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ABSTRACT An analytical solution of the guided wave propagation in a multilayered two-
dimensional decagonal quasicrystal plate with imperfect interfaces is derived. According to the
elastodynamic equations of quasicrystals (QCs), the wave propagating problem in the plate is
converted into a linear control system by employing the state-vector approach, from which the
general solutions of the extended displacements and stresses can be obtained. These solutions
along the thickness direction are utilized to derive the propagator matrix which connects the
physical variables on the lower and upper interfaces of each layer. The special spring model,
which describes the discontinuity of the physical quantities across the interface, is introduced
into the propagator relationship of the multilayered structure. The total propagator matrix can
be used to propagate the solutions in each interface and each layer about the multilayered plate.
In addition, the traction-free boundary condition on the top and bottom surfaces of the laminate
is considered to obtain the dispersion equation of wave propagation. Finally, typical numerical
examples are presented to illustrate the marked influences of stacking sequence and interface
coefficients on the dispersion curves and displacement mode shapes of the QC laminates.

KEY WORDS Two-dimensional QC materials, Wave propagation, Dispersion curve, State vector
approach, Propagator matrix, Imperfect interface

1. Introduction
As a novel kind of solid material, QCs have long-range order with symmetries that are prohibitive

in conventional crystals [1, 2], such as fivefold, eightfold, tenfold, and twelvefold rotational symmetries.
The ordered but quasi-periodic atom arrangement in QCs makes them possess a variety of excellent
properties, such as high hardness, high toughness, high abrasion resistance, high resistivity, low friction
coefficient, low thermal conductivity, and so on [2–4]. Due to these complex physical properties, QCs
have some potential applications, including thin films [5], coatings [6], and structural enhancement
phase [7] in composites. The multilayered plate model provides significant instructions for understand-
ing the characteristics of QC coatings or thin films.
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To predict the mechanical properties of the QC multilayered structure, various analytical/numerical
studies and mechanical models of these multiphase and multifunctional materials have been carried
out, which include research on the static response [8], free vibration [9], and the effective bulk material
properties [10, 11]. Based on linear elastic theory, Yang et al. [12] obtained the exact solution of the 2D
decagonal QC laminate with different quasi-periodic directions. By using the pseudo-Stroh formalism,
Guo et al. [13] developed a thermoelastic solution of the 2D QC plane with a conductive elliptic hole. Li
et al. [14] investigated the dynamic behaviors of 2D QC nanoplates with nonlocal effect, and analyzed
the effect of non-local parameters on the natural frequencies and mode shapes of simply-supported
laminates. Huang et al. [15] derived the dynamic response of 2D piezoelectric QC cylindrical shells
by employing the state-space method. To the best of the authors’ knowledge, however, little litera-
ture [16, 17] has investigated wave propagation in QC laminates. In industry practice, nondestructive
inspection based on the propagation of elastic waves that relies generally on the calculation of disper-
sion curves plays an important role in damage identification in multilayered structures [18–20]. From
this perspective, the derivation of the dispersion relation is one of the significant essentials for the
inspection of 2D QC multilayered structures.

The interfacial imperfections, including the homogeneous and inhomogeneous weak interfaces,
describe a significant factor in the failure of laminated composite materials, which may cause the
delamination and cracking problems for the multilayered composite structures. These disadvantages
limit the application of laminates [21]. For multilayered structures with inhomogeneous interfaces,
researchers have made some progress in the studies [22–25]. In addition, several numerical methods,
including the finite element methods [26, 27], boundary element methods [28], Muller’s method [29],
and the first-order plate theory [30], can be used to derive the solutions of static analysis and dynamic
response for plates with homogeneous weak interfaces. Furthermore, the spring layer model [31] has
been proved to be powerful for studying multilayered structures with weak imperfections. Compared
with other methods, this model can be perfectly combined with the propagator matrix to obtain an
exact solution. By using the extended Stroh formalism and the spring model, Vattré et al. [32, 33]
obtained the exact solutions of fully coupled thermoelastic laminates with imperfect interfaces. Chen
et al. [34] discussed the static and free vibration of simply-supported cross-ply laminates featuring
interlaminar bonding imperfections. This model has been proved to be a useful tool to study the prop-
erties of structures with imperfect interfaces. However, few pieces of literature [35, 36] have investigated
the static response and free vibration of the multilayered QC structures with a weak interface. And
to the best of the authors’ knowledge, the wave propagation in 2D QC laminates with an imperfect
interface has not yet been reported.

