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ABSTRACT The plastic behaviors of thin metallic foils, including size effect, Bauschinger effect,
and passivation effect, are studied under cyclic bending condition using the strain gradient visco-
plasticity theory. The finite element simulations are performed on the cyclic bending of the elasto-
viscoplastic thin foils with passivated and unpassivated surfaces. The study is also conducted on
the transition from a passivated surface to an unpassivated one. The roles of the dissipative
and energetic gradient terms are emphasized. From the results, it is found that the dissipative
gradient terms increase the yield strength, while the energetic gradient terms increase the strain
hardening, resulting in an anomalous Bauschinger effect. Further, it is observed that the surface
passivation effect increases both the normalized bending moment at initial yielding and strain
hardening. The comparison between the numerical results of cases with and without passivation
demonstrates that the switching of boundary conditions significantly affects the plastic behavior
of the foils under cyclic bending.

KEY WORDS Strain gradient plasticity, Size effect, Bauschinger effect, Geometrically necessary
dislocations, Bending

1. Introduction
Many measurements have revealed that the strength of small-scaled metallic structures undergo-

ing non-uniform plastic deformation is size-dependent [1–12]. The conventional plasticity theories are
unable to characterize these size-dependent phenomena because such theories do not contain intrinsic
material length scales. Many authors [4, 10, 13–22] have developed various phenomenological gradient
theories to describe the mechanical response of materials at small scales. These theories are mainly
based on the connection between the plastic strain gradient and geometrically necessary dislocations
(GNDs) introduced by Nye [23] and Ashby [24]. The crucial step in constructing the phenomenological
strain gradient plasticity (SGP) theories was to express the plastic work in terms of plastic strain
and its gradient, thereby introducing one or more length scales into the material description. Later, it
was accepted that the higher-order SGP theories are necessary as they include both dissipative (unre-
coverable) and energetic (recoverable) gradient contributions [17, 19, 21, 22]. Additional nonstandard
boundary conditions are required to solve equilibrium states in higher-order SGP theories.

The exposure of metals to air results in forming a dense oxide layer on the surface [25]. The pas-
sivation layer could block the dislocation motion, resulting in dislocation pile-ups, and hindering the
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plastic flow as the material exceeds the elastic limit [26, 27]. Further, the experiments on hardening and
strengthening due to restricted plastic flow have drawn attention in dealing with the effect of surface
passivation in the plastic behavior of materials. For example, Xiang and Vlassak [28] showed that a
copper film bonded to a substrate could support a larger stress than the independent counterpart.
Further experiments on the evaluation of confined shear were reported by Mu et al. [29, 30]. They
found that the dependence of shear flow stress on the thickness of the metal layer sandwiched between
rigid solids was remarkable, with the smaller being stronger. Recent experiments on the bending of foils
with passivation layers showed that the flow stress was enhanced due to the passivation layer [31]. The
influence of passivation layers on the bending behavior of thin foils was theoretically analyzed by Evans
and Hutchinson [26]. The authors obtained that the higher-order SGP theory was indispensable since
the conventional plasticity theory or the lower-order SGP theory could not capture the passivation
effect due to the lack of higher-order stress and additional boundary conditions. Several authors ana-
lyzed the mechanical behaviors of thin foils and wires with the passivated surface within higher-order
SGP theories [32–39]. However, few experimental or theoretical studies focused on investigating the
passivation effect during cyclic bending of thin foils.

Most small-scale experimental and theoretical studies adopt monotonic straining and loading
conditions that do not deviate significantly from proportional straining. Only a few attempts
[6, 28, 32, 33, 40–43] were made to address the non-proportional straining issues at a small scale.
The size effects and the Bauschinger effect were distinctly represented in early cyclic experiments at a
small scale. For example, tests on thin foils under cyclic bending showed that a pronounced Bauschinger
effect exists [40, 44, 45], i.e., the yield strength under reverse loading is much smaller than that under
forward loading. This study is devoted to studying the size effect and passivation effect in the cyclic
bending of thin foils with and without passivation.

