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ABSTRACT Fatigue fracture is one of the most common failure modes of engineering compo-
nents, and the combined action of geometric discontinuity and multiaxial loading is more likely
to cause severe fatigue damage of components. This work focuses on the fatigue behavior of
U-notched Q345 steel specimens with different notch sizes under proportional cyclic tension–
torsion. Firstly, based on the concept of strain energy, the calculation method of critical plane
is given and the equivalent stress of the specified path on the critical plane is extracted to char-
acterize the equivalent stress distribution state and the stress gradient effect. Then, based on
the high stress volume method and theory of critical distance, a simple method for determining
the critical distance is given considering the contribution of stress at the dangerous point and
the critical point. In addition, based on the idea of stress–distance normalization, a new stress
gradient impact factor is defined and a new method for predicting the multiaxial fatigue life of
notched specimens is given. The prediction results of the proposed model, the local stress–strain
method and the point method of theory of critical distance are compared with the experimental
results. The comparisons show that the prediction results of the proposed model are closer to
experimental life, and the calculation accuracy is higher.

KEY WORDS Multiaxial fatigue, Stress gradient, Life prediction, Critical distance method,
Local stress–strain method

1. Introduction
In mechanical engineering, there are many components with sudden changes in size due to various

functional requirements, such as pressure vessels and mining machinery [1], and these structures are
normally called notched components during fatigue failure analysis. As we all know, the notch effect
exists at notch root inevitably, and local plastic deformation occurs when the stress at the root of
notch reaches the yield limit. So the internal low-stress region still supports the high-stress region of
the notch, which retards the initiation and propagation of fatigue cracks and delays the fatigue failure
process of the structure. Meanwhile, these components are mostly subjected to complex cyclic loading;
even in the uniaxial loading, the notch area is in a complex multiaxial stress field, especially under the
multiaxial loading [2]. During the entire service period, due to the combined effect of notch and stress
multi-axiality at the notch root, fatigue damage near the notch gradually accumulates and becomes
more severe relative to the non-notched area, which leads to the deterioration of local mechanical
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performance until fatigue fracture failure occurs. Thus, it is significant to study the fatigue properties
of notched parts under complex multiaxial cyclic loading in engineering applications.

Over the past few decades, several methods such as the nominal stress method [3], the local stress–
strain method [4], the stress field intensity method [5], and the critical distance method [6] have been
developed in response to the fatigue problems of notched parts. Among them, the local stress–strain
method takes the maximum stress and strain at the tip of the notch as damage parameters to carry
out fatigue analysis [4]. Due to its simple calculation process, this method is still widely used in
engineering. Recent studies [7] show that the calculation results of the local stress–strain method are
relatively accurate when the stress gradient in the local region of the notch is low. However, if there
is an obvious stress gradient at the root of the notch, this method will cause larger calculation errors,
and the calculation results tend to be more conservative. This is because the local stress–strain method
only considers the local stress and strain state at the root of the notch, and the stress gradient caused
by the notch effect is ignored.

Taylor et al. [8] presented the theory of critical distance (TCD) based on the ideas of Neuber [9]
and Peterson [10]. They believed that the linear-elastic stress distribution state within a certain area
in the vicinity of the notch root would have an impact on the fatigue characteristics of the specimens.
Later, different scholars took the stresses averaged in the vicinity of the notch root as the fatigue
damage parameter, and developed some different notch fatigue analysis approaches. Initially, Neuber
[9] proposed the line method (LM) to average the stress within a certain critical distance from the
root of the notch. Then, Peterson [10] presented the point method (PM) and took the stress at the
specified point as the fatigue damage parameter to predict the life of the specimens. Later, Taylor [11]
and Bellett et al. [12] developed the area method and the volume method, respectively. Among these
four methods, the PM and LM were widely used because of their simple calculation processes. The
expressions for these four methods are given as follows:

the point method (PM): σav = σ1

(
r =

L0

2
, θ = 0

)
(1)

the line method (LM): σav =
1

2L0

2L0∫
0

σ1(r, θ = 0) dr (2)

the area method (AM): σav =
2

1.1πL2
0

π/2∫
−π/2

L0∫
0

σ1(r, θ)r dr dθ (3)

the volume method (VM): σav =
3

2π(1.54L0)3

2π∫
0

π/2∫
0

1.54L0∫
0

σ1(r, θ, ϕ)r2 sin θ dr dθ dϕ (4)

where σav is the average stress within the critical distance, σ1 is the maximum principal stress at polar
coordinates (r, θ, ϕ), and L0 is the critical distance.

