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Abstract
Based on the active learning Kriging (ALK)model and the Hashin failure criterion, this paper proposes a new reliability evalu-
ationmodel for composite stiffened panels, and conducts a reliability analysis on the ultimate bearing capacity. In addition, this
paper studies the importance ranking of input variables. By comparing the calculation results of the reliability model proposed
in this paper with those of theMonte Carlo method, the accuracy and efficiency of the ALKmodel are verified by case studies.
Finally, the effects of longitudinal elastic modulus and fiber-direction tensile strength on post-buckling failure probability are
discussed, which provides significant reference and guidance for the optimization and design of composite stiffened plates.

Keywords Post-bulking reliability analysis · Sensitivity analysis · Composite stiffened plates · Active learning Kriging ·
Hashin failure criterion

1 Introduction

As a kind of advanced material with special properties, com-
posite materials have beenwidely used in the aerospace field.
By increasing the proportion of composite materials in the
main and secondary load-bearing components, the weight
reduction effect of aircraft becomes obvious. One of themost
common failure forms of thin-walled structures, which are
typical components of aircraft structures, is the loss of sta-
bility.

As a typical structural form, the stability of plate and shell
structures has been studied by many scholars for a long time
[1–4]. To analyze the initial failure of composite stiffened
plates under axial compression, Orifici et al. [5] adopted
the "whole-local" analysis method in the finite element soft-
ware. Zhou [6] studied the vibration frequency and instability
characteristics of ring-stiffened thin-walled cylindrical shells
conveying fluid. Additionally, Sun et al. [7] established the
topology optimization approach for the stiffener layout of
composite stiffened panels based onmovingmorphable com-
ponents. These post-buckling analyses of composite stiffened
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plates are under deterministic conditions, without consider-
ing the effect of uncertain parameters.

With the wide application of composite materials, the reli-
ability optimization design of composite materials has been
increasingly concerned [8–10].Due to the nonlinearity of cal-
culating the ultimate bearing capacity of complex composite
reinforced panels, the reliability analysis of this structure is
time-demanding and inefficient. Traditional post-buckling
reliability analysis is based on the first-order reliability
method (FORM) or response surface methodology, whose
computational budget is expensive and performances are
limited by the nonlinearity and cost on finite element anal-
ysis of composites. In addition, the in-depth analysis of
post-buckling reliability and sensitivity based on the ulti-
mate bearing capacity failure is still lacking. Therefore, in
this paper, the reliability model is constructed based on the
ultimate bearing capacity failure. Then, the efficient active
learning Kriging (ALK) method is first employed to solve
the failure probability of composite stiffened plates. And the
moment-independent global sensitivity based on the gen-
eralized sensitivity idea is first introduced to obtain the
importance ranking of input variables, which provides a ref-
erence for the design and optimization of composite plates.

The representative approximate analytical methods
include the FORM and the second-order reliability method
(SORM) [11]. The surrogate model has also evolved greatly
[12], such as the Kriging model [13]. The two most famous
ALK methods are the efficient global reliability analysis
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method proposed by Bichon et al. [14] and the AK-MCS
method proposed by Echard et al. Yang et al. [15] combined
the ALK model with an IS method based on kernel density
estimation to evaluate low failure probability. Gaspar et al.
[16] proposed an adaptive Kriging model combining the
active refinement and trust region methods. These methods
provided a great solving strategy for reliability analysis
and low failure probability problems. At the same time,
various add-point strategies, also called the active learning
functions, were developed, such as the expected feasibility
function (EFF) [14], U function[17], expected risk function
(ERF) [18], H function[19], and least improvement function
(LIF) [20], and so on [21].