The paper is organized as follows. The basic equations for Gudmundson’s theory and its finite
element (FE) implementation are described briefly in Sect. 2. The boundary value problems of the
cyclic bending of thin foils with unpassivated surface, passivated surface, and switching from passivated
to unpassivated surface are presented in Sect. 3. The detailed numerical results and discussion are given
in Sect. 4. Finally, the conclusions are provided in Sect. 5.

2. Theoretical Basis and Finite Element Implementation
2.1. Strain Gradient Plasticity

The flow theory of strain gradient plasticity proposed by Gudmundson [17] is utilized in this work.
The full plastic strain tensor is adopted in Gudmundson’s theory rather than the effective plastic
strains used by Fleck and Hutchinson [16]. Both elastic and plastic strains and plastic strain gradients
contribute to the internal power during small deformations. Under the assumption that the volume
force is ignored, the principle of virtual power of Gudmundson’s theory can be shown as∫

V

[
σij ε̇ij + (qij − sij) ε̇Pij + τijkε̇Pij,k

]
dV =

∫
S

(
Tiu̇i + tij ε̇

P
ij

)
dS (1)

where σij is the Cauchy stress, sij = σij − δijσkk

/
3 is the deviatoric stress, qij is the microstress

power-conjugate to the plastic strain rate ε̇Pij , ε̇ij is the strain rate, and τijk is the higher-order stress
power-conjugate to the plastic strain gradient rate ε̇Pij,k. The external virtual power is applied on the
boundary S by the conventional traction Ti, and by the microscopic traction tij . The strain rates
satisfy the kinematic relations

ε̇ij = (u̇i,j + u̇j,i)
/
2, ε̇ij = ε̇Eij + ε̇Pij , ε̇Pii = 0 (2)

where ε̇Eij is the elastic strain rate, and u̇i is the velocity. According to Eq. (1) and the divergence
theorem, the equilibrium equations are

σij,j = 0, qij − sij − τijk,k = 0 inV (3)
σijnj = Ti, τijknk = tij on S (4)

where σij = σji, qij = qji, qii = 0, τijk = τjik, τiik = 0, and ni is the outward unit normal to S. The
second formulae in Eqs. (3) and (4) are the microscopic force balance and the microscopic traction
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condition, respectively. The higher-order stress, τijk, can be divided into a dissipative part, τD
ijk, and

an energetic part, τE
ijk,

τijk = τD
ijk + τE

ijk (5)

It is generally considered that microstress is completely dissipative in nature, so

qij = qDij (6)

In consideration of the influence of GNDs, it is assumed that the bulk free energy depends upon
the elastic strain, εEij , and the plastic strain gradient, εPij,k,

Ψ
(
εEij , ε

P
ij,k

)
=

1
2

(
εij − εPij

)
Cijkl

(
εkl − εPkl

)
+

1
2
GL2εPij,kεPij,k (7)

where Cijkl is the isotropic elastic stiffness tensor of solids, G is the shear modulus, and L is the
energetic length scale. The Cauchy stress is obtained by

σij =
∂Ψ

∂εE
ij

= Cijkl

(
εkl − εPkl

)
(8)

while the energetic higher-order stress can be deduced as

τE
ijk =

∂Ψ

∂εPij,k
= GL2εPij,k (9)

The effective stress, Σ, power-conjugate to the effective plastic strain rate, ĖP, was defined by
Gudmundson [17]. To make sure the dissipation is always non-negative, there is

Ḋ = ΣĖP = qij ε̇
P
ij + τD

ijkε̇Pij,k ≥ 0 (10)

and

ĖP =

√
2
3
ε̇Pij ε̇

P
ij + 	2ε̇Pij,kε̇Pij,k (11)

Σ =

√
3
2
qijqij + 	−2τD

ijkτD
ijk (12)

where 	 is the dissipative length scale. The microstress and dissipative stress are given as

qij =
2
3

Σ

ĖP

ε̇Pij (13)

τD
ijk =

Σ

ĖP

	2ε̇Pij,k (14)