TCD has been widely used because it considers the influence of stress/strain gradient on crack
initiation, which weakens the effect of the maximum stress at the dangerous point. So, the prediction
results of TCD are closer to real fatigue life and the calculation accuracy is relatively high [7]. This
approach has attracted extensive attention from many scholars. Combining with the PM of TCD,
Susmel [13] took the plane with maximum shear stress as the critical plane and used the modified
Wöhler curve method to calculate fatigue life. Wu [14] proposed a fatigue life calculation method
based on the PM and the LM to modify the root damage gradient of the notch under multiaxial
loading. However, when TCD is used to determine the effective stress, it is difficult to determine the
critical distance L0.

In this paper, a multiaxial fatigue life prediction model for notched specimens considering equivalent
stress gradient effect and size effect under multiaxial proportional loading is presented based on the
high stress volume method and the critical plane theory. Firstly, based on the concept of strain energy,
the calculation method of critical plane is given and the equivalent stress of the specified path on the
critical plane is extracted to characterize the equivalent stress distribution state. Then, the position
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Fig. 1. Coordinate transformation diagram

of 95% of peak equivalent stress is determined, called the critical point; and the distance between
the dangerous point and the critical point is defined as the critical distance. In order to consider
the combined effect of peak equivalent stress and the equivalent stress at the critical point, the two-
point method is proposed to calculate the effective stress based on the PM of TCD. In addition, the
impact factor of equivalent stress gradient is defined to characterize the influence of equivalent stress
gradient at the notch, and a new model is finally established to predict the fatigue life of notched Q345
steel specimens. The feasibility of the model is verified by comparing the prediction results with the
experimental results and those of the local stress–strain method and the PM of TCD.

2. Determination of the Critical Plane and Critical Distance
Firstly, elastic–plastic finite-element software is used to analyze the mechanical properties of the

specimens. According to the hardening laws of the materials, the Bauschinger effect of the materials is
described by the multilinear kinematic hardening (MKIN) model, and the cyclic loading is realized by
setting load steps in finite element software. So the stress and strain history of the notch root in a single
cycle is obtained. Then, the location of the dangerous point of the specimens is determined, and the
stress–strain state of the dangerous point in the basic coordinate system xyz can be extracted. With
the help of the coordinate transformation matrix, the stress–strain states of an arbitrary material plane
passing through the dangerous point are obtained. Finally, based on the energy method, the strain
energy function f(θ, ϕ) of an arbitrary material plane can be established. Meanwhile, the stagnation
point of the strain energy function can be calculated by taking the partial derivative of θ and ϕ,
respectively, and the position of the critical plane can be finally determined.

2.1. Coordinate Transformation Principle

In order to get the stress and strain components on an arbitrary material plane through the dan-
gerous point, the coordinate transformation method is used. Firstly, a new coordinate plane x′ − y′

can be obtained by rotating the x − y plane around the z-axis and with a rotation angle of θ. Then, a
new coordinate axis z′ can be obtained by rotating the z-axis around the x′-axis and with a rotation
angle of ϕ. The diagram is shown in Fig. 1.

The stress tensor σij and strain tensor εij in the basic coordinate system xyz are given as follows:

σij =

⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ ; εij =

⎡
⎣ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤
⎦ (5)
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Fig. 2. Stress components on an arbitrary plane

The coordinate transformation matrix can be written as:

M =

⎡
⎣ cos θ − sin θ cos ϕ sin θ sin ϕ

sin θ cos θ cos ϕ − cos θ sin ϕ
0 sin ϕ sinϕ

⎤
⎦ (6)

Through the coordinate transformation matrix, the stress tensor and strain tensor on an arbitrary
material plane passing through the dangerous point in the new coordinate system can be obtained:
σ′

ij = M TσijM , ε′
ij = M TεijM .

