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Abstract

Structural shape monitoring plays a vital role in the structural health monitoring systems. The inverse finite element method
(iFEM) has been demonstrated to be a practical method of deformation reconstruction owing to its unique advantages. Current
iFEM formulations have been applied to small deformation of structures based on the small-displacement assumption of linear
theory. However, this assumption may be inapplicable to some structures with large displacements in practical applications.
Therefore, geometric nonlinearity needs to be considered. In this study, to expand the practical utility of iFEM for large
displacement monitoring, we propose a nonlinear iFEM algorithm based on a four-node inverse quadrilateral shell element
1QS4. Taking the advantage of an iterative iFEM algorithm, a nonlinear response is linearized to compute the geometrically
nonlinear deformation reconstruction, like the basic concept of nonlinear FE analysis. Several examples are solved to verify
the proposed approach. It is demonstrated that large displacements can be accurately estimated even if the in-situ sensor data
includes different levels of randomly generated noise. It is proven that the nonlinear iFEM algorithm provides a more accurate
displacement response as compared to the linear iFEM methodology for structures undergoing large displacement. Hence,
the proposed approach can be utilized as a viable tool to effectively characterize geometrically nonlinear deformations of
structures in real-time applications.
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1 Introduction

Structural deformation monitoring is one of the key topics
in the field of structural health monitoring. It can provide
important reference information for structural health moni-
toring systems, control systems and fault diagnosis systems
to ensure a safe operation. What’s more, it can realize condi-
tional maintenance and reduce maintenance cost. Therefore,
there are several studies on shape sensing thus far. Among
them, three methods have been proven to be more effec-
tive and successful, including Ko’s displacement theory,
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the modal method, and the inverse finite element method
(iFEM). Compared with the other two methods, the iFEM
has attracted extensive attention since it was proposed.

The iFEM was originally developed by Tessler et al. [1],
and a three-node triangular inverse-shell element iMIN3 [2]
was firstly demonstrated by a least-squares functional min-
imization between measured strain and theoretical strain. It
is noteworthy that this technique only makes use of a set
of strain measurements and strain—displacement relations to
compute displacements on the entire structure. Most impor-
tant of all, any material properties and load information are
unnecessary. At present, the widespread application of the
iFEM offered several benefits in terms of structural deforma-
tion monitoring. Concurrently, a variety of inverse element
models have already been developed successively to enrich
the iFEM capability to solve the inversion algorithm problem
of different types of structures.

Cerracchio et al. [3] established a three-node triangu-
lar inverse finite element iRZT3 based on the iFEM and
the improved zigzag theory for shape and stress monitor-
ing of sandwich structures. Gherlone et al. [4—7] put forward


http://crossmark.crossref.org/dialog/?doi=10.1007/s10338-022-00369-6&domain=pdf
http://orcid.org/0000-0003-4966-306X

Geometrically Nonlinear Deformation Reconstruction Based...

167

the shape sensing of some three-dimensional frame struc-
tures by a least-squares variational principle considering
the section strain, involving tension, torsion, bending and
transverse shear of the Timoshenko theory. Kefal et al. [8,
9] proposed a quadrilateral inverse shell element iQS4 to
extend the inverse shell element library and improve some
deficiencies of iMIN3. It is applied to the deformation mon-
itoring of large ship hull and other marine structures [10,
11] to obtain accurate information about structural safety
status in real time. Papa et al. [12] developed a triangular
flat shell element iTRIA3 and validated experimentally the
method on an equivalent plate model. Mooij [13] applied
an inverse hexahedral solid element and a new standard
set of benchmark problems of iFEM algorithm. Kefal [14]
employed an efficient curved inverse-shell element iCS8 with
curved geometry to monitor the displacement and stress of
cylindrical offshore structures. To further compare the perfor-
mance of different inverse elements, a detailed investigation
was carried out on iMIN3, iQS4 and iCS8 elements for
structural shape and stress monitoring [15]. In addition, a
two-dimensional deformation monitoring method was pro-
posed by the iIFEM of aniBeam3 element [ 16] for the pipeline
in the process of soil freezing and thawing. There are a few
comparative studies involving common shape reconstruction
methods. Espositoetal. [17, 18] discussed the modal method,
Ko’s displacement theory and the iFEM. The comparison
of deformation reconstruction results was performed on a
composite wing box. Additionally, there are a few studies on
structural damage identification exploiting the unique advan-
tages of the iFEM. Some damage detection techniques with
the iFEM were applied for damage localization [19-25] and
damage quantification [26].