Based on failure probability, global sensitivity analy-
sis (GSA) has been employed to measure the influence
of uncertainty in random variables on failure probability.
The GSA index can be divided into non-parametric index
[22], moment-independent index [23] and variance-based
index [24]. There are two kinds of moment-independent
sensitivity indices. Borgonovo [23] proposed a moment-
independent sensitivity index based on differences between
the non-conditional and conditional probability density func-
tions (PDF), while Liu and Homma [25] proposed another
moment-independent sensitivity index based on differences
between the non-conditional and conditional cumulative dis-
tribution functions (CDF). To improve the computational
efficiency of sensitivity analysis, Guo et al. [26] proposed
the variable sensitivity index based on the generalized sen-
sitivity analysis idea. Because the post-buckling reliability
problem of composite stiffened plates needs to utilize time-
demanding finite element software, this paper derives the
efficient moment-independent sensitivity index based on the
generalized sensitivity idea.

This paper is organized as follows. Section 2 estab-
lishes the post-buckling reliability model and moment-
independent global sensitivity index of composite stiffened
plates. Section3 introduces theALKmethod for solvingpost-
buckling failure probability and sensitivity index efficiently.
Section 4 provides case studies for analyzing the effects
of longitudinal elastic modulus and fiber-direction tensile
strength on the post-buckling failure probability. Section 5
concludes this paper.

2 Post-buckling Reliability Analysis
and Sensitivity Analysis

2.1 Mechanical Properties

The arc-length method is adopted in most finite element soft-
ware. At present, the improved arc length method [27, 28]
has become one of the most important methods for solving
nonlinear buckling equations.

For the nonlinear bending problem of composite stiffened
plate, the governing equation is as follows

[KT ]d{�} � d{P} (1)

where [KT ], d{·},� and P represent tangent stiffnessmatrix,
differential operator, deformation and loaded force, respec-
tively.

[KT ] � [KL ] + [Kσ ] + [KNL ] (2)

where [KL ], [Kσ ] and [KNL ] indicate linear stiffness matrix,
geometric stiffness matrix and initial deformation matrix,
respectively.

The Hashin failure criterion is applied to conventional
shell elements and continuous shell elements, which can be
divided into four failure modes. The detailed expressions are
as follows:

Fiber failure mode in tension (σ11 > 0):

Ff t � σ 2
11

X2
T

+ α

(
σ12

SL

)2

� 1 (3)

Fiber failure mode in compression (σ11 ≤ 0):

Ff c �
(

σ11

XC

)2

� 1 (4)

Matrix failure mode in tension (σ22 ≥ 0):

Fmt �
(

σ22

YT

)2

+

(
σ12

SL

)2

� 1 (5)

Matrix failure mode in compression (σ22 ≤ 0):

Fmc �
[(

YC
2ST

)2

− 1

]
σ22

YC
+

(
σ22

2ST

)2

+

(
σ12

SL

)2

� 1 (6)

in which, XT , XC , YT , YC , SL and ST are axial ten-
sile strength, axial compressive strength, transverse ten-
sile strength, transverse compressive strength, axial shear
strength and transverse shear strength, respectively. α is the
influential factor of shear strength on fiber failure in tension.
σ11, σ22 and σ12 are the components of effective stress σ .

When the coefficient of damage criterion reaches 1, dam-
age appears in the rubber layer, and its expression is:

( 〈σn〉
Nmax

)2

+

(
σs

Smax

)2

+

(
σt

Tmax

)2

� 1 (7)

where σn , σs and σt are the normal stress, the shear stress in
the first direction and the shear stress in the second direction
at the opening, respectively. Nmax, Smax and Tmax represent
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the values of normal tensile strength and shear strength in
different directions, respectively. The BK failure criterion is
utilized to simulate the failure of the adhesive layer after
damage. The expression of BK failure criterion is:

GIC + (G�C − G IC )

(
G�

GT

)η

� GTC (8)

where GI, G� and GT are the energy release rates of type I,
type � and the entire model, respectively, and GT � GI +
G�. GIC , G�C and GTC are the critical energy release rates
of type I, type � and the entire model, respectively, and
GTC � GIC + G�C .