2.2. Determination of the Critical Plane

The concept of critical plane is put forward based on the fatigue damage mechanism with certain
physical significance, and the critical plane approach (CPA) is more effective for multiaxial fatigue
life prediction [15]. The energy method generally takes energy as the damage parameter, which is a
scalar that cannot illustrate the location and direction of crack initiation and propagation. However,
the coordinate transformation matrix can give the physical interpretations of fatigue crack initiation
and propagation in the energy method, and provide a theoretical basis for determining the location of
the critical plane in the energy method. In this section, an energy–critical plane approach is proposed
to determine the location of the critical plane.

Under multiaxial loading, the stress state of a typical element at the root of notch is shown in Fig. 2
[15].

The stress components on an arbitrary material plane MNOP are σ′
11, τ ′

12, and τ ′
13, respectively,

and the function of strain energy density with respect to θ and ϕ is:

f(θ, ϕ) = (1/2)(σ′
11ε

′
11 + σ′

12ε
′
12 + σ′

13ε
′
13) (7)
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′
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T
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T
12 +σ31M

T
13)M 1i +(σ12M

T
11 +σ22M
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T
13)M 2i +(σ13M

T
11 +

σ23M
T
12 + σ33M

T
13)M 3i; and ε

′
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= (ε11M
T
11 + ε21M

T
12 + ε31M

T
13)M 1j + (ε12M

T
11 + ε22M

T
12 +

ε32M
T
13)M 2j + (ε13M

T
11 + ε23M

T
12 + ε33M

T
13)M 3j ; where i, j = 1, 2, 3, in order to simplify the

calculation process, let (∗)d = (1/2) [(∗)11 − (∗)22], and (∗)m = (1/2) [(∗)11 + (∗)22], with the symbol
’∗’ denoting stress σ or strain ε.

Thus, the strain energy density function can be expressed as:

f(θ, ϕ) = (1/2)[σmεm + σdεd + σ12ε12 − σ33ε33 − (σmεd + σdεm) cos(2θ) − (σmε12

+σ12εm) sin(2θ)] sin2 ϕ + σ33ε33 (8)



320 ACTA MECHANICA SOLIDA SINICA 2022

By calculating the stationary points of Eq. (8), the values of θ and ϕ at the extreme points can be
obtained, and the location of the critical plane, on which fatigue cracks are easy to initiate, can be
determined by θ and ϕ further. The specific solution process is shown as follows.

Take the partial derivative of f(θ, ϕ) with respect to ϕ:

∂f(θ, ϕ)/∂ϕ = [σmεm + σdεd + σ12ε12 − σ33ε33 − (σmεd + σdεm) cos(2θ)
− (σmε12 + σ12εm) sin(2θ)] sin ϕ cos ϕ (9)

Let ∂f(θ, ϕ)/∂ϕ = 0, get ϕ = 90◦ or ϕ = 0◦.
Take the partial derivative of f(θ, ϕ) with respect to θ:

∂f(θ, φ)/∂θ = 0 = [(σmεd + σdεm) sin(2θ) − (σmε12 + σ12εm) cos(2θ)] sin2 ϕ (10)

Let ∂f(θ, φ)/∂θ = 0, get:

a. When ϕ = nπ, n = (0, 1, 2), θ is an arbitrary value, which is not consistent with the actual
situation, so it should be discarded.

b. When ϕ �= nπ, tan(2θ) = σmε12+σ12εm
σmεd+σdεm

, which is consistent with the actual situation, so the location
of the critical plane can be expressed as follows:

θ =
1
2

arctan
(

σmε12 + σ12εm

σmεd + σdεm

)
, ϕ = 90◦ (11)

With the help of FEM, the stress and strain components at the dangerous points can be extracted,
and the position of the critical plane can be calculated by combining the coordinate transformation
matrix and Eq. (11).