To summarize, the iFEM catches researchers’ attention
in recent years and has been proven to be successful in
various fields. Recently, the above studies mainly consider
small-displacement assumptions because the iFEM was orig-
inally based on the linear theory. However, there are plenty
of flexible structures in practical engineering, such as solar
arrays, tensional domes, suspension bridges, and so on, and
the deformations of such flexible structures generally have
geometrically nonlinear characteristics. Thus, it is inappro-
priate to still use the linear hypothesis for analyzing, and
the errors will far exceed the controllable range. At this
time, it should be discussed by the nonlinear theory. It
seems that few applications of the iFEM to structural large-
displacement problems have been reported in the literature.
Tessler et al. [27] briefly introduced the range of applica-
bility of the iFEM formulation. It is important to point out
that nonlinear strain—displacement relations can replace lin-
ear relations, or an incremental linear analysis method can
be applied to the simulation of large displacement for geo-
metrically nonlinear deformation problems. An inverse finite

element strategy was implemented to recover large displace-
ments of a cantilever beam, which extended linear iFEM
formulation in some sense. However, only a two-dimensional
plane model was considered [28]. Tessler et al. [29] proposed
an iFEM incremental algorithm for nonlinear deformations
of a clamped square plate based on the iMIN3 element.

This work aims to further study the shape reconstruction
of large displacement problems based on the iFEM. This
paper proposes a nonlinear iFEM strategy based on the basic
principle of linearized iFEM theory and iterative algorithm.
The iterative method is a classical algorithm to solve non-
linear problems. That is, the nonlinear responses are treated
by linearization approximation. The paper is structured as
follows. In Sect. 2, the general framework of the nonlin-
ear iFEM based on the iQS4 element is briefly described.
Section 3 provides information on the application exam-
ples with large-displacement problems. The results regarding
the deformation calculation results are reported in Sect. 4.
Finally, some concluding remarks and recommendations are
stated for future research in Sect. 5.

2 Nonlinear Inverse Finite Element Method
Review

As previously mentioned, some deformation analysis can
be applied by a small-displacement assumption, namely it
can be approximately linearized in the calculation process,
which, however, is improper for some structures with strong
nonlinear characteristics such as large displacement. There-
fore, it should be discussed using the geometrically nonlinear
theory. Herein, a brief description of the nonlinear iFEM is
reported. The proposed method is presented based on the
theoretical framework of linear iFEM in this work.

As one of the most important methods to reconstruct dis-
placement of structures at present, some advantages of the
iFEM are more favored. There are different inverse elements
and the described iFEM approaches are valid for differ-
ent types of structures. This work focuses on a four-node
inverse quadrilateral shell element i1QS4 as shown in Fig. 1.
Because of the inclusion of drilling rotations 6, it has less
tendency toward shear locking. It is assumed that the iQS4
element has a thickness of 2 & and that z € (-h, h) defines
the thickness coordinate system. u; and v; are the positive x
and y translations, respectively. Consequently, the elemental
degrees-of-freedom vector u{ is formulated as follows.

T
ui = {Mi v; w; O Oy O } i=1,273,4)
(1)

T
u’ {u‘f u$ us uZ}
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Fig.1 The iQS4 element in global coordinates

The (x, y) coordinate in the reference plane of the i1QS4
element is defined as a function of the bilinear shape func-
tion N; (s, t) with (s, t) € [—1, 1]. The mapping functions are
defined in Eq. (2), where (x;, y;) (i = 1, 2, 3, 4) are the ele-
ment’s local nodal coordinates, and (s, t) is the isoparametric
dimensionless coordinate.

4
x(s,t) =x = ZN,-xi

i=1

] )
Y, )=y=Y N
i=1
The u# and v membrane displacements are defined by
4 4
ulx,y)=u= ZN,'M,‘ + ZL,'QZ,'
i=1 i=1 3)

v(x, y)_v—ZNv,+ZM6?Z,

i=1

where L; and M; are shape functions that define the relation-
ship between drilling rotation and membrane displacement
[9], respectively. The transverse displacement w and the
bending rotations 6, 6, are defined by the positive z trans-
lation w; and positive anticlockwise rotations 6y;, 6y;.