In this paper, based on the QC elastodynamics theory given by Bak [37, 38], the wave propagation
characteristics in 2D QC laminates with bonding imperfections are derived by using the state vector
approach and the propagator matrix method. The generalized spring model is applied to simulate the
discontinuity of variables between layers to derive the global propagator matrix, and the dispersion
curves and mode shapes are obtained. Numerical examples are also presented to show the features of
the dispersion curves and the corresponding modal shapes, which can be applied to guide the non-
destructive testing and evaluations of multilayer QC wave devices.

2. Theoretical Formulation
Consider an N -layer 2D decagonal QC plate with an imperfect interface. The atomic arrangement of

the 2D decagonal QC is quasi-periodic in the x-y infinite plane and periodic along the z-direction. The
relationship between the global Cartesian coordinate system and the local material coordinate system
of the plate is assumed to be (x, y, z) = (x1, x2, x3). The thickness hp = zp − zp−1 (p = 1, 2, 3, . . . , N)
is defined as the p-th layer in the multilayer plate, and its upper and lower interfaces are bounded
by zp and zp−1, respectively. Meanwhile, the bottom and top surfaces of the laminate are z0 = 0 and
zN = H, respectively.

2.1. Governing Equations

In this part, the material local coordinate system (x1, x2, x3) is utilized to describe the basic equa-
tions of 2D decagonal QC materials. According to the linear elastic theory of QCs [2], the generalized
relationship of strain-displacement for 2D QCs is
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εij = (ui,j + uj,i)/2, Wkj = wk,j (1)

where i, j = 1, 2, 3, and k = 1, 2. εij and Wkj are the strains in the phonon and phason fields,
respectively. ui and wk denote the phonon and phason displacements, respectively. The subscript
comma is defined as partial differentiation with respect to the axis.

Employing Bak’s theory [37, 38] as the QC elastodynamics model for wave propagation, the equa-
tions of motion in the absence of body forces are

σij,j = ρ1
∂2ui

∂t2
, Hkj,j = ρ2

∂2wk

∂t2
(2)

where ρ1 and ρ2 are the phonon and phason mass densities, respectively; t is time; σij and Hkj denote
the phonon and phason stresses, respectively.

The stress–strain relationship for 2D decagonal QCs with point groups 10mm, 1022, 1̄0m2, and
10/mmm [13] can be expressed as

σ11 = C11ε11 + C12ε22 + C13ε33 + R1 (W11 + W22)
σ22 = C12ε11 + C11ε22 + C13ε33 − R1 (W11 + W22)
σ33 = C13ε11 + C13ε22 + C33ε33
σ23 = σ32 = 2C44ε23
σ31 = σ13 = 2C44ε13
σ12 = σ21 = 2C66ε12 − R1W12 + R1W21

H11 = R1 (ε11 − ε22) + K1W11 + K2W22

H22 = R1 (ε11 − ε22) + K1W22 + K2W11

H23 = K4W23

H12 = −2R1ε12 + K1W12 − K2W21

H13 = K4W13

H21 = 2R1ε12 − K2W12+K1W21

(3)

where C11, C12, C13, C33, and C44 are the elastic constants with the relationship 2C66 = C11 –C12 in
the phonon field, K1, K2, K4, and R1 represent the phason elastic constants and the phonon-phason
coupling elastic constant, respectively.

2.2. State Vector Formulations

The Cartesian coordinate system (x, y, z) is utilized to describe the guided wave propagation in 2D
QC laminates. Substituting Eqs. (1) and (3) into Eq. (2), and according to the state vector approach
for QC plate, the state equations can be written as

∂

∂z
θ = Aθ (4)

where θ = {ux, uy, wx, wy, σzz, σxz, σyz,Hxz,Hyz, uz}T is the state variables, in which the superscript
‘T’ denotes transpose; and the state transition matrix A is

A =
[

0 A1

A2 0

]
(5)