Gudmundson’s theory is able to account for a back stress, and hence for the Bauschinger effect. The
back stress for Gudmundson’s theory can be explicitly provided by following the procedures outlined
by Gurtin and Anand [19]. By Eqs. (5) and (6), the microscopic force balance (3) can be rewritten as

sij + τE
ijk,k = qDij − τD

ijk,k (15)

Following Gurtin and Anand [19], we consider the negative of the energetic term τE
ijk,k as the back

stress. In view of Eq. (9), we have

σback
ij = − τE

ijk,k= − GL2εPij,kk (16)

The back stress is simpler than that in the Gurtin–Anand theory [19]. This is because, from the
outset, Gudmundson’s theory allows the plastic free energy to be dependent on the gradient of plastic
strain, whereas, Gurtin and Anand’s theory allows the free energy to be dependent on the Burgers
tensors. By accounting for Eqs. (13) and (14), the flow rule yields

sij + GL2εPij,kk =
2
3

Σ

ĖP

ε̇Pij − Σ

ĖP

	2ε̇Pij,k (17)
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The deviatoric stress sij represents a second-order partial differential equation for the plastic strain.
Unlike conventional plasticity theories, the flow rule here is nonlocal and needs to be augmented by
appropriate boundary conditions.

We introduce the flow stress σy(EP) by taking the gradient effect into account,

σy (EP) = σY

(
1 + EEP

/
σY

)N (18)

where σY and E denote the standard uniaxial yield stress and Young’s modulus, respectively; N is the
hardening exponent, while 0 ≤ N ≤ 1; and EP =

∫
ĖPdt, with Ėp being defined in Eq. (11).

The generalized effective visco-plastic equation is established as

Σ
(
EP, ĖP

)
= σy (EP) V

(
ĖP

)
(19)

where V
(
ĖP

)
=

(
ĖP

/
ε̇0

)m

is the visco-plastic function, and m is the rate sensitivity exponent.

According to Panteghini and Bardella [46], V
(
ĖP

)
is defined as

V
(
ĖP

)
=

{
ĖP

/
(2ε̇0) if ĖP

/
ε̇0 ≤ 1

1 − ε̇0
/(

2ĖP

)
if ĖP

/
ε̇0> 1

(20)

where ε̇0 is a constant representing the reference strain rate. When ε̇0 → 0, a rate-independent limit
case is obtained [32]. More detailed discussions of ε̇0 have been given by Panteghini and Bardella [46]
and Fuentes-Alonso and Mart́ınez-Pañeda [47]. More recently, a mixed energetic–dissipative potential
was proposed by Panteghini et al. [48], consisting of the sum of quadratic higher-order potentials
transitioning into linear terms at different threshold values. Such a potential incorporated in distortion
gradient plasticity could give reliable predictions on the cyclic torsion responses of thin metallic wires
[43].

2.2. Boundary Conditions

The classical static boundary conditions are

σijnj = T 0
i on St (21)

whereas the homogeneous higher-order static boundary conditions are adopted, which are called
microfree boundary conditions as they describe the dislocations free to exit from the body.

τijknk = 0 on Sfree
t (22)

The classical kinematic boundary conditions are

u̇ = u̇0 on Su (23)

whereas the homogeneous higher-order kinematic boundary conditions called micro-hard boundary
conditions are adopted as they describe the dislocations piling up at the boundary.

ε̇Pij = 0 on Shard
u (24)

2.3. Finite Element Implementation

A backward Euler implementation of Gudmundson’s theory was developed by Mart́ınez-Pañeda et
al. [49]. The FE framework uses a user element (UEL) subroutine to implement into the commercial
package ABAQUS, which is briefly summarized here. It contains both dissipative and energetic strain
gradient contributions. The explicit FE implementations of the higher-order theories of SGP were also
described by Danas et al. [50], and Nielsen et al. [51]