2.2 Post-buckling Reliability Model

It is assumed that the composite stiffened plate completely
fails when its ultimate bearing capacity is reached, so the
performance function under axial compression is defined as

G(X) � ηu Pu(X) − P (9)

where G(X) is the performance function, X is the random
variable vector included in the reliability evaluation, ηu is
the model uncertainty coefficient, Pu is the ultimate bearing
capacity, and P is the loaded compression. Eq. (9) contains
the ultimate bearing capacityPu , which is obtained using the
nonlinear finite element method (FEM).

In order to improve the calculation efficiency, the ratio
coefficient K is introduced and the ultimate strength Pu can
be calculated in combination with the buckling load, i.e.

Pu � K Pcr (10)

According toEq. (10), a newperformance function replac-
ing the ultimate compressive strength with buckling load is
established for post-buckling reliability analysis, which is
defined as

G(X) � ηuK (X)Pcr(X) − P (11)

where Pcr indicates the buckling load function, and the ratio
coefficient K (X) can be defined as

K (X) � K0h0(X) (12)

where h0(X) is the distribution function of ratio coefficient
K , and K0 is the mean value of coefficient K , which is
obtained by the following equation

K0 � Pu

Pcr
(13)

where Pu is the mean value of the ultimate compression,
and Pcr is the mean buckling load. The distribution function
h0(X ) is a function of variables XT , XC , YT , YC , S, R,
XTC , SC .

2.3 Moment-Independent Global Sensitivity
Analysis

In order to measure the influence of input variable Xi on
the uncertainty of output response, the moment-independent
sensitivity index is defined as follows [23, 29–31]

δi � 1

2
EXi (s(Xi )) � 1

2

∫
s(xi ) fXi (xi )dxi (14)

where EXi (·) is the expectation operator, fXi (xi ) indicates
the PDF of variable Xi , and s(Xi ) is the area difference
between the unconditional PDF fY (y) and the conditional
PDF fY |Xi (y) of Y , which is as follows

s(Xi ) �
∫ ∣∣ fY (y) − fY |Xi (y)

∣∣dy (15)

where fY |Xi (y) represents the PDF of the model output Y
when the input variable Xi is fixed at xi , while fY (y) is the
unconditional PDF of Y . If Xi has greater influence on the
uncertainty of Y , fixing Xi will make the PDF of the model
output change more, and then the corresponding distance
between fY |Xi (y) and fY (y) will be larger, resulting in a
larger s(Xi ). s(Xi ) is a unary function of Xi , and the average
influence of Xi on Y can be measured by taking expectation
of s(Xi ), thus the sensitivity index δi can be obtained.

3 Active Learning KrigingMethod

Asanunbiased estimationmodelwithminimumvariance, the
Kriging surrogate model combines the global approximation
with the local random error.

The Kriging model includes the linear regression model
and the stochastic process model, i.e.

g(x) � F(x, β) + z(x) � β + z(x) (16)

where g(x) represents the unknown function to fit, β repre-
sents the global estimation of the model, and z(x) denotes
the random distribution of the unknown function.

Given the design of experiments (DoE), the predicted
value and variance of the Kriging model at the unknown
point can be expressed as:

μg(x) � β̂ + r(θ , x)TR(θ)−1
(
g − β̂1

)
(17)
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σ 2
g (x) � σ 2

[
1 +

(
1TR(θ)−1r(θ , x) − 1

)2
1TR(θ)−11

− r(θ , x)TR(θ)−1r(θ , x)

]

(18)

where 1 is an m-dimensional unit column vector; r(θ , x)

represents the correlation function of training points; R(θ)

is a correlation matrix of any pair of training points; β̂, σ 2

and θ are parameters of the Kriging model.
With an optimization problem, the estimated value θ

solved for can establish a Kriging model:

θ∗ � argmin
θ

(
|R(θ)| 1

m σ 2
)

(19)