The submatrices A1 and A2 in Eq. (5) are

A1 =

⎡
⎢⎢⎢⎢⎣

a5

0 a5 Sym
0 0 b3
0 0 0 b3

− ∂
∂x − ∂

∂y 0 0 ρ1
∂2

∂t2

⎤
⎥⎥⎥⎥⎦ (6)
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A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a1
∂2

∂x2 − a4
∂2

∂y2 + ρ1
∂2

∂t2

− (a2 + a6) ∂2

∂x∂y −a4
∂2

∂x2 − a1
∂2

∂y2 + ρ1
∂2

∂t2 Sym
−b1

∂2

∂x2 + b1
∂2

∂y2 2b1
∂2

∂x∂y −b2Δ + ρ2
∂2

∂t2

−2b1
∂2

∂x∂y −b1
∂2

∂x2 + b1
∂2

∂y2 0 −b2Δ + ρ2
∂2

∂t2

a3
∂
∂x a3

∂
∂y 0 0 a6

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

where “Sym” denotes a symmetric matrix, Δ is the 2D Laplace operator, and the coefficients are
written as follows

a1 = C11 − C2
13

C33
, a2 = C12 − C2

13
C33

, a3 = −C13
C33

, a4 = C66, a5 = 1
C44

, a6 = 1
C33

b1 = R1, b2 = K1, b3 = 1
K4

(8)

2.3. Dispersion Relation

It is assumed that the guided wave motion in the QC plate and its propagating angle α is measured
from the positive x-axis in the anti-clockwise direction. Thus, the solutions of Eq. (4) can be written
as

θ= θ̃ (z) ei(px+qy−ωt) (9)

where ω is the angular frequency, and imaginary i =
√−1; p and q are the two components of the wave

vector which are expressed as
p = k cos α, q = k sin α (10)

where k is the magnitude of the wavenumber along the propagation direction.
In order to avoid imaginary number calculation, θ(z) in Eq. (9) is rewritten as:

θ̃ (z) =
{

ũx, ũy, w̃x, w̃y, iσ̃zz, σ̃xz, σ̃yz, H̃xz, H̃yz, iũz

}T

(11)

Substituting Eq. (9) into Eq. (4), the state equations can be expressed as

d
dz

θ̃ (z) = Ã (ω, k) θ̃ (z) (12)

where

Ã (ω, k) =
[

0 Ã1 (ω, k)
Ã2 (ω, k) 0

]
(13)

with

Ã1 (ω, k) =

⎡
⎢⎢⎢⎢⎣

a5 0 0 0 −p
0 a5 0 0 −q
0 0 b3 0 0
0 0 0 b3 0
p q 0 0 −ρ1ω

2

⎤
⎥⎥⎥⎥⎦ (14)

Ã2 (ω, k) =

⎡
⎢⎢⎢⎢⎣

a1p
2 + a4q

2 − ρ1ω
2 (a2 + a4) pq b1p

2 − b1q
2 2b1pq a3p

(a2 + a4) pq a1q
2 + a4p

2 − ρ1ω
2 −2b1pq b1p

2 − b1q
2 a3q

b1p
2 − b1q

2 −2b1pq b2
(
p2 + q2

) − ρ2ω
2 0 0

2b1pq b1p
2 − b1q

2 0 b2
(
p2 + q2

) − ρ2ω
2 0

−a3p −a3q 0 0 a6

⎤
⎥⎥⎥⎥⎦
(15)

2.4. General Solutions

Based on the theory of ordinary differential equations, the solutions of Eq. (12) are

θ̃ (z) = exp
[
(z − zp−1) Ã

(p)
(ω, k)

]
θ̃ (zp−1) (zp−1 ≤ z ≤ zp, p = 1, 2, . . . , N) (16)

where exp
[
(z − zp−1) Ã

(p)
(ω, k)

]
is the matrix exponential function.
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Let z = zp in Eq. (16), and we find that

θ̃
(p)

1 = T (p)θ̃
(p)

0 (17)

where θ̃
(p)

1 and θ̃
(p)

0 denote the state vectors on the upper and lower surfaces of the p-th layer, and

T (p) = exp
[
(zp − zp−1) Ã

(p)
(ω, k)

]
= exp

[
hpÃ

(p)
(ω, k)

]
Similarly, we get

θ̃
(p+1)

1 = T (p+1)θ̃
(p+1)

0 (18)

2.5. Imperfect Bonding Conditions

According to the traditional analysis theory of composite layered structures, the connection condi-
tions between interfaces are assumed to be perfect. Thus, stresses and displacements are continuous
across interfaces. However, the interface slip and separation of the laminates may occur during service,
which may lead to material failures. Therefore, it is necessary to study the imperfect interface of QC
multilayered structures.