4 4 4
wx,y) =w= ZNiwi - ZLiexi - ZMieyi

i=1 i=1 i=1

4
Or (x, y) =60 = Y _ Nibx; €

i=1

4

Oy (x.y) =0, => Nibyi
i=1

Based on the strain—displacement relations of linear elastic
constitutive theory, the kinematic relations of iQS4 element
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Fig. 2 Discrete surface strains measured at location x; = (x, y)

are established based on the first-order shear deformation
theory (FSDT). The strain components consist of membrane
section strains, bending section strains and transverse-shear
strains. These can be expressed in terms of the nodal degrees
of freedom.

Exx Qy,x
Eyy +2 —Ox,y
Vxy u,y +vx Oy y — Ox x
=e(u) +zk (u®) = B"u’ +zB*u® 5)
vee L _ P Wt L ey — peye ©6)
Vyz w, y — Ox
where u® is the nodal displacement vector. The matrices

of B™, B* and B consist of derivatives of shape func-
tions concerning the membrane, bending and shear response,
respectively.

As described before, the experimental strain measure-
ments are required as input strain and can be evaluated from
measured surface strains at n discrete locations. The strain
sensors are placed on the top and bottom surfaces of the plate,
as shown in Fig. 2. Furthermore, the membrane and bending
strain components at & 4 from the middle of the element is
written as:

et +e + -
+er, o
[ — E= et —¢e
¢ =3 yy +5>y ki =20 Gy e D
.2
yxy + ]/xy i yxy o yx}' i

where the superscripts ‘ + ’ and ‘—’ denote the strain mea-
surements on the top and bottom surfaces, respectively. For
the deformation of thin shells, gf can be neglected in the
subsequent calculation when compared with other terms.
The core formulas of the iFEM are derived from the
extreme value of the least-squares function in terms of numer-
ical strains and measured strains. It minimizes a weighted
least-squares function concerning the unknown displacement
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degrees of freedom. Thus, the function for each element is
expressed as:

CD? (ue) = o, ||e(ue) —éf ||2 + wyi ||k(ue) — kf ||2

+og |g@) - g ®)
] n
[e) — e ||2 = //Ae Z (e(u®)i — ef)zdxdy (9a)
i=1
(2h)* . 2
ke—k”:—// k(u®); — k) dxdy (9b
[l =" = = Ael;((") ) dxdy (9b)

. 1 -
le@) g =~ //A D (s —gf)’dxdy  90)
i=1

where w,, i, and w, are the positive weighting values asso-
ciated with a given element. These weighting coefficients
determine the extent to each theoretical strain component
constrained by measured values in the element. Moreover,
these coefficients ensure stable performance even when strain
values are not obtained from every finite element of the struc-
ture. If every inverse element has a specific measured value,
wn = wx = wg = 1. Meanwhile, a value of 107 is given to
each weighting coefficient when no strain values are taken
for elements.

The unknown variable of the minimum error functional is
the element node displacement in Eq. (8). According to the
variational principle, the condition for the minimum value of
the function is defined as

o
ou’

— keue _ pe — O = keue — pe (10)

ke = // (om(B"YTB" + xR (BYT B + y(BT B )dxdy

(11a)
> (wm(B’")Tef + o Ch)?(BYYTKS + 0, (B® )Tgf) dxdy
‘=1

oL

(11b)

Equation (11) contains the local iFEM matrix—vec-
tor equations, which can be assembled for the complete
iFEM/iQS4 discretization like the classical finite-element
assembly procedure. Considering the conversion of the dis-
placement vector from the local coordinate to the global
coordinate, the element matrix of a discrete structure is
assembled into the linear equation system. Synthesizing the
above formula leads to the global solution for the nodal dis-
placements of the whole structure (refer to Eq. (12)).

KU;=P;, = U; =(K)~'P; (12)

where U; is the displacement at the ith step within the total
incremental step used in the nonlinear shape-sensing calcu-
lation. K is called a time-independent global pseudo stiffness
matrix. The matrix is inverted (or calculated) only once,
which only depends on the given sensor network and mesh
distribution of the inverse model. P; is a function of the val-
ues of the measured strain, which needs to be updated at each
iteration step during the nonlinear iFEM program.

In the following, a schematic of the nonlinear iFEM frame-
work is depicted in Fig. 3a, and the iterative process is
observed in Fig. 3b.