2.3. Determination of Critical Distance

The key to TCD is how to determine the critical distance L0. Taylor [9] initially thought that the
value of critical distance was related to material parameters. Soon afterward, Susmel and Taylor [13]
found that the critical distance was a function related to fatigue life in the study of mid-cycle fatigue,
and believed that the smaller was the number of cycles of fatigue crack initiation, the higher was the
value of the critical distance. Naik [16] and Lanning [17] believed that the critical distance was related
to the stress concentration factor of the notch. On the basis of Susmel and Taylor’s model, Yang and
Huang [18] introduced the stress concentration factor Kt to modify the relationship between life and
critical distance. Recently, when Susmel and Taylor [19] were studying low-cycle fatigue, they believed
that the critical distance was a material constant, which had nothing to do with the geometry of the
notch, the external loading, or the number of failure cycles. Shen [20] also believed that the critical
distance was a constant related to the material.

In engineering practice, different notch shapes and notch sizes will cause different stress gradient
effects. Therefore, the geometrically similar notched specimens have different fatigue behaviors, which
is called the geometric size effect [21]. Existing experiments show that the notch effect becomes more
obvious with the decrease in the notch size when specimens have the same stress concentration factor
and if the notch size is reduced to a certain value; and further reduction will not affect the fatigue
strength of specimens [22]. Therefore, if the traditional notch effect method is directly applied to the
study of geometric size effect, there will be some obstacles. In 1961, Kuguel [23] originally proposed
the highly stressed volume (HSV) method in consideration of the geometric size effect, a lower limit of
high stress volume σHSV was defined and the material element volume between the maximum stress
and the lower limit of high stress was regarded as the high stress volume.

σHSV = m%σc,max (12)

where σc,max represents the maximum stress in the local region of the notch, and m% is an empirical
parameter used to define the scale of high stress volume.

According to the HSV theory, the probability of crack initiation and propagation increases with the
increase in high stress volume, which leads to eventual fatigue failure [24]. Hence, in fatigue analysis,
it is not necessary to analyze the stress state for the whole specimen, but close attention needs to
be paid to the critical region with higher stress to obtain more reliable prediction results. According
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to experience, Kuguel proposed that the empirical parameter m should be 95, that is, 95% of high
stress volume standard (V95 standard). Subsequently, many scholars conducted relevant studies and
verified its reliability based on this standard [25]. However, the HSV method needs the calculation of
the number and volume of high stress elements, which leads to a lot of work.

In this paper, the high stress volume is simplified as a specified high stress line segment (SHSL) on
the critical plane based on the HSV method and Kuguel’s theory. The maximum equivalent stress of
dangerous point is recorded, and the value corresponding to 95% of the maximum equivalent stress is
calculated as σSHSL,

σSHSL = 95%σeqv,max (13)

where σeqv,max is the maximum equivalent stress.
Based on Eq. (13), the equivalent stress along the SHSL on the critical plane is extracted and the

distance between the dangerous point and the critical point of 95% of the maximum equivalent stress
is defined as the critical distance.

3. Determination of Impact Factor of Equivalent Stress Gradient
In the elastic–plastic deformation stage and the fracture process, fatigue properties of metal mate-

rials are inevitably affected by the notch effect [1], which produces local stress concentration at the
notch root. Under external loading, stress in the vicinity of the notch gradually decreases from the
surface of the specimen to the interior of the material, forming a certain stress gradient. The stress gra-
dients of specimens with different notch sizes and shapes at the notch are not the same for specimens
with the same nominal stress. Research shows that when the notch is accompanied by a large stress
gradient, the fatigue strength of the notched specimen changes significantly [7]. Taking the influence
of stress gradient into account can significantly improve the fatigue life prediction accuracy of notched
specimens. Wang [26] studied the influence of stress gradient on fatigue life under uniaxial loading
and defined the uniaxial stress gradient impact factor Ya through the idea of stress normalization. Its
expression is shown as:

Ya =
1

2S0.5
(14)

where S0.5 is the area bounded by the normal stress normalization curve and the abscissa in the interval
of 0 ≤ x/r ≤ 0.5, with x/r the abscissa of the curve, and x the distance from the notch root.