In this paper, the general spring model is employed to simulate the continuous and discontinuous
interface conditions [31, 34] when the phason and phonon displacements and stresses are through
the interfaces. The interface conditions of zp for the weak connection between the p-th layer and the
(p+1)-th layer are as follows

σ̃
(p+1)
xz = σ̃

(p)
xz = β

(p)
1

(
ũ
(p+1)
x − ũ

(p)
x

)
σ̃
(p+1)
yz = σ̃

(p)
yz = β

(p)
2

(
ũ
(p+1)
y − ũ

(p)
y

)
σ̃
(p+1)
zz = σ̃

(p)
zz = β

(p)
3

(
ũ
(p+1)
z − ũ

(p)
z

)
H̃

(p+1)
xz = H̃

(p)
xz = γ

(p)
1

(
w̃

(p+1)
x − w̃

(p)
x

)
H̃

(p+1)
yz = H̃

(p)
yz = γ

(p)
2

(
w̃

(p+1)
y − w̃

(p)
y

)
(19)

where β
(p)
i and γ

(p)
k are the interface coefficients of the phonon and the phason fields, respectively. The

case where β
(p)
i and γ

(p)
k → ∞ describes the perfect interface, whereas β

(p)
i and γ

(p)
k → 0 indicates that

the p-th layer and the (p+1)-th layer are completely detached.
Eqs. (11) and (19) can be expressed as

θ̃
(p+1)

0 = P (p)θ̃
(p)

1 (20)

where

P (p) =
[
I P (p)

e

0 I

]
(21)

with I an identity matrix and

P (p)
e =

⎡
⎢⎢⎢⎢⎢⎣

1/β
(p)
1 0 0 0 0

0 1/β
(p)
2 0 0 0

0 0 1/β
(p)
3 0 0

0 0 0 1/γ
(p)
1 0

0 0 0 0 1/γ
(p)
2

⎤
⎥⎥⎥⎥⎥⎦

(22)

The relation of state vectors between the upper surface of the (p+1)-th layer and the lower surface
of the p-th layer can be determined by solving Eqs. (17), (18), and (20):

θ̃
(p+1)

1 = T (p+1)P (p)T (p)θ̃
(p)

0 (23)

Continuing the preceding procedure, we can further derive the solutions for the corresponding multi-
layered structure as

θ̃
(N)

1 =
∏2

p=N
(P (p)T (p−1))T (1)θ̃

(1)

0 = M θ̃
(1)

0 (24)
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where the matrix M is the global propagator matrix.
We rewrite Eq. (24) as

θ̃
(N)

1 =
{
U (H)
Y (H)

}
=

[
M 11 M 12

M 21 M 22

]
θ̃
(1)

0 =
[
M 11 M 12

M 21 M 22

] {
U (0)
Y (0)

}
(25)

where U (z) = {ũx, ũy, ũz, w̃x, w̃y}T , Y (z) =
{

σ̃xz, σ̃yz, σ̃zz, H̃xz, H̃yz

}T

.
The traction on the bottom and top surfaces is assumed to be zero, so Eq. (25) can be rewritten as{

U (zN+1)
0

}
=

[
M 11 M 12

M 21 M 22

]{
U (z1)

0

}
(26)

where M 11, M 12, M 21, and M 22 are submatrices of the propagator matrix M .
There are nonzero solutions in Eq. (26), and the submatrix M 21 must satisfy

det [M 21] = 0 (27)

Therefore, by solving Eq. (27), the dispersion relation of guided wave propagation can be obtained.

3. Numerical Studies
Illustrative examples of wave propagation in multilayered QC structures with imperfect interfaces

are provided for dynamic analysis. It is assumed that the multilayered plate is composed of three single
plates, and each layer has an equal thickness. The horizontal dimensions of the laminate are infinite,
and its total thickness is H.