The basic computing process of the nonlinear iFEM
method is illustrated as follows.

(1) Firstly, the displacement components of inverse element
1QS4 are formulated in Egs. (3) and (4). The relevant
matrices are formed by Egs. (5) and (6). The FE model
and inverse finite element model are established. Thus,
the required parameters of the calculated structure are
also determined. In this work, two models adopt the
same mesh configuration.

(2) Secondly, a nonlinear FE calculation is carried out. The
strain measurements are obtained in Eq. (7) at each
incremental step. It should be pointed out that the strain
is a total strain treated as the measured value in practical
applications. In this work, the iFEM can still exert its
merits although the linear and nonlinear strain compo-
nents are not separated in the case of large displacement
analysis.

(3) Then, a finite number of strain measurements from Step
(2) are taken as the input data in Eq. 11(b) to execute
the iFEM. As a result, the deformations U; based on
Eq. (12) at this time are reconstructed.

(4) Finally, Steps (2) and (3) are repeated until all iterative
calculations are completed. The final overall deforma-
tion shape can be obtained from Fig. 3a.

In this paper, the linear iFEM theory is further modified.
The algorithm model of the nonlinear iFEM is established
by linearizing the nonlinear response analysis. For a nonlin-
ear FE analysis, the load value P; is determined when the
iterative calculation of each incremental step is completed
(in an equilibrium convergence state). Concurrently, a set of
corresponding strain data can be obtained. Then the strain
data from each step are inputted to execute the nonlinear
iFEM program. Meanwhile, the deformation is reconstructed
at each incremental step by Eq. (12). Until all iterative cal-
culations are finished, all the shape information is finally
summarized and the real deflections of the structure are pre-
sented. Finally, the performance of this algorithm about linear
iFEM and nonlinear iFEM can be evaluated by comparing
the final deflection results.

@ Springer
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Fig.3 The nonlinear B
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Fig.5 A cantilever-stiffened plate subjected to a uniformly distributed
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3 Numerical Examples

The effectiveness of the proposed method is numerically
demonstrated on a cantilever plate model and a stiffened
plate. Herein, it needs to point out that the iFEM mesh adopts
the same mesh configuration as the FE model mesh in this
study.

3.1 A Cantilever Plate Subjected to a Uniformly
Distributed Load

A cantilever plate is considered and the overall dimension
is 0.7 m x 0.3 m with a thickness of 12.5 mm. The elastic
modulus and Poisson’s ratio of the plate are shown in Fig. 4a.
The top surface of the cantilever plate is subjected to a uni-
formly distributed load (3 MPa) and the left edge is clamped.
In this section, the required measured strain values as input

(a)

(b)

Fig.4 A cantilever plate model: a geometric dimensions and boundary conditions of a cantilever plate; b a high-fidelity FE model as reference

to the program are all extracted from the FE model. As a con-
sequence, a high-fidelity FE model is established with 800
S4R elements and 5166 DOFs, as shown in Fig. 4b.

3.2 A Stiffened Plate (SP) Subjected to a Uniformly
Distributed Load

Figure 5 shows a stiffened cantilever plate subjected to a uni-
formly distributed load (1 MPa) which is clamped along the
left edge. The stiffened plate with a thickness of 12.5 mm is
composed of four ribs with a height of 0.03 m and a thickness
of 12.5 mm. To further validate this method, two different
schemes of mesh are selected as the reference model for
discussion, including a dense mesh and a coarse mesh. The
model in Fig. 6a is named SP1152, which consists of 1152
S4R elements and 7326 DOFs. Likewise, the model in Fig. 6b
is defined as SP126, which is composed of 126 S4R elements
and 900 DOFs.

4 Results

As anticipated in Sect. 3, the measured strains are both
computed from the centroid of each element of direct FE anal-
ysis. Meanwhile, there are several different configurations
of measuring points to be calculated, including full distribu-
tion points and partial distribution points. Besides, this work
firstly discusses the influence of different levels of noises on
the reconstruction accuracy of large displacement problems.

(b)

Fig.6 Two mesh division schemes of a stiffened plate model: a a direct FE model with a fine mesh; b a direct FE model with a coarse mesh
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It is used to simulate the effect of some inevitable errors in
practical applications, and the generality of this method is
further discussed. Herein, the definition of relative error is
introduced to validate the method, and it is calculated from
the percent difference between iFEM and direct FEM anal-
yses.