When there is no notch in the specimen, the internal stress is evenly distributed, and the stress
gradient impact factor is 1, so the fatigue strength of the specimen is not affected by the stress gradient.
When there is a notch in the specimen, the stress gradient impact factor is < 1. The area parameter
of stress normalization curve is used to define the influence of stress gradient, which can avoid the
numerical error caused by the derivative when calculating the stress gradient.

In this paper, the above idea is introduced to the fatigue damage assessment of multiaxial notched
specimens. The curvature radius r is selected as the normalized cardinality of distance x in this method,
but this selection is sometimes limited by the notch shape. For instance, for the deep U-notched and
semicircular-notched specimens with the same radius of curvature, although the radii of curvature of
notches are the same, the degrees of weakening of the shaft by the notch are different, which results
in different stress distributions and stress gradients around the notch. Therefore, in this paper, the
normal stress is replaced by the von Mises equivalent stress, the radius of curvature r is modified as the
critical distance L0 on the critical plane, and the multiaxial equivalent stress gradient impact factor
Ym is obtained as:

Ym =
1

2Seqv,0.5
(15)

where Seqv,0.5 is the area bounded by the von Mises equivalent stress normalization curve and the
abscissa in the interval of 0 ≤ x/L0 ≤ 0.5, with x/L0 the abscissa of the curve.

4. Multiaxial Proportional Fatigue Experiments
In this paper, Q345 steel was selected as the test material. The mechanical properties and uniaxial

fatigue property parameters are listed as follows [15]: elastic modulus E = 1.92 × 105 MPa, yield
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Fig. 4. The relationship between mesh size and calculation accuracy/analysis time

stress σy = 476MPa, ultimate stress σu = 625MPa, Poisson’s ratio ν = 0.3, cyclic strength coefficient
K = 2.85×103 MPa, fatigue strength coefficient σ

′
f = 1.44×103 MPa, cyclic strain hardening exponent

n = 0.378, fatigue strength exponent b = −0.159, fatigue ductility coefficient ε
′
f = 0.249, and fatigue

ductility exponent c = −0.494. The geometries and dimensions of grooved shaft specimens are presented
in Fig. 3. The fatigue experiment was carried out on Instron 8850 tension–torsion fatigue test machine,
and the axial strain and tangential strain were controlled by Epsilon3550 tension–torsion extensor.
The phase difference between the axial strain and the tangential strain during the test process was 0◦

(proportional loading); the loading frequencies of tension–compression and torsion were both 1 Hz. In
this paper, the fracture of the specimens was defined as the failure criterion, and tests were carried out
three times for each working condition to get the average value Nt.

5. Finite Element Analysis of Notched Specimens
Nowadays, the FEM has become a prime method for fatigue strength analysis and life prediction

[22]. In this paper, the distribution of elasto-plastic stress/strain in the vicinity of the notch root is
extracted by using the FE software with 8-node element Solid 185. The MKIN model which includes
the Bauschinger effect is used to define the stress–strain relationship of the materials [Eq. (16)]. During
the modeling, the specimens are reasonably cut to successfully generate a mapped mesh. During the
whole process of FE calculation, both the calculation accuracy and the calculation efficiency should be
taken into account. Figure 4 shows the relationship between the mesh size and analysis time/calculation
accuracy.

ε =

{
σ
E (ε ≤ εy)
σy

E +
(

σ
K

) 1
n (ε > εy)

(16)

It can be seen from Fig. 4 that the maximum equivalent stress of notch root decreases with the
increase in mesh size. When the mesh size is < 0.8 mm, the equivalent stress keeps steady, while the
equivalent stress has a big deviation when the mesh size is > 0.8 mm. Meanwhile, the analysis time
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Fig. 5. Notched specimen equivalent stress nephogram of NL1

Fig. 6. Equivalent stress nephogram on the critical plane of NL1

reduces tardily with the increase of mesh size. However, when the mesh size is < 0.6 mm, the analysis
time increases rapidly. Finally, both calculation accuracy and efficiency are taken into consideration,
the mesh size in the vicinity of notch root is set as 0.8 mm, and the mesh size for the remainder of
the specimen is set as 4 mm. When loading, one end of the specimen is fixed, another end is subjected
to proportional tension–torsion. The torsion is converted into torsion angle, and the axial load is
converted into axial displacement, which are uniformly applied onto all nodes of the outermost circle
of the loading end.

