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ABSTRACT In this paper, the stability of a periodic heterogeneous nanotube conveying fluid is
investigated. The governing equations of the nanotube system are derived based on the nonlocal
Euler–Bernoulli beam theory. The dynamic stiffness method is employed to analyze the natu-
ral frequencies and critical flow velocities of the heteronanotube. The results and discussions
are presented from three aspects which reveal the influences of period number, material length
ratio and boundary conditions. In particular, we make comparisons between the heterogeneous
nanotubes with periodic structure and the homogeneous ones with the same integral values of
material properties along the longitudinal direction to isolate the influences of periodic distribu-
tion. According to the simulation results, we can conclude that with a proper selection of period
number in terms of length ratio, the stability of the constructed nanotube can be improved.

KEY WORDS Heterogeneous nanotube, Dynamic stiffness method, Periodic structure, Nan-
otube conveying fluid, Stability analysis

1. Introduction
The dynamics of fluid-conveying pipes, in both macroscale and nanoscale, have been extensively

investigated by many researchers in the past decades. Due to the wide range of engineering background,
dynamic problems such as wave propagation [1] and vibration behavior [2] of pipes conveying fluid have
been investigated in recent years. Nanotubes have grabbed growing attention since being discovered,
due to their great potentials in nano-electromechanical systems [3], hydrogen storage [4] and drug
delivery [5]. The flow-induced vibration of nanotube is a critical problem amid the implementation of
these applications.

Therefore, many researchers have conducted investigations on dynamic problems of nanotubes
(especially carbon nanotubes) conveying fluid. Yoon et al. made the first attempt to analyze the
vibration and instability of fluid-conveying carbon nanotube (CNT) with the same method used for
studying macro pipes [6]. Lee and Chang considered the size effect based on nonlocal elastic theory and
analyzed the free transverse vibration of single-walled CNT conveying fluid [7]. Wang investigated the
wave propagation characteristics of single-walled CNT utilizing gradient elasticity theory [8].Yang et al.
considered the size effect based on nonlocal strain gradient theory into the wave propagation analysis
[9]. Wang et al. took geometry imperfection into consideration and modeled the fluid-conveying CNT
with wavy Timoshenko beam theory to conduct the vibration analysis [10]. Zhang et al. focused on
the quantum effects on the thermal vibration of single-walled CNT [11].
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The boron nitride nanotube (BNNT), which was first synthesized by Chopra et al. [12] after the-
oretical prediction [13], is a structural analog of the carbon nanotube with carbon atoms replaced
by boron and nitride atoms. It displays far better thermal and chemical stability especially at high
temperature, superb elasticity and excellent flexibility [14] than the CNT. There was also a large
amount of research on the fluid-conveying dynamics of BNNT. Abdollahian et al. employed the dif-
ferential quadrature method to analyze the wave propagation behavior of a fluid-conveying armchair
triple-walled BNNT embedded in Winkler and Pasternak foundation [15]. Ansari et al. developed a
size-dependent nonlinear Timoshenko beam model to simulate the nonlinear vibration and predicted
the instability modes of fluid-conveying single-walled BNNT [16]. Arani and Roudbari investigated the
wave propagation of fluid-conveying single-walled BNNTs via nonlocal piezoelasticity with compre-
hensively considering the influences of surface stress, initial stress and Knudsen number [17]. Arani et
al. applied stress and strain–inertia gradient elasticity theories and carried out the wave propagation
analysis of a double-walled BNNT conveying ferrofluid in the presence of magnetic field [18].

The performance of uniform material with single structure could not satisfy the rapidly increasing
requirement for engineering practice. Many CNT-based structures have been noticed by researchers,
giving the material a new life. For instance, Kiani modeled an aligned forest of single-walled CNT
based on nonlocal discrete and continuous theories, and simulated the wave characteristics [19]. Zhang
et al. studied the acoustic nanowave absorption through clustered CNT conveying fluid [20].

Research on synthesizing boron/carbon/nitride (B/C/N) material by replacing C atoms in graphite
network by B and N atoms has been conducted due to the similar structure but quite different
physical properties between B–N bonds and C–C bonds [21]. The stability and properties of the
BxNyCz nanotube heterojunctions have been investigated both theoretically and experimentally [22–
26], which has been reviewed by Ayala [27]. These heterostructure nanotubes have potentials in
nano-electromechanical systems and could compensate the limitations of uniform material and simple
structure.

Mechanical and dynamic problems of these hybrid nanotubes have been noticed by researchers
recently. Shen simulated the melting and axial compression of one BNNT embedded in a CNT by
molecular dynamics to study the thermal-stability and compressive properties [28]. Cheng et al. con-
structed a fluid-conveying nanotube with BNNT and CNT, and analyzed the influences of length ratio
and supporting condition on the stability [29].

Periodic structure is a basic pattern to construct materials, and the dynamics of macro pipes with
periodic structure have been studied by researchers. Yu et al. focused on the stability of periodic
cantilevered pipes conveying fluid and studied the influences of periodicity on geometry and material
properties [30].