The displacements and plastic strains are used as the primary kinematic variables of the FE frame-
work. The nodal variables for the displacement field u and the plastic strain field εPat position x
are interpolated according to their respective nodal components ûn and ε̂P

n , while using a quadratic
function in the element as

u =
k∑

n=1

Nu
nûn and εP =

k∑
n=1

N εP

n ε̂P
n (25)
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where Nu
n and N εP

n are the shape functions related to the displacement and plastic strain, respectively;
n is the degree of freedom, and k is the total number of degrees of freedom for the nodal displacements
or the nodal plastic strain components. The gradient quantities can be discretized as

ε =
k∑

n=1

Bu
nûn and ∇εP =

k∑
n=1

M εP

n ε̂P
n (26)

through matrices Bu
n and M εP

n . The details of Nu
n, N εP

n , Bu
n and M εP

n are given in the supplementary
material of Ref. [49]. Eventually, by using the above relations, the internal virtual work shown in Eq.
(1) is discretized and can be written as

δWi =
∫

V

{
(Bu

n)T σδûn +
[(

N εP

n

)T

(q − σ) +
(
M εP

n

)T

τ

]
δε̂P

n

}
dV (27)

By solving the global system of linear equations, the increments for each time step Δt in nodal dis-
placements and plastic strains are calculated as

[
Ku,u Ku,εp

Kεp,u Kεp,εp

] [
Δûn

Δε̂P
n

]
=

[
Ru

n

RεP

n

]
(28)

where Ru
n and RεP

n denote the nodal residuals of the displacement and the plastic strain at a given
node, respectively; K denotes the consistent stiffness matrix defined as the differentiation of R with
respect to the incremental nodal variables. And,

Ru
n =

∫
V

(Bu
n)T σdV (29)

RεP

n =
∫

V

[(
N εP

n

)T

(q − σ) +
(
M εP

n

)T

τ

]
dV (30)

For a detailed FE implementation, the reader is referred to Mart́ınez-Pañeda et al. [49]

3. Modeling the Cyclic Bending of Thin Foils
Responses of the cyclic bending of thin foils with and without passivation, and transitioning from

a passivated surface to an unpassivated one are studied here. This work focuses on comparing the
differences between the mechanical responses of thin foils with different boundary conditions. The
study is conducted in the rate-independent plasticity and cyclic loading conditions. The plane strain
and 8-node quadrilateral elements are used in all the cases.

The schematic representation of a foil with length W along x1 and thickness H along x2 undergoing
bending moment in the x3-direction is shown in Fig. 1. The aspect ratio is W/H = 4. At both ends of
the foil, longitudinal displacement components are imposed. The surface strain amplitude to deform
the foil is shown in Fig. 2. The displacement fields are given as

u1 = κx1x2, at x1 = ±W/2 (31)

where κ is the curvature bent around the x3-axis. In the simulation, different boundary conditions
are applied to the foil. For an unpassivated foil, the dislocations can freely slip out from the surface.
Therefore, the traction-free boundary conditions are adopted at the top and bottom surfaces of the
foil, i.e., Ti = tij = 0 at x2 = ±H/2. Further, the dislocations would pile up around the passivation
layer for a passivated foil, with non-vanished GNDs and higher-order stress. At the passivated surfaces,
the corresponding higher-order boundary conditions are micro-hard, resulting in the disappearance of
plastic strain and plastic strain rate at the surface, i.e., ε̇P11 = ε̇P22 = 0 at x2 = ±H/2 for ∀x1. For
the symmetry reason, we simplify the simulations by modeling one-fourth of the foil in the structure
described as follows. A foil consisting of a total of 400 quadratic quadrilateral elements, with 1301
nodes, is used for the simulation. The bending moment is evaluated as the standard expression

M = 2b

∫ H/2

0

σ11x2dx2 (32)
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Fig. 1. Schematic of a thin foil under bending: a the foil under bending; b a quarter of the foil with partial boundary
conditions

Fig. 2. Applied strain amplitude of the foils under bending

where the bending moment is normalized by the initial yield moment MY = σY bH2
/(

6
√

1 − ν + ν2
)

[38] and ν is Poisson’s ratio.