The Kriging interpolation model is established by ran-
dom sampling of the points near the predicted ones, so the
accuracy of the model is bound to be related to the selected
sample points. Since the predicted value μG(x) given by the
Kriging model is not the real value, there exists a situation
where the symbol of the predicted value is different from the
real one. The following is a case for separate consideration.
When Ĝ(x) < 0, i.e., μG(x) < 0, then there is a risk with
the real value G(x) > 0, and the risk index �(x) is defined
as

�(x) � max[(G(x) − 0), 0] (20)

�(x) represents the degree of the true value G(x) > 0 when
μG(x) < 0. Since G(x) is a random variable, �(x) is also
a random variable. Therefore, the mathematical expectation
of �(x) is

E(�(x)) � E[max((G(x) − 0), 0)]

�
∫ +∞

0
G(x)φ

(
Ĝ(x) − μG(x)

σG(x)

)
dG

� σG(x)φ

(
μG(x)

σG(x)

)
+ μG(x)�

(
μG(x)

σG(x)

)
(21)

whereμG(x) is themean value of the predicted value at point
x , and σG (x) is the variance of the predicted value. φ(·) is
the PDF of the standard normal distribution, and �(·) is the
CDF of the standard normal distribution. Similarly, when
Ĝ(x) > 0,μG(x) > 0, then there is a risk with the true value
G(x) < 0.

The expected risk equations in separate conditions can be
rewritten in a unified form as follows

E(�(x)) � −sign(μG(x))μG(x)�

(
−sign(μG(x))

μG(x)

σG(x)

)

+ σG(x)φ

(
μG(x)

σG(x)

)

(22)

Equation (22) is called the expected risk function (ERF),
also known as the learning equation, which illustrates the
possibility that the sign of the function to be fitted is predicted
wrongly. The basic steps for calculating the post-buckling
failure probability and the variable importance ranking of
composite stiffened plates by theALKmethod are as follows:

Step 1: According to the variable infor-
mation, generate 20 sample points Xt �(
X1, t , X2, t , · · · , Xn, t

)
(t � 1, 2, · · · , N , N � 20) ran-

domly by the Latin hypercube sampling method and
construct the initial set of samples. Then calculate the
corresponding values of performance function G(X) with
the initial samples. The initial training points and the
corresponding responses of G(X) constitute the initial DoE.

Step 2:Generate 105 samples randomly in the uncertainty
space of input variables as the candidate population.

Step 3:Construct the initial Krigingmodel with the initial
DoE.

Step 4: Predict the values of μG(X) and variances σ 2
G(x)

of the candidate points using the Kriging model, and then
calculate the ERF values based on Eq. (22). The point with
the maximum ERF value is marked as X∗.

Step 5: If the maximum value of ERFmeets the threshold
of convergence condition, then turn to Step 6. The thresh-
old is set as 10−3. Elsewise, add the marked point X∗ and
its response of performance function into the set of training
samples. Refresh the Kriging model with the updated DoE
and return to Step 4.

Step 6:Based on the established Kriging model, calculate
the post-buckling failure probability by the MCS method.

Step 7: Select failure sample
{
xF
1 , x

F
2 , · · · , xF

NF

}
to esti-

mate the conditional probability density fx j
(
x j

∣∣F)
of input

variable x j , and label it as f̂x j
(
x j

∣∣F)
, where NF is the num-

ber of failure samples.
Step 8: According to Eq. (14), estimate δi .

4 Case Study

The geometric schematic is shown in Fig. 1. The information
of each layer is shown in Table 1, and the thickness of a single
layer is 0.12 mm.

The material of this composite stiffened plate is
CCF300/BA9916, and the material of interface adhesive
layer is J116B. Table 2 shows the material properties of
J116B and CCF300/BA9916.