The stress–strain history of notch root in a single cyclic load can be obtained. The position of the
dangerous point, namely the maximum equivalent stress point, and the stress–strain components of
the dangerous point under the basic coordinate system xyz can be extracted. Meanwhile, the position
and direction of the critical plane is determined according to the steps of Sect. 1.

The equivalent stress nephogram under each working condition can be acquired. Taking NL1 (Fig. 5)
as an example for a specific explanation, the working plane is rotated by (90◦, 90◦, θ) to make it coincide
with the critical plane (AC plane), then the specimen is cut by the working plane, and the equivalent
stress nephogram on the critical plane is further obtained (Fig. 6).

As can be seen from Fig. 6, the line segment AB is the specified path on the critical plane, and
the equivalent stress along line AB is firstly extracted. Then, the length corresponding to σSHSL (here,
σSHSL = 95%σeqv,max, with σeqv,max the equivalent stress at point A) on AB is defined as the critical
distance L0. In this case, L0 is the length of line segment AD.
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eqv,0.5S

Fig. 7. Equivalent stress normalization–distance normalization curve

The local stress–strain approach (LSSA) takes the maximum stress–strain value at the dangerous
point as the fatigue damage parameter to predict the fatigue life of notched specimens. In this paper,
combining the PM of TCD [Eq. (1)] and the LSSA, considering the combined effect of the equivalent
stress σeqv,max at point A and the equivalent stress σeqv,E at the midpoint of AD, which can be
obtained according to the equivalent stress extracted by FEM on the AB path, a new effective stress
is defined as:

σeff =
√

σeqv,maxσeqv,E, LAE =
1
2
LAD =

1
2
L0 (17)

where LAE is the length of line AE.
With the help of Osgood Ramberg equation, the relationship between effective stress σeff and

strain εeff on critical plane under multiaxial proportional loading is given, and the effective strain εeff

is obtained as

εeff

2
=

σeff

2E
+

(σeff

2K

) 1
n

(18)

where n denotes the cyclic strain hardening index, K is the cyclic strength coefficient, and E represents
Young’s modulus.

In the 1950s, Manson and Coffin studied the low-cycle fatigue behaviors of more than 20 materials,
and proposed the life prediction model suitable for low-cycle fatigue as follows.

εa =
σ

′
f

E
(2Nf)

b + ε
′
f (2Nf)

c (19)

where εa is the strain amplitude.
The multiaxial equivalent stress gradient impact factor Ym obtained by Eq. (15) is introduced

to modify the Manson–Coffin equation. Taking NL1 as an example to explain the process of solving
Ym−NL1, the fifth-order polynomials are used to fit the equivalent stress normalization–distance normal-
ization curve (Fig. 7), and obtain the equation σeq/σeq max = I = 0.99951h5−0.04607h4−0.03269h3+
0.03521h2 − 0.01407h + 0.00183(h = x/L0) and Ym−NL1 = 1/(2Seqv,0.5) = 1/(2

∫ 0.5

0
I dh) = 1.0140.

Meanwhile, the fatigue life prediction model for multiaxial notched specimens is established by sub-
stituting εeff for εa, then the prediction life using the proposed model (Npr) of the notched specimens
can be calculated. Simultaneously, the prediction life using the LSSA (Npl) and the PM (Npp) can be
calculated respectively, and the results are listed in Table 1.