4. Results and Discussion
Numerical results are obtained for the materials with the normalized yield strength σY /E = 0.002,

Poisson’s ratio ν = 0.3, and the rate sensitivity exponent m = 0.05. The reference strain rate in the
visco-plastic function is ε̇0 = 10−4s−1. The total loading time is set to be t = 21 s, while a total loading
and unloading cycle lasts for 4 s. Since the determination of the material length scales L and 	 is
still an open issue, we employ the dimensionless ratio between the material length scale and the foil
dimension to analyze the problems.

4.1. Cyclic Bending Response of Unpassivated Foils

Initially, the cyclic bending of unpassivated foils is considered. The cyclic responses in terms of
the normalized moment versus surface strain are shown in Fig. 3. Figure 3a–c show the cases with
strain-hardening N = 0.1, while Fig. 3d presents the case about elastic-perfectly plastic solid (i.e.
N = 0). The cases of 	/H = 0, L/H = 0 and 	/H = L/H = 0 all correspond to the predictions
based on classical plasticity theory. For the cyclic bending case with only one dissipative length scale
(see Fig. 3a), increasing 	/H leads to the increase of the bending moment on initial yielding, while
the hardening rate is hardly affected. For the cyclic bending case with one energetic length scale
(see Fig. 3b), increasing L/H results in an increase in strain hardening, while the yield strength is
hardly affected. Comparing Fig. 3a with b, it is observed that, in Fig. 3a, the yield strength under
reverse loading is the same as during initial loading; while in Fig. 3b, the yield strength under reverse
loading is significantly lower than in forwarding loading. Therefore, it is observed that there is a
significant Bauschinger effect in the energetic cases but not in the dissipative cases. Further, for the case
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Fig. 3. Cyclic bending responses for elastic-plastic foils: a dissipative gradient effects, N = 0.1; b energetic gradient
effects, N = 0.1; c combination of dissipative and energetic gradient effects, N = 0.1; d combination of dissipative and
energetic gradient effects, N = 0

L/H = 1.0, an anomalous Bauschinger effect is found, i.e., recoverable plasticity occurs upon unloading.
The reason is the back stress induced by the GNDs residing in the thin foil. This indicates that the
GNDs induced by the inhomogeneous deformation are an important origin of the Bauschinger effect.
Moreover, the kinematic hardening effect arises from the influence of higher-order stresses on effective
stress, according to Eq. (12). Figure 3c, d (N = 0) show the cyclic bending response of thin foils with
combined dissipative and energetic gradient effects. The results are presented for 	/H = 0, 0.1, and 0.3,
while L/H = 0, 0.5, and 1.0. It is also demonstrated that combining the two different kinds of gradient
effects increases yield strength, additional strain hardening, and the Bauschinger effect. The loading
cycle in Fig. 3c (N = 0.1) is found to be an open-loop due to the increase in yield stress during plastic
deformation, which in Fig. 3d (N = 0), is a closed-loop.

Figures 4 and 5 show the distributions of several normalized quantities across half-thickness of
the foil for Points I–V, with the foil at the maximum deformation level (i.e., at the surface strain
κH/2 = 0.01). In Fig. 4, it is evident that the curve of Point I, which corresponds to classical plasticity
(i.e., 	/H = L/H = 0), is very different from other points with the strain gradient effects considered.
For Point I, the plastic strain is zero at the neutral plane. Thereafter, it increases linearly with x2,
while the stress increases linearly with the thickness initially and then becomes a plateau near the free
surface. Further, the classical plastic theory predicts an elastic core near the neutral plane, as shown
in Fig. 4. For Points II–V, the plastic strain initially increases linearly with x2, then tends to become
a platform near the free surface for εP11,2 = 0 at x2 = H

/
2, and the stress has a significant increase
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Fig. 4. Distributions of plastic strain and stress quantities through half-thickness of the foil at κH/2 = 0.01: a plastic
strain εP11 for Points I–V; b stress σ11 for Points I–V

Fig. 5. Distributions of different stress quantities through half-thickness of the foil at κH/2 = 0.01 for Points II–V
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Fig. 6. Contours of εP11 (a), τD
112 (b), τE

112 (c) , EP (d) and Σ (e) at κH/2 = 0.01. The hardening exponent is assumed
to be N = 0.1

near the free surface. Furthermore, when the plastic strain gradient goes to zero, an elastic boundary
layer arises near the free surface of the foil (see Fig. 4a).