4.1 Discussion of the Results of the Cantilever Plate

In Fig. 7, the displacement field of the plate is simulated
with direct FEM. To investigate the accuracy of the proposed
method, what is discussed is the z-direction displacement of
the reference point marked in Fig. 4a at the central posi-
tion of the plate. Figure 8a shows reconstruction of the
z-direction displacement. It can be concluded that the large
displacement can be effectively reconstructed based on the
nonlinear iFEM. Referring to Fig. 8b, the relative errors are
zero between the reconstruction results with free noise and

Fig. 7 Displacement contours
corresponding to direct FEM of a
cantilever plate

04

0.35

Deflection (m)
=) S =]
N (4] w

o
W\

nonlinear FE results in previous steps. Because there are
some errors in the displacement reconstruction calculation
of each substep, the errors will accumulate with the con-
tinuous iteration. The error reaches the maximum value in
the last substep. The maximum error is 4.7% by a prelimi-
nary comparison and the change in the curve is consistent.
Contaminated by 3% random noise, the errors are below
0.5% and the maximum error is about 4.8%. As the noise
level increases, the z-direction displacement curves are still
in good agreement. Figure 8b shows that due to different
noise pollution, the errors fluctuate around 1%.

As shown in Fig. 9a, the 0 rotation reconstruction is
evaluated by the nonlinear iFEM. As previously noted, the
nonlinear iFEM can effectively reconstruct the rotation of
the cantilever plate and update the angle value at each step.
Furthermore, based on the curve of y-direction rotation, it
can be judged that the cantilever plate has undergone a large
displacement and the geometric nonlinearity is prominent.

06 0.7
0 1 0.2 0.3 0.4 0.5
(m) 0 0 x-axis coordinate (m)
0.16r —= Linear FEM —e— Nonlinear iIFEM+0%noise
—— Nonlinear FEM St |——Nonlinear iFEM+3%noise
0.14F |+ yineariFEM —— Nonlinear iIFEM+5%noise
—+— Nonlinear iFEM+0%noise —— Nonlinear iIFEM+10%noise|
0.12F | —— Nonlinear iFEM+3%noise s 4r
- —— Nonlinear iFEM+5%noise S
£0.10f  |—— Nonlinear iFEM+10%noise 5 "
E 0.08 E
— =
D SS9k
0.061 < 2
A &
0.04 1k
0.021
of
of
0 3 6 2 15 18 210 3 6 2 15 18 21
Step Step
(a) (b)

Fig.8 The z-direction displacement results at the center of the cantilever plate under the nonlinear FEM, nonlinear iFEM with different noises and
linear iFEM: a deflection results under different cases; b reconstruction error distribution
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= 20} 5
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0 3 2 15 18 21 0 3 9 12 15 18 21
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Fig. 9 Maximum y-axis rotation corresponding to the nonlinear FEM, nonlinear iFEM and linear iFEM: a maximum y-axis rotation; b reconstruction

error distribution

(c)

(d)

Fig. 10 Different schemes of distribution points of iFEM model with a fine mesh: a an iFEM model named SP1152-1; b an iFEM model named
SP1152-2; ¢ an iFEM model named SP1152-3; d an iFEM model named SP1152-4

Compared with the reconstruction results of the degrees of
freedom of all nodes, the reconstruction accuracy of 6y rota-
tion is higher than that of the displacement. Referring to Eqs.
(2-12), the w displacement has a larger prediction error than
the rotation because the former is derived from the latter by
comparing Fig. 8 and Fig. 9. Similarly, after adding three
different noises of 3%, 5% and 10%, the reconstruction per-
formance of the 6, rotation is more ideal than that of the
displacement w. It can be seen from Fig. 9b that although

polluted by different levels of noise, the overall reconstruc-
tion accuracy is high, that is, the relative errors are less than
1.4%. The corresponding error curves exhibit a large fluctu-
ation range when the noise level increases (Fig. 9).