For ease of numerical calculation, the following dimensionless quantities will be used [39], which are

C∗
ef = Cef

Cmax
(e, f = 1, 2, 3, 4) , R∗

1 = R1
Rmax

, K∗
l = KlCmax

R2
max

(l = 1, 2, 4)

ρ∗
1 = ρ1

ρmax
, ρ∗

2 = ρ2C3
max

ρmaxR3
max

, β∗
i = 1

βiCmax
, γ∗

k = R2
max

γkCmax

(28)

where Cmax, Rmax, and ρmax are the maximum phonon elastic coefficient, phonon-phason coupling
elastic coefficient, and mass density of the material, respectively.

Two kinds of materials are considered [2]: one is QC material Al-Ni-Co (called QC), and the
other is crystal material BaTiO3 (called C). And we have proved that the two materials’ constants
are completely in accord with the elastic deformation energy density [10, 40], so they can be used
for calculating the dispersion characteristics of guided waves. In order to avoid the appearance of a
singular matrix during calculation due to the lack of a phason field for BaTiO3, we assume that the
phason elastic constant Kl of the crystal is 10−8 times that of the QC [14].

3.1. Dispersion Relation

Figure 1 shows the dispersion curves of the first seven modes for the wave propagating in
QC/QC/QC and C/C/C plates with perfect interfaces. The interface of the laminates is assumed
to be perfectly bonded, and the orientation angle of wave propagation is 45◦. The dispersion curves
of the QC/QC/QC plate (Fig. 1a) are very similar to those of the C/C/C plate (Fig. 1b). Consid-
ering that the wave propagates to the bottom and top surfaces of the laminate, the transverse wave
(S-wave) and the longitudinal wave (P-wave) will be converted, which can be superimposed in the
plate to form a guided wave mode after a period of time, as shown in Fig. 1. Mode 1 is the lowest
order dispersion curve of the transverse wave, and the change rate of the dimensionless phase velocity
c(c = ω/

(
k
√

Cmax/ρmax

)
) decreases as the dimensionless wavenumber kH increases and then tends to

be stable in Fig. 1a, b. Mode 2 denotes the lowest mode of P-wave whose c is approximately constant
as kH increases. The c of mode 3 starts to decrease from a specific value, and different stacking orders
of the plates have different effects on this specific value. The dimensionless phase velocities c of mode
4, mode 5, mode 6, and mode 7 change obviously and gradually level off to mode 2, and they tend to
infinity at kH → 0.

To analyze the dispersion characteristics in more detail, dimensionless natural frequencies Ω (Ω =
ωH/

√
Cmax/ρmax) of the six laminated plates at the dimensionless wave number kH = 1 are given in

Table 1. These frequencies of six stacking sequence plates are relatively close to mode 1. Furthermore,
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Fig. 1. Dispersion curves for QC/QC/QC plate (a) and C/C/C plate (b)

Table 1. Dimensionless natural frequencies Ω at kH = 1

Stacking sequences Mode
1 2 3 4 5

QC/QC/QC 0.23696 0.61218 0.95328 1.82549 2.00308
QC/C/QC 0.25235 0.61865 0.97165 1.82566 2.03354
QC/QC/C 0.23503 0.61435 0.96806 1.84190 2.02330
C/C/QC 0.21437 0.52120 0.83713 1.60132 1.77906
C/QC/C 0.20060 0.52514 0.85275 1.60536 1.74687
C/C/C 0.21873 0.51776 0.87041 1.68067 1.84958

it can be observed that Ω of the QC/C/QC plate is the largest, which indicates that the rigidity of
this laminate is highest. The dimensionless natural frequencies Ω of three-layer boards with different
stacking orders can be roughly divided into two groups in Table 1: Group 1 is QC/QC/QC, QC/QC/C,
and QC/C/QC; Group 2 covers C/C/QC, C/QC/C, and C/C/C. The difference of frequencies in
different stacking sequences may be caused by the maximum phonon elastic modulus being higher
than those of the crystal and the mass densities of the two materials being different. Therefore, by
exciting the appropriate frequencies for different laminates, the material layups can be identified in
the nondestructive evaluation technology.

