ is the
aggregation parameter, when ξ → + ∞, δt → Tmax.

It should be noted that since the parameter ξ cannot be
infinite, it is difficult for the aggregated temperature value to
efficiently approximate Tmax. Therefore, we build a temper-
ature constraint function to implement a confinement on the
aggregated temperature, which is defined as follows:

ψ t � cp · δt

Ts
≤ 1 (17)

where Ts is the limit value of maximum temperature, and cp
is the adjustment parameter defined as Tmax/δt .

3 Sensitivity Analysis and Numerical
Implementation

In this article, the method of moving asymptotes (MMA)
[30], a gradient-based optimization algorithm, is utilized to
accomplish the sensitivity analysis of the structural compli-
ance as well as the temperature and volume constrains with
respect to the design variables.

3.1 Structural Compliance Sensitivity

By the adjoint variable method (AVM), the modified objec-
tive function L is constructed as follows:

L � ϕ +
∫ t f

0
λT
m[KmU − Fm − Fth]dt

+
∫ t f

0
λT
t

[
CṪ+K T T − P

]
dt (18)

where λm and λt denotes the vectors of Lagrangemultipliers.

123



266 J. Chen et al.

Therefore, the sensitivity of the global structural compli-
ance corresponds to:

∂L

∂ρe
�

∫ t f

0

∂χ

∂ρe
dt +

∫ t f

0

[
λT
t

(
∂C
∂ρe

Ṫ +
∂K T

∂ρe
T − ∂ P

∂ρe

)

+λT
m

(
∂Km

∂ρe
U − ∂Fm

∂ρe
− ∂Fth

∂ρe

)]
dt

+
∫ t f

0

(
∂χ

∂U
+ λT

mKm

)
∂U
∂ρe

dt

+
∫ t f

0

[
−λT

m
∂Fth

∂T
+ λT

t K − λ̇
T
t C

]
∂T
∂ρe

dt (19)

Correspondingly, the objective function sensitivity equa-
tion can be written as follows:

∂L

∂ρe
�

∫ t f

0

∂χ

∂ρe
+ λT

t

(
∂C
∂ρe

Ṫ +
∂K T

∂ρe
T

)

+λT
m

(
∂Km

∂ρe
U − ∂Fth

∂ρe

)
dt (20)

The derivative of the structural volume with respect to the
design variables can be obtained by:

∂V

∂ρe
�

Ne∑
e�1

∂ρeve

∂ρe
� ve (21)

3.2 Temperature andVolume Constraints’ Sensitivity

By introducing the accompanying vector λc, the modified
temperature constraint function R is constructed as follows:

R � ψ t +
∫ t f

0
λT
c

(
CṪ + K T T − P

)
dt (22)

The sensitivity for the density variable ρi is derived as
follows:

∂R

∂ρe
� ∂ψ t

∂ρe
+

∫ t f

0
λT
c

(
∂C
∂ρe

Ṫ + C
∂ Ṫ
∂ρe

+
∂K T

∂ρe
T

+K T
∂T
∂ρe

− ∂ P
∂ρe

)
dt � μ f

cp

Ts

∫ t f

0
(1 + γtξ − δtξ)eξγt

∂γt

∂ρe
dt

+
∫ t f

0

[
μ f

cp

Ts
(1 + γtξ − δtξ)eξγt

∂γt

∂T
+ λT

c K T − λ̇
T
c C

]

× ∂T
∂ρe

dt +
∫ t f

0
λT
c

(
∂C
∂ρe

Ṫ +
∂K T

∂ρe
T

)
dt (23)

where μ f � 1
/∫ t f

0 eξγt dt .

Assuming that the thermal load is independent of the
design variables, the sensitivity can be modified as follows:

∂R

∂ρe
� μ f

cp

Ts

∫ t f

0
(1 + γtξ − δtξ)eξγt

∂γt

∂ρe
dt

+
∫ t f

0
λT
c

(
∂C
∂ρe

Ṫ +
∂K T

∂ρe
T

)
dt (24)

where ∂γt
/

∂T is expressed as follows:

∂γt

∂T
�

[(
1 + ξTj (t)

)
eξTj (t) − ξeξTj (t)γt

]
N j∑
j�1

eξTj (t)

∂Tj (t)

∂T
(25)

3.3 Implementation Procedure

The MMA program is employed as the optimizer due to
its applicability for multi-constraint topology optimization
problems. The iterative process of the optimization algorithm
for transient thermo-elastic structure topology optimization
is described as follows:

Step 1 Input the basic parameters including EI, EII, λI, λII,
cI, cII, αI, αII, p1, p2, p3, p4, and f .

Step 2 Initialize the design domain�, design variables ρe,
boundary and load conditions including �d , �T , �f , �q,Fm,
and P(t).