4.2 Discussion of the Results for the Stiffened Plate

The predicted displacement results of the reference point
(refer to Fig. 5) are computed with the nonlinear iFEM and
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Fig. 11 Results of the z-direction displacement w at the center of the
stiffened plate by the linear iFEM, nonlinear iFEM and FE calculation
when polluted by different noises: a the deflections of SP1152-1; b the

linear iFEM. The influence of sensor layout (see Fig. 10)
on the accuracy of shape reconstruction is briefly investi-
gated for the stiffened plate, as highlighted in Figs. 11 and
12. Specifically, the large displacement is effectively restruc-
tured based on the nonlinear iFEM and the results agree
well with the nonlinear FE solution. The deformation shape
reconstructed by the linear iFEM is a straight line from the
initial point to the endpoint. There is a sharp contrast with
the reconstruction results of nonlinear iFEM. Additionally,
the results calculated by the linear iFEM differ greatly from
the actual deformation, that is, the reconstruction error is
large. On the other hand, the deformed shape by using the
linear iFEM exhibits no nonlinear characteristics. To further
estimate the generality of this method, strain data of measur-
ing points are polluted by different random noises to simulate
some inevitable errors in practical applications. Herein, three

@ Springer

deflections of SP1152-2; ¢ the deflections of SP1152-3; d the deflections
of SP1152-4

different levels of noises of 3%, 5% and 10% are mainly con-
sidered.

As described in Sect. 4.1, it can be found that the non-
linear iFEM allows obtaining a good reconstruction of the
displacement, and these results agree well with the nonlinear
FE results in previous steps. It is demonstrated that even if
contaminated by different noises, the estimation capability
still reaches an optimal level. Concurrently, Fig. 12 reports
the relative errors of calculation results of the nonlinear iFEM
in different scenarios. The best accuracy is obtained under
free noise conditions. With the progress of iterative calcula-
tion, the maximum error is about 6.2%. Polluted by different
noises, the relative error curves of most of the previous steps
fluctuate obviously. Under the condition of 3% noise, the
fluctuation of error curve is relatively small, which is below
1%. The fluctuation range increases significantly with 5%
and 10% noise, but both remain below 4%. It is the same
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Fig. 12 Comparison of errors under different conditions between the nonlinear FEM and the nonlinear iFEM with different noises: a relative errors
of SP1152-1; b relative errors of SP1152-2; ¢ relative errors of SP1152-3; d relative errors of SP1152-4

as the case with no noise, the error reaches the maximum at
the end of an iteration. For example, the maximum recon-
struction error is approximately 7.8% when polluted by 10%
noise.

In the following, four different schemes of distribution
points of the coarse mesh configuration (Fig. 13) are taken
into consideration to further validate the proposed method.
The subplots in Fig. 14 show the reconstruction results of
z-direction displacement under different sensor networks.
Compared with the dense mesh (refer to Fig. 10), the defor-
mation curves by the nonlinear iFEM and nonlinear FE
results have the same behavior even though with a coarse
mesh. While accurately reconstructing the deformation shape
of the stiffened plate, more importantly, it can exhibit the
geometrically nonlinear characteristics. The linear iFEM
presents a straight line between the initial point and the

endpoint. In fact, it seriously lacks effective information of
true deformation. What deserves attention is that the final
reconstruction results are not affected by the roughness of
meshing based on the nonlinear iFEM. Contaminated by dif-
ferent noises, the reconstructed shape curves have a great
fluctuation, but the geometrically nonlinear information is
still discovered from the displacement diagrams. Polluted
by 3% noise, the reconstruction errors are less than 3% and
the maximum error is about 5.1%. When the noise level is
up to 10%, some errors slightly below 5% are observed and
the maximum error reaches about 5.4%. The aforementioned
errors are within the controllable range. It is concluded that
despite the pollution of noise, the nonlinear iFEM can still
effectively restructure the large displacement.
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(c)

(d)

Fig. 13 Different schemes of distribution points of iFEM model with a coarse mesh: a an iFEM model named SP126-1; b an iFEM model named
SP126-2; ¢ an iFEM model named SP126-3; d an iFEM model named SP126-4