Evolutions of the quantities not included in the conventional plasticity theory are illustrated in
Fig. 5. These include the microstress, q11, the dissipative higher-order stress, τD

112, and the energetic
higher-order stress, τE

112, which are normalized by σY , 	σY and LσY , respectively. From Fig. 5, it
is observed that the microstress q11 increases with x2 to a plateau. The microstress q11 reaches its
maximum value at the free surface, and is almost zero near the neutral plane except at Point III. Point
III takes only the energetic gradient effects into account, as shown in Fig. 5b, and the value of the
microstress near the neutral plane (x2 = 0) is non-zero. According to the higher-order balance equation
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Fig. 7. Cyclic bending responses for the passivated foils: a dissipative gradient effects, N = 0.1; b energetic gradient
effects, N = 0.1; c combination of dissipative and energetic gradient effects, N = 0.1; d combination of dissipative and
energetic gradient effects, N = 0

(3), this is explained, leading to q11 = τE
112,2 at the neutral plane (x2 = 0) while s11 is about zero.

Further, it is also noted that there is an increase in τE
112 at x2

/(
H

/
2
) ∈ [0, 0.3] for Point III, which

brings about a non-zero τE
112,2(= q11) around x2 = 0. At all the points except Point III, the higher-

order stress quantities τD
112 and τE

112 almost all vanish at the free surface as a result of the micro-free
boundary condition according to Eq. (19), and achieve their maximum value at the neutral plane as
the plastic strain gradients εP11,2 are the largest. Comparing Fig. 5c with d, it is observed that Point V
(the case with N = 0) has a larger τE

112 and smaller q11 and τD
112 than Point IV (the case with N = 0).

This can be explained by Eqs. (15) and (16). The case with N = 0 indicates that smaller effective
stress Σ leads to smaller q11 and τD

112, while a lager τE
112 is affected by a larger plastic strain gradient

as seen in Fig. 4a.
To observe the distributions of higher-order quantities intuitively, the contours obtained for εP11, τD

112

, τE
112, EP, and Σ through half-thickness of the foil at the maximum deformation level κH/2 = 0.01

are captured, as shown in Fig. 6. The influences of different values of 	 and L are examined by
assuming different cases including 	 = L = 0, 	 = 0.1 and L = 0.5, and 	 = 0.3 and L = 1.0. It is
observed that both dissipative and energetic higher-order stresses increase with corresponding length
scales, respectively. Moreover, the plastic strain εP11 and the effective plastic strain EP decrease with
increasing length scales, showing a strong size effect.
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Fig. 8. Distributions of plastic strain, stress and GND quantities through half-thickness of the foil at κH/2 = 0.01: a
plastic strain εP11 for Points I–V; b stress σ11 for Points I–V; c distribution of GNDs for Point IV; d convergence of the
plastic strain

4.2. Responses of Passivated Foils Under Cyclic Bending

In this section, we take the effect of surface passivation into account in the cyclic bending of foils.
The passivated boundary condition is modelled as micro-hard boundary conditions at the foil surfaces,
requiring that the plastic strain and the plastic strain rate vanish, i.e., ε̇P11 = ε̇P22 = 0 at x2 = ±H/2
for ∀x1 . In Fig. 7, it is observed that the influences of both the dissipative and energetic gradient
effects are the same as discussed in Sect. 4.1. However, the Bauschinger effect additionally exists in
this condition. The main difference is that the bending moment at initial yielding and strain hardening
is enhanced, leading to a shrunk hysteresis loop. By considering the passivation effect, the micro-hard
boundary conditions require εP11 = 0 at the surface of foil (i.e. x2 = H/2), resulting in a solid elastic
layer around the surface of the foil.