εeff = Ym ·
{

σ
′
f

E
(2Nf)b + ε

′
f(2Nf)c

}
(20)
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Table 1. Fatigue test results and prediction results

Load mode R/mm t/mm ε/% γ/% L0/mm Ym σeff/MPa Nt/cycles Npr/cycles Npl/cycles Npp/cycles

NL1 1.6 3.6 0.395 0.479 0.64 1.0140 560.69 12067 8895 8385 10411
NL2 1.6 3.2 0.395 0.479 0.53 1.0168 554.33 12865 9547 8905 5234
NL3 1.6 2.4 0.395 0.479 0.59 1.0214 555.08 13680 9634 9514 6455
NL4 1.6 1.6 0.395 0.479 0.58 1.0139 535.08 14936 11637 9951 5779
NL5 1.28 4.0 0.395 0.479 0.59 1.0204 606.21 8963 5797 5642 2441
NL6 1.92 2.08 0.395 0.479 0.50 1.0370 546.73 15630 10954 9847 6595
NL7 1.28 3.6 0.347 0.408 0.49 1.0195 553.87 12934 9701 8760 5354
NL8 1.28 3.6 0.347 0.347 0.50 1.0197 554.38 13391 9627 9347 4095
NL9 1.28 3.6 0.347 0.295 0.50 1.0347 560.10 15563 9488 10501 3462
NL10 1.92 3.6 0.347 0.408 0.51 1.0148 574.84 12152 7734 8342 4449
NL11 1.92 3.6 0.347 0.245 0.49 1.0160 545.08 13861 10537 8859 3967
NL12 1.92 3.6 0.347 0.200 0.76 1.0180 534.53 12962 11830 9714 3760
NL13 2.24 3.6 0.347 0.408 0.63 1.0163 567.21 12030 8386 8796 4759
NL14 2.24 3.6 0.295 0.408 0.75 1.0217 539.81 14165 11296 9544 8875
NL15 2.24 3.6 0.251 0.408 0.50 1.0165 540.64 13394 11020 9465 4331

Fig. 8. The relation between predicted life and test life

It can be seen from Fig. 7 that the equivalent stress gradient changes with the notch size. When
specimens have the same notch radius (NL1 vs. NL3), the larger is the notch depth, the greater is the
equivalent stress gradient; when specimens have the same notch depth (NL1 vs. NL13), the larger is
the notch radius, the greater is the equivalent stress gradient.

6. Results and Discussion
As can be seen from Table 1, the effective stress σeff is less than the peak stress σeqv,max. The test

results Nt are compared with the prediction results, and the comparison results are depicted in Fig. 8.
It can be seen from Fig. 8 that, for the proposed method and the LSSA, all of the predicted points

fall within the ± 2 scatter bands; while for the PM, most of the predicted points fall out of the ± 2
scatter bands, and there are several points falling out of the ± 3 scatter bands.

7. Conclusions
Based on TCD and the LSSM, considering the equivalent stress gradient at the notch and influence

of size effect, a method for predicting the multiaxial fatigue life of notched specimens was given. This
method was used to predict the fatigue life of U-notched Q345 steel specimens, and the prediction
results were compared with the LSSA and the PM of TCD. The following conclusions can be obtained:
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(1) Based on the high stress volume method and Kuguel’s Theory, the high stress volume is simplified as
a high equivalent stress line segment on the critical plane. The equivalent stress along the specified
path on the critical plane is extracted, and the peak stress is obtained. The distance between the
dangerous point and the critical point (95% of the maximum equivalent stress) is defined as the
critical distance L0. Consequently, a simple method for determining the critical distance is given.

(2) Based on Wang’s idea of stress–distance normalization, the normal stress is replaced by the von
Mises equivalent stress, the radius of curvature r is modified as the critical distance L0 on the
critical plane, and a new multiaxial equivalent stress gradient impact factor Ym is defined.

(3) In this paper, the new method, the LSSA and the PM of TCD are used to predict the life of U-
notched Q345 steel bars. Among the three methods, the error of the PM is larger, while the errors of
the new method and LSSA are both within a factor of two error bands. Meanwhile, the prediction
results of the new method are closer to the experimental life. This is because the traditional PM
only considers the maximum principal stress at the specified point in the elastic stress field, while
the new method takes the von Mises equivalent stress into consideration, which comprehensively
considers effects of the three principal stresses σ1, σ2, and σ3. At the same time, on the basis of
considering the effect of equivalent stress gradient, the equivalent stress at the dangerous point and
the equivalent stress at the critical distance L0/2 are overall considered in the new method. The
effective stress value σeff of the new method is less than the peak stress σeqv,max, which reduces the
effect of peak stress and makes the result more accurate.
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