Step 3 Assemble the global stiffness matrix, Km(ρ), heat
capacity matrix, C(ρ), and heat conduction matrix, KT (ρ).
Then calculate the nodal displacement vector,U(t), and ther-
mal load, Fth(ρ,t).

Step 4 Evaluate the global structural compliance, ϕ, and
the aggregated regional temperature, δt .

Step 5 Compute the sensitivity of the objective, ∂L
∂ρe

, tem-

perature constraint, ∂R
∂ρe

, and volume constraint, ∂V
∂ρe

.
Step 6Modify the element sensitivity using the sensitivity

filtering algorithm.
Step 7 Update the vector design variable, ρ, based on the

MMA program.
Step 8 Check whether the convergence condition is sat-

isfied. If satisfied, output the final optimization result and
end the iteration procedure; otherwise, go back to Step 3 and
repeat the steps.

4 Numerical Examples and Discussions

In this section, a total of two representative numerical
experiments of topology optimization problems for transient
thermo-elastic structures are introduced to verify the feasi-
bility of the proposed method. The default parameters for
all examples are set as follows: The properties of material-I
are employed in the solid material region, and a constructed
material-II is used in the weak-phase material region. The
same materials are used in all examples, and these proper-
ties are listed in Table 1. Both the SIMP penalty terms p1
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Table 1 Considered material properties

Material phase Material-I Material-II

Young’s modulus (MPa) 750 0.1

Thermal conductivity (W/(m·K)) 10 0.1

Heat capacity (× 10−5 J/(K·m3)) 10 5

Thermal expansion coefficient (×
10–6/K)

23.5 1

and p4 for Young’s modulus and thermal expansion coeffi-
cient are set to 3. In addition, p2 and p3 for heat conductivity
and heat capacity are referenced as 3 and 2, respectively [24].
Unless otherwise specified, the value of aggregation param-
eter ξ is 15. The filter radius r � 1.5 for mesh independence
is applied. The reference temperature Tr utilized to calculate
the thermal stress is 0 K.

4.1 Example 1: Square Thermo-elastic Structure
with One Heat Source

As shown in Fig. 2a, the square design domain has dimen-
sions of 0.1 m × 0.1 m, and the thickness is 0.001 m. The
whole structure is uniformly divided into 10,000 four-node
quadrilateral elements. The uniformly distributed mechani-
cal loads of Fm � 2000 N are imposed on all four sides of the
domain. The four corners of the structure are set as simply
supported boundaries and have a temperature value of 0 K.
Theheat fluxP�0.2Wat the center of the domain is a rectan-
gular time function, as shown in Fig. 2b. The entire working
time is 1000 s, and a suitable time step �t aimed to improve
computational efficiency is 5 s. To investigate the effect of
themagnitude of the volume fraction f and heat loadworking
time t on the final results, different volume fractions (40, 45,
and 50) and heat loading times (800 s, 900 s, and 1000 s) are
considered under different temperature constraints (Ts � 33,
31, and 29 K). Table 2 presents the topology optimization
results for all the above cases.

The maximum temperature and volume fraction of the
final optimized structure are given in Table 2. Meanwhile,
the optimization results of the steady-state thermo-elastic
structure under the same conditions are given in Fig. 2c.
When the proposed topology optimization method for tran-
sient thermo-elastic structure is used, different topological
results are obtained at different operating times of thermal
load. Thus, the topologyoptimization of the transient thermo-
elastic structure exhibits a significant transient effect. When
the heating time is 800 s, the heat generated is insufficient to
raise the maximum temperature to the constraint value, and
the volume fraction of the structure satisfies the constraint. At
this time, under the premise of meeting the temperature con-
straint,manybeams are generated on the heat dissipation path

to bear the external load to reduce the structural compliance.
Of course, the maximum temperature value under differ-
ent volume fractions significantly increases with increasing
heating time. Under the same loading time, the increase in
material enables higher volume fractions to exhibit lower
maximum temperatures. When the heating time is 900 s and
1000 s, the loading time is sufficient, so the maximum tem-
perature values reach the constraint value. In order tomeet the
temperature constraint value, more high-performance mate-
rials are concentrated in the heat dissipation path to improve
the heat dissipation capacity. In general, the longer is the
heating time, the higher is the material proportion of the heat
dissipation path, which is in line with our expectation.

The iterative history of structural compliance values for
each optimization result in Table 2 is given in Fig. 3. The
overall structural compliance declines with increasing heat-
ing time at the same volume fraction. By comparing with
other optimization results, when the working time is long
and too much heat is generated, the material originally used
to support the external load is utilized to dissipate heat to
satisfy the temperature constraint preferentially. Of course,
this comes at the cost of a rapid drop in the stiffness value of
the optimized structure.