Figures 8 and 9 show the distributions of several normalized quantities across half-thickness of the
foil for Points I–V in Fig. 7. In Fig. 8a, it is observed that there is a sharp decline in the value εP11 of near
the passivated surface due to the micro-hard boundary conditions (i.e., εP11 = 0 at x2 = H/2). With
consideration of gradient effects, the overall distributions of εP11 with x2 are found to be much smaller
than those in free surface cases (see Figs. 4a and 8a). Figure 8b shows that there is a significant increase
in the stress σ11 near the passivated surface, and all stress quantities reach the same value at the surface
due to the disappearance of surface plastic strain. The distributions of GND density for Point IV are
shown in Fig. 8c. The density of GNDs is expressed by ρGND = b−1dεP11/dy [4]. The dislocations exit
through an unpassivated surface (a dislocation pile-up cannot be sustained), whereupon, at the surface,
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Fig. 9. Distributions of different stress quantities through half-thickness of the foil at κH/2 = 0.01 for Points II–V

ρGND = 0. By contrast, dislocations pile up at the passivated surface with non-zero ρGND, while the
plastic strain vanishes (see Fig. 8a). Further, 400 elements are used for all the simulations here as the
convergence is verified, as shown in Fig. 8d. As the exact solution is unknown, the simulations are
conducted by increasing the number of elements until a satisfactory result is achieved, i.e., no apparent
change. The simulations are performed with 400, 800, and 2000 elements to examine the convergence.
The plastic strain distributions for the passivated foil L/H = 0.5, 	/H = 0.1 are plotted in Fig. 8d. It
is demonstrated that the convergence for the case of 400 elements is satisfactory.

Figure 9a–d show the distributions of different stress quantities through half-thickness of the pas-
sivated foil under cyclic bending. The distributions are much different from those in the free surface
cases (Fig. 5). All the higher-order stresses for the passivated cases gradually decrease into a negative
value with the minimum value at x2 = H/2. These phenomena result from the sharp decline of εP11 near
the passivated surface, leading to a negative plastic strain gradient εP11,2. The magnitude of microstress
q11 along x2 begins and ends at zero since q11 is a function of εP11 (see Eq. 13).

4.3. Influence of Switching Boundary Conditions

The boundary-value problem is studied for the cyclic bending of thin foils by switching the micro-
hard boundary conditions at the top and bottom surfaces to the micro-free boundary conditions.
During the initial 8-s loading, the micro-hard boundary condition is imposed; then, at the end of 8 s,
i.e., the position indicated by Point α in Fig. 10a, the micro-free boundary condition is applied. As a
result, the hysteresis loop has a significant change after changing the higher-order boundary conditions.
Comparing Figs. 10a–d with Figs. 3 and 7, it is observed that the passivation loading stage in Fig. 10
is the same as the pure passivation loading cases, while the un-passivation loading stage is different
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Fig. 10. Cyclic bending responses with passivation followed by continued cyclic bending with no passivation: a dissipative
gradient effects, N = 0.1; b energetic gradient effects, N = 0.1; c combination of dissipative and energetic gradient effects,
N = 0.1; d combination of dissipative and energetic gradient effects, N = 0

from the pure un-passivation loading cases. Furthermore, the case N = 0 shows that the loading cycle
becomes an open-loop after switching the higher-order boundary conditions (see Fig. 10d).

In order to investigate the influence of boundary conditions, the cyclic responses are considered
in terms of the normalized moment versus loading time, as shown in Fig. 11. Figure 11a shows that,
after the boundary conditions change, for the dissipative case (i.e., 	/H = 0.3, L/H = 0), the bending
moment at initial yielding in forward loading decreases with loading time, while the yield strength
increases in reverse loading. However, for the energetic case (i.e., 	/H = 0, L/H = 1.0), an opposite
phenomenon occurs. The classical plasticity theory (i.e., 	/H = L/H = 0) predicts a nearly unchange-
able yield strength. At the time point where the switching of boundary conditions is changed, it turns
out to be slightly different from Fig. 11a, as can be seen in Fig. 11b. Further, both dissipative and
energetic gradient effects increase the yield strength with time in forwarding loading, while the yield
strength decreases with time in reverse loading. Comparing Fig. 11a with b, it is observed that, as the
boundary condition changes, the size effect decreases as a whole due to the disappearance of passiva-
tion layers. In summary, Gudmundson’s theory predicts that the plastic flow restarts after removing
passivation and that switching the boundary conditions at different times leads to different mechanical
responses.