In order to verify the accuracy of the finite element model,
the simulation results are compared with the experimental
ones in reference [32]. A total of 5 sets of tests were carried
out, and 5 sets of failure loads were obtained, the mean value
of which was 1188.4 kN [32].
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Fig. 1 Geometric schematic of the composite stiffened plate

In the finite element model, the stiffener and skin are
simulated by the shell element (S4R), the adhesive layer is
simulated by the cohesive force element, and the cohesive
force element and shell element are connected at common
nodes. In order to accurately simulate the failure process of
composite materials, the Hashin failure criterion is adopted
and the damage evolution law is set. The finite elementmodel
and boundary conditions of the composite stiffened plate are
shown in Fig. 2. As shown in Fig. 2, it is fixed away from the
loading end, and the secondary end boundary is constrained
by U1 and U2. The wing rib boundary is constrained by the
Y-degree of freedom of the plate, and the non-loading edge is
free. In the nonlinear analysis of post-buckling, the ninefold
first-order buckingmodes andonefold second-order buckling
modes are used to replace the initial defects.

Figure 3 is the displacement cloud of post-buckling finite

Fig. 2 Finite element model and boundary conditions of stiffened com-
posite plate

element analysis. It can be seen from the figure that the failure
area and sequence of finite element analysis are consistent
with the experimental results [32].

Figure 4 shows the load–displacement curve of post-
buckling analysis, which is obtained by constructing cou-
pling reference points. The final bearing capacity of the
structure, i.e., the ultimate load, is 1177.38 kN. And the
error of the simulation result comparedwith the experimental
result is 0.93%.

In this paper, all material property parameters of the com-
posite stiffened plate are taken as random variables. Table 3
shows the probabilistic characteristics of each variable. The
ultimate strength P is set as 1188.4 kN.

Table 1 Layer information of the
composite stiffened plate Component Layer information

Skin [45/0/ − 45/90/ ± 45/02/452/0/ − 452/0/452/90/ − 452/0]s

Horizontal edge strip width (1.44) [45/03/ − 45/90]s
Horizontal edge strip width (2.64) [45/02/ − 45/02/ − 45/02/ − 45/90]s
Edge strip heigh (3.6) [45/02/45/02/ − 45/90/ − 45/02/ − 45/02/45]s

Table 2 Mechanical properties of
J116B and CCF300/BA9916 Material Elastic modulus Strength parameters Fracture toughness

J116B E � 2000 MPa σu, I � 10 MPa G IC � 0.252 N·mm

v � 0.382 σu,� � 24.5 MPa G�C � 0.665 N·mm

σu, III � 24.5 MPa GIIIC � 0.665 N·mm

CCF300/BA9916 E1 � 129 GPa XT � 1720 MPa

E2 � 9.82 GPa XC � 1230 MPa

G12 � G13 � 5.29 GPa YT � 70 MPa

G23 � 3.43 GPa YC � 220 MPa

v12 � 0.311 S12 � S23 � 134 MPa
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Fig. 3 Displacement cloud of post-buckling finite element analysis

Fig. 4 Load–displacement curve of post-buckling analysis

4.1 Effect of Longitudinal Elastic Modulus

Consider four cases of E1: (1)E1 � 129 GPa, (2)E1 �
140 GPa, (3)E1 � 150 GPa, and (4)E1 � 170 GPa. And the
fiber-direction tensile strength XT is set as 1720 MPa. The
post-buckling failure probability results of these four cases
are shown in Table 4. It can be seen that the post-buckling
failure probability of composite stiffened plates decreases
rapidly with the increase of E1. When E1 grows to 170 GPa,
the failure probability is only 0.0800, which shows that the
fiber is a significant load-bearing part in the structure. The
ALK method calls the performance function 154 times in
total. The comparison between the results of theALKmethod

Table 3 Probabilistic properties of fundamental variables

Variable Type Mean Standard deviation

E1(GPa) Normal 129 6.45

E2(GPa) Normal 9.82 0.491

v12 Normal 0.311 0.016

G12(MPa) Normal 5290 264.5

G13(MPa) Normal 5290 264.5

G23(MPa) Normal 3430 171.5

XT (MPa) Normal 1720 86

XC (MPa) Normal 1230 61.5

YT (MPa) Normal 70 3.5

YC (MPa) Normal 220 11

S23(MPa) Normal 134 6.7

S12(MPa) Normal 134 6.7

and the MCS method fully demonstrates the accuracy and
efficiency of the ALK method in dealing with post-buckling
reliability problems.