The above analysis and results show that the proposed
transient thermo-elastic coupling model is effective, and the
transient effect is noticeable. The desired optimal structure
can be obtained in engineering applications by setting the
volume and temperature constraints according to the required
stiffness andmaximumoperating temperature. Therefore, the
method can be used to derive optimal solutions considering
transient thermo-elastic coupling problems.

4.2 Example 2: Square Thermo-elastic Structure
with Four Heat Sources

As shown in Fig. 4a, the design domain of Example 2 has
the same structural dimension and boundary conditions as
Example 1. The difference is that there are four sine-type
heat loads with the terminal time tf � 1000 s in the square
domain as shown in Fig. 4b, and each point heat load is
expressed as follows:

P(t) � 0.15sin(π t/1000) (0 ≤ t ≤ 1000s) (26)

Assuming that the design domain is initially distributed
with low-conductivity material-II, then, 40, 45, and 50 of the
design domain is covered by high-conductivity material-I
with a thickness of 0.001 m. For comparison purposes, Table
3demonstrates the optimization resultswith four heat sources
at t � 800 s, 900 s, and 1000 s and Ts � 52, 49, and 46 K.
Obviously, the clear optimization results are obtained by the
transient thermo-elastic topology optimization method with
temperature constraints. We try to explain the topologies: In
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Fig. 2 a Design domain and boundary condition; b Rectangular heat load; and (c) the steady-state optimized solution of the topology optimization

order to improve the heat dissipation efficiency with multiple
heat sources, the high-conductivity material is distributed in
an annulus at the location of the heat sources, which can
connect various heat sources and enhance the energy flow
between them.

These results demonstrate that the optimized topology
varies with thermal loading, and the temperature constraint
values can also significantly affect the optimization results
for the design of transient thermo-elastic coupling structures.
When the heating time is longer than 800 s, the heat gener-
ated by the four heat sources increases more rapidly than that
by a single heat source. When the heating time increases to
900 s and 1000 s, the material at the boundary of the struc-
ture is utilized to reinforce the capacity of heat dissipation,
and the heat source generates a local complex branchlike
structure toward the center of the structure to achieve more
efficient heat transfer. The temperature distribution of the

final moment with different volume fractions at the heat-
ing time of 900 s is shown in Fig. 5. Figure 6 shows the
iterative history of the objective function of the structure
under different heating times, respectively. The longer is the
loading time, the lower is the structural compliance, which
demonstrates effective convergence and numerical stability
of the proposed method. Therefore, the proposed method
can reasonably determine the optimal distribution of high-
conductivity materials in transient thermo-elastic coupling
problems.

5 Conclusions

A transient thermo-elastic coupling structure topology opti-
mization model targeting structural compliance is proposed,
which is capable of effectively controlling the temperature,
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Table 2 Optimization results with one heat source for different volume fractions and working times

Volumetric constraint
Times (s)

f = 40% f = 45% f = 50%

t = 800 s

32.48 K 30.12 K 28.56 K

t = 900 s

32.99 K 30.99 K 29.00 K

t = 1000 s

32.98 K 31.00 K 28.98 K

and has important practical significance for the structural
design of mechanical or electronic devices. Using the SIMP
interpolation scheme, a topology optimization that consid-
ers transient thermo-elastic coupling effects is established by
integrating the transient objective function over a time inter-
val relevant to theminimization of structural compliance. For
the problem that the transient maximum temperature value
is difficult to determine, the regional temperature function is
used to aggregate all the temperature values in the time and
space dimensions, which realizes the control of the transient
temperature. Through numerical examples, some meaning-
ful conclusions are drawn. First, topology optimization of
transient thermo-elastic structures has significant transient

effects. The optimal topology is closely related to the oper-
ating time, and different working hours of the thermal load
lead to completely different optimal topology designs. There-
fore, it is necessary to consider transient effects. Second, the
optimized structure also exhibits different temperature and
compliance values under different volume fractions, reflect-
ing the influence of material ratio on the optimal topology. In
the future, topology optimization for transient thermo-elastic
structures considering temperature and stress constraints will
be studied further.
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Fig. 3 Optimization results with different volume fractions and working times under temperature constraints: a f � 40%; b f � 45%; and c f �
50%

Fig. 4 a Design domain and
boundary conditions; b semi-sine
heat load
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Table 3 Optimization results with four heat sources for different volume fractions and working times

Volumetric constraint
Time (s)

f = 40% f = 45% f = 50%

t = 800 s

52.00 K 49.00 K 45.99 K

t = 900 s

51.99 K 48.99 K 46.00 K

t  = 1000 s

52.00 K 48.98 K 46.00 K

Fig. 5 Comparison of the temperature distributions with different volume fractions at the heating time of 900 s: a f � 40%; b f � 45%; and c f �
50%
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Fig. 6 Iterative histories of the
objective function with the
volume fraction of 40% at
different heating times
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