Secondly, the reconstruction results of the distribution of
measuring points of two iFEM models SP126-3 and SP126-
4 are depicted in Fig. 14c and Fig. 14d. The influence of
noise pollution on the calculation results is checked simul-
taneously. It is demonstrated that large displacements are
reconstructed by the nonlinear iFEM. The above figures
depict that the deformed shape is effectively predicted by
the nonlinear iFEM and the geometrically nonlinear char-
acteristics are displayed. Additionally, compared with a fine
mesh of Fig. 10a and a coarse mesh of Fig. 13a, the results are
similar in the case of no noise, that is, most errors are close.
Howeyver, the deflection curve of the coarse mesh scheme
has larger amplitude of fluctuation than that of the fine mesh
under the same noise level when affected by random noises.
The calculation accuracy of the scheme of partial distribu-
tion points could not reach the level of the full distribution
points, that is, the relative errors of the former are larger than
the latter. From Fig. 14, when relatively sparse measured
points are selected, the displacement reconstruction results
can be effectively obtained by using the nonlinear iFEM. It is
noticed that the distribution of measuring points at the bound-
ary position has a great impact on reconstruction accuracy.
It has the same performance as the results of the model in
Fig. 10. In conclusion, the large displacement can be effec-
tively reconstructed by a few measured strains and the errors
are below 10%.

Table 1 reports the estimation capability of the final deflec-
tion results of different stiffened plate model schemes. The

@ Springer

effectiveness of the proposed method is verified by compar-
ing the results of linear iFEM, nonlinear iFEM and nonlinear
FE calculation. It can be noticed that there is a large error
between the calculation based on linear iFEM and nonlin-
ear FE results. There is an error of about higher than 10%
because of the differences. Nevertheless, the accuracy of dis-
placement reconstruction is relatively high by the nonlinear
iFEM. An error of within 10% is acceptable. Referring to
Table 1, SP1152 and SP126 can both achieve ideal accuracy
based on the nonlinear iFEM. Even if a coarse meshing of
the iFEM model is selected, better reconstruction results can
be estimated. Thus, it is concluded that large displacement
reconstruction can be realized with fewer strain data. More
than that, these results are closer to the true deformation of
the model when geometric nonlinearity needs to be taken into
consideration.

5 Conclusions

In this work, a nonlinear inverse finite element method based
on the linear iFEM is investigated to realize the shape recon-
struction of structures with large displacement. Herein, the
validity of this method is demonstrated by carrying out two
numerical simulations, including a cantilever plate and a stiff-
ened plate. Moreover, there are different configurations of
1FEM model selected for discussion to validate the method,
including a fine mesh and a coarse mesh. This method makes
full use of the unique advantages of the iFEM. On one hand,
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Fig. 14 Results of the z-direction displacement w at the center of the
stiffened plate by the linear iFEM, nonlinear iFEM and FE calculation
when polluted by different noises: a the deflections of SP126-1; b the

the change of structural shape can be restructured in real-time
calculation with only a small amount of measured strains.
On the other hand, the method does not require any a priori
knowledge of the load or material properties of the structure.
Moreover, there is no need to distinguish between the linear
elastic part of the strain and the part of geometric nonlinearity
caused by large displacement. Despite all this, the nonlinear
iFEM still maintains the characteristics of the iFEM. Conse-
quently, the method not only reconstructs the displacement
fields with the help of the iterative method, but also simulta-
neously presents the geometrically nonlinear characteristics.

The validity of this method is confirmed by the results.
This work firstly discusses the influence of different levels
of noise on shape reconstruction by the nonlinear iFEM.
The results show that the large displacement problems of

deflections of SP126-2; ¢ the deflections of SP126-3; d the deflections
of SP126-4

structures are effectively addressed. Compared with previ-
ous studies, the method has been successfully applied to the
deformation reconstruction of plate structures by using the
iQS4. Importantly, when dealing with nonlinear problems,
the solution accuracy of this method is in close agreement
with the actual situation. It can reach an acceptable pre-
cision even though polluted by different levels of noise.
Further comparative studies will focus on exploring the
effect of meshing schemes of the iFEM model and noises
on the large displacement reconstruction. Furthermore, an
exhaustive investigation on the influence of sensor layout
concerning the capability of this approach will be assessed
in realistic applications.
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Table 1 Comparison of final deformation between the iFEM and FEM results

Model number

Accuracy estimation (%)

Nonlinear FEM Versus Linear iFEM

Nonlinear FEM Versus Nonlinear iFEM

SP1152-1 10.46 5.28
SP1152-2 9.60 5.71
SP1152-3 9.36 5.97
SP1152-4 10.23 6.09
SP126-1 13.61 6.32
SP126-2 13.84 6.26
SP126-3 13.51 6.30
SP126-4 12.55 5.33
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