For purposes of convenience, the importance rankings
of input variables obtained by sensitivity analysis with the
increase of longitudinal elastic modulus E1 are shown in
Fig. 5. It can be seen that the sensitivity indices of G12, G13

and G23 are the largest, and G12 > G23 > G13, which
validates that the ability to resist shear failure is significant
for composite stiffened plates. In addition, as can be seen
from Fig. 5, the importance ranking of E1 increases with
the increase of E1. When E1 � 129 GPa, E1 < v12; but
when E1 � 150 GPa, E1 > v12. This indicates that the
contribution of design variables to the post-buckling failure
probability of composite stiffened plates varies under vari-
ous working conditions. However, the importance rankings
of XT ,XC ,YT ,YC ,S23 and S12 are smaller and close to zero
under variousworking conditions. In order to verify the ratio-
nality of the sensitivity analysis results, the change of failure
probability varying with XT is studied in Sect. 4.2.

4.2 Effect of Fiber-Direction Tensile Strength

Consider four cases of XT : (1)XT � 1720 MPa, (2)XT �
1750 MPa, (3)XT � 1900 MPa, and (4)XT � 2100 MPa.
And the longitudinal elastic modulus E1 is set as 129 GPa.
The results of post-buckling failure probability of these four
cases are shown in Table 5. It can be seen that the failure
probability of the composite stiffened plate does not change
with the increase of XT , which illustrates that the uncertainty
of variable XT has little effect on the failure probability and
further demonstrates the rationality and effectiveness of the
sensitivity analysis results in Fig. 5. Therefore, researchers
do not need to spend a lot of sources on the tensile strength
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Table 4 Post-buckling failure
probability of composite
stiffened plate with different E1

Case E1(GPa) ALK MCS

Pf Function calls Pf Function calls

1 129 0.2048 20 + 65 0.2010 105

2 140 0.1351 20 + 69 0.1362

3 150 0.0800 20 + 83 0.0827

4 170 0.0117 20 + 134 0.0105

Fig. 5 Sensitivity results of input variables

in the process of reliability design for the ultimate strength
of composite stiffened plates. Due to little change of post-
buckling failure probability with varying XT , the sensitivity
analysis results with different cases of XT are not shown in
this paper.

5 Conclusion

In this paper, a post-buckling reliability analysis method of
composite stiffened plates is proposed based on the ALK
model and the Hashin failure criterion. The ALK method is
employed to estimate the post-buckling failure probability
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Table 5 Post-buckling failure
probability of composite
stiffened plate with different XT

Case XT (MPa) ALK MCS

Pf Function calls Pf Function calls

1 1720 0.2048 20 + 62 0.2010 1 × 105

2 1750 0.2105 20 + 60 0.2013

3 1900 0.2016 20 + 63 0.2011

4 2100 0.1997 20 + 65 0.2008

and sensitivity index of composite stiffened plates. In case
studies, the simulation accuracy of the finite element model
is first verified by comparing the simulation results with the
experimental results. TheMCSmethod is employed to obtain
the benchmark results for validating the computational accu-
racy and efficiency of the ALKmethod. The results show that
the ALK method can reduce the computational cost obvi-
ously while ensuring the computational accuracy. Then, the
effects of longitudinal elastic modulus E1 and fiber-direction
tensile strength XT on the post-buckling failure probabil-
ity are analyzed. The sensitivity results show that the shear
modulus has the largest effect on the post-buckling reliabil-
ity of the composite stiffened plate. The variables, whose
sensitivity indices are close to zero, can be ignored in the
design and optimization of composite stiffened plates, which
is further demonstrated in the investigation of the effect of
fiber-direction tensile strength on the post-buckling reliabil-
ity. The proposed post-buckling reliability and sensitivity
analysis method with the ALK model is significant for the
safety assessment and optimization design of composite stiff-
ened plates.
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