3.2. Influence of Interfacial Imperfection on a QC Plate

In this part, the variation of the dispersion curves and mode shapes in a QC/QC/C plate with
weak interfaces are presented. The dimensionless interface coefficient β∗

3 is assumed to be zero [31, 34],
and the other dimensionless interface coefficients are β∗

1 = β∗
2 = γ∗

1 = γ∗
2 = δ. One identical set of the

dimensionless interface coefficients δ in all interfaces are used for every laminate, and four kinds of δ
are considered: δ =0, 0.3, 0.6, 0.9.

The dependence of the distribution of different modes (1, 2, 3, and 4) for the QC/QC/C plate on
different interface coefficients is presented in Fig. 2. With the increase of δ, c (Fig. 2a–d) decreases for
the same wavenumber kH. The dispersion curves in Fig. 2a, b are the lowest modes of the transverse
wave and longitudinal wave, respectively. It is noticed that mode 1 is more sensitive to interface
coefficients than mode 3 (Fig. 2c). According to crystal elasticdynamics, mode 2 in Fig. 1b is called
the 0-order mode, and its phase velocity c is constant. However, comparing Figs. 2b and 1a with 1b, c
of mode 2 is not a specific constant if there is QC material in the laminate. This feature indicates that
mode 2 is affected by the QC phason field. In addition, the slopes of mode 4 (Fig. 2d) in the defective
plate decrease with the increase of wavenumber.
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Fig. 2. Dispersion curves for QC/QC/C plate with different interface coefficients δ: a mode 1; b mode 2; c mode 3; d
mode 4

The variations of the first-order and third-order mode shapes for the QC/QC/C plates with kH =
2 and α = 45◦ along the thickness direction are presented in Fig. 3. The distribution of the phonon
dimensionless mode shapes ux (Fig. 3a, d) for the laminate along the z-direction has the same value
as uy. Moreover, the variation of the third-order ux is more sensitive to that of the first-order ux.
Despite the interface coefficient β3 defined as zero, the phonon displacement mode shapes uz (Fig. 3b,
e) increase as the interface coefficient is larger. This feature indicates that the overall bending stiffness
of the laminate continuously decreases due to the gradual weakening of the bonding surface. While the
value of the phason dimensionless mode shapes wx (Fig. 3c, f) is opposite to that of wy. In addition,
the discontinuity of the first-order wx between layers becomes more weakened with the increases of
interface coefficients, but the third-order wx gets stronger at z/H = 1/3 and z/H =2/3. wx vary
linearly in the QC layer and return to zero in the crystal layers. This transformation can be used to
identify the stacking sequence of materials in the nondestructive evaluation technology. In addition,
the distributions of displacement mode shapes of the next layer can also be predicted by selecting
appropriate interface coefficients.

4. Conclusions
In this paper, the guided wave propagation in multilayered 2D QC plates with imperfect interfaces

has been derived. The exact solution is achieved on the basis of the state vector approach and the
propagator matrix method. Two kinds of laminates are used to investigate the dispersion curves with
perfect interfaces, and the QC/QC/C plate is selected to analyze the influences of interface coefficients
on the dispersion relation and displacement mode shapes. Some significant features are listed below:
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Fig. 3. The first-order mode shapes ux (a), uz (b), and wx (c); the third-order mode shapes ux (d), uz (e), and wx (f)

1. The state equations constructed in this paper are very effective and universal for deriving the
general solutions of the state variables. Some special cases such as homogenous/inhomogenous QC
plates and multi-physics coupling QC laminates could all be investigated from the present solutions.

2. Mode 2 denotes the lowest mode of P-wave. Different from the crystal plate, the phonon-phason
coupling effect makes the phase velocity c of mode 2 in the QC plates decrease with the interface
coefficients increasing.
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3. The general dispersion curves depend on the interface coefficients. The weak interfaces reduce the
natural frequency of the first four modes of the QC laminates, and different stacking orders also
have an effect on the natural frequency. Therefore, the appropriate weak interface and the suitable
stacking mode can be selected to optimize the dynamic characteristics of the QC plates.

4. The phason displacement mode shape wx in different QC laminates could be utilized to identify
the stacking sequence of materials. The distributions of displacement mode shapes can also be
predicted by selecting the appropriate interface coefficients δ.

Finally, the results of the current study can be used to validate the accuracy of other numerical
methods and serve the analysis and design of intelligent QC material laminates.
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