5. Conclusions
The plastic responses for the cyclic bending of foils with unpassivated and passivated surfaces,

and transitioning from a passivated surface to an unpassivated one, are studied within Gudmundson’s
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Fig. 11. Cyclic bending responses of thin foils with boundary conditions changing: a switching of boundary conditions
at the beginning of 8 s; b switching of boundary conditions at the beginning of 11 s

higher-order SGP theory. The numerical scheme includes both energetic and dissipative higher-order
stresses, and the size effect under non-proportional loading is investigated. It is shown that the dissipa-
tive gradient term controls the strengthening size effect, increasing initial yielding strength, while the
energetic gradient term has a notable impact on the strain hardening and the Bauschinger effect. The
GNDs induced by the inhomogeneous deformation are an essential origin of the Bauschinger effect.
The surface passivation gives rise to the increase of both initial yield strength and strain hardening.
Further, the FE simulations show that Gudmundson’s theory can differentiate between the unpassi-
vated and passivated surfaces and predict the recovery of plastic flow after switching from a passivated
surface to an unpassivated one.

Acknowledgements. The work is financially supported by the National Natural Science Foundation of China under Grant
11702103, and the Young Top-notch Talent Cultivation Program of Hubei Province.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
[1] Chen Y, Kraft O, Walter M. Size effects in thin coarse-grained gold microwires under tensile and torsional

loading. Acta Mater. 2015;87:78–85.
[2] Dunstan DJ, Ehrler B, Bossis R, Joly S, P’ng KMY, Bushby AJ. Elastic limit and strain hardening of

thin wires in torsion. Phys Rev Lett. 2009;103:155501.
[3] Ehrler B, Hou X, Zhu TT, P’ng KMY, Walker CJ, Bushby AJ, Dunstan DJ. Grain size and sample size

interact to determine strength in a soft metal. Philos Mag. 2008;88:3043–50.
[4] Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: theory and experiment.

Acta Met Mater. 1994;42:475–87.
[5] Haque MA, Saif MTA. Strain gradient effect in nanoscale thin films. Acta Mater. 2003;51:3053–61.
[6] Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H. Anomalous plasticity in the cyclic torsion of

micron scale metallic wires. Phys Rev Lett. 2013;110:244301.
[7] Liu D, He Y, Shen L, Lei J, Guo S, Peng K. Accounting for the recoverable plasticity and size effect in the

cyclic torsion of thin metallic wires using strain gradient plasticity. Mater Sci Eng A Struct. 2015;647:84–
90.

[8] Liu D, He Y, Tang X, Ding H, Hu P. Size effects in the torsion of microscale copper wires: experiment
and analysis. Scr Mater. 2012;66:406–9.

[9] Ma Q, Clarke DR. Size dependent hardness of silver single crystals. J Mater Res. 1995;10:853–63.
[10] Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J

Mech Phys Solid. 1998;46:411–25.



630 ACTA MECHANICA SOLIDA SINICA 2022

[11] Stelmashenko NA, Walls MG, Brown LM, Milman YV. Microindentations on W and Mo oriented single
crystals: an STM study. Acta Met Mater. 1993;41:2855–65.

[12] Stölken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Mater.
1998;46:5109–15.

[13] Aifantis EC. On the microstructural origin of certain inelastic models. J Eng Mater Trans ASME.
1984;106:326–30.
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[47] Fuentes-Alonso S, Mart́ınez-Pañeda E. Fracture in distortion gradient plasticity. Int J Eng Sci.
2020;156:103369.

[48] Panteghini A, Bardella L, Niordson CF. A potential for higher-order phenomenological strain gradi-
ent plasticity to predict reliable response under non-proportional loading. Proc Math Phys Eng Sci.
2019;475:20190258.
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