However, to the best of the authors’ knowledge, no studies have been conducted on the vibration
behaviors of periodic heteronanotubes, or focused on the effects of periodic distributions of different
nanotube components. Therefore, in this study, we hope to fill the gap and investigate the fluid-
conveying stability of a fluid-conveying heterogeneous nanotube system with periodic structures. And
we take CNT and BNNT as the constituent materials of the nanotube system with periodic het-
erostructure for instance.

In the following section, the model of the periodic nanotube constructed by CNNT and BNT is
established and the governing equations are obtained via the nonlocal Euler–Bernoulli beam theory.
In Sect. 3, the dynamic stiffness method is employed to solve the equations. In Sect. 4, we reveal the
calculation results of the periodic nanotube in three aspects: (1) with different period numbers; (2)
with different length ratios; and (3) with different boundary conditions. Finally, the influences of the
mentioned three factors are concluded in Sect. 5 accordingly.

2. Governing Equations of Periodic Heteronanotube Conveying Fluid
As shown in Fig. 1, the periodic unit (noted as cell) of a fluid-conveying nanotube system is modeled.

In this study, the CNT and BNNT as constituent materials are taken as examples. The length of a
nanotube cell is L1+L2, in which L1 and L2 represent the lengths of CNT and BNNT, respectively. The
inner and outer radii of the nanotube are Ri and Ro, respectively. Though the Timoshenko beam theory
has advantages in considering shear deformation and rotary inertia, the use of Euler–Bernoulli beam
theory can simplify the equations and put more emphasis on the influence on axially varying periodic
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Fig. 1. The schematic diagram of the periodic nanotube constructed by CNT and BNNT

hetero-structures. Compared with the Timoshenko beam theory, employing the Euler–Bernoulli beam
theory can cause increment in frequencies and critical velocities [31, 32], while the influences of the
hetero-structures being studied tend to maintain the same, especially with pretty large aspect ratio
(which is 100) chosen in our research. From the work of Wang in 2009 [33] and Cheng et al. in 2019
[29], the governing equations based on the nonlocal Euler–Bernoulli beam theory in the n-th period
can be written as

EcI
∂4w

∂x4
+ mfU2 ∂2w

∂x2
+ 2mfU

∂2w
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+ (mf + mc)

∂2w
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− (e0a)2
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where Ec and Ebn denote the Young’s moduli of CNT and BNNT, respectively; mf , mc and mbn

represent the masses within unit length of the flow, CNT and BNNT, respectively; and I,U and e0a
represent moment of inertia for the cross section of the nanotube, flow velocity of the fluid and nonlocal
parameter relevant to the small size effect, respectively. We take the displacement w along the lateral
direction (the z-direction in Fig. 1), which is a function of coordinate x and time t.

The dimensionless form of the equation writes,
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in which N denotes the total period number, by substituting the following dimensionless quantities
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into Eqs. (1) and (2).
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3. Dynamic Stiffness Method for Periodical Nanotubes
In this paper, the governing equations are numerically solved by the dynamic stiffness method

(DSM). We set the form of the solutions to the dimensionless governing equations [Eqs. (3) and (4)]
as

Ync (X, τ) = Y nc (X) eiωτ
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+
ξc

N

)
(6)
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N
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N

)
(7)

where the subscript n denotes the n-th period, and subscripts c and b represent CNT and BNNT,
respectively. ω is the circular frequency, i =

√−1, and Y indicates the amplitude of Y . We take
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in which k is the wave number and A is constant.
By substituting Eqs. (6) and (7) into Eqs. (3) and (4), we can get
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Equations (10) and (11) are quartic equations of wave number, that is to say, each knc or knb has four
roots. Then we can transform Eqs. (8) and (9) into
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The rotation θ can be written as
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The bending moment M can be expressed as
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The shear force Q in the frequency domain can be shown as
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Fig. 2. Schematic of local coordinates, nodal displacements and forces in the CNT section

For apiece of the periodic nanotube, we can use nodal displacements and nodal forces to describe
its mechanical behavior. We take the CNT part in the n-th period (which can be seen in Fig. 2) to
conduct the analysis. Let the left end be the origin of the local coordinate, and let the axis pointing
to the right end be the x-axis.

The linear displacements along the z-axis at the left node and the right node are denoted with Y n1

and Y n2, respectively. The angular displacements in the xz -plane at the left node and the right node
are expressed with θn1 and θn2, respectively. And we can get the expression of the nodal displacements
according to Eqs. (12) and (14) as
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where Ancj = e
n−1

N Ancj (j = 1, 2, 3, 4) . Equation (20) can be simply denoted as {Wnc} = [Pnc] {A}.
The shear forces along the z-axis at the left node and the right node are denoted with Qn1 and Qn2,

respectively. The bending moments in the xz -plane at the left node and the right node are expressed
with Mn1 and Mn2, respectively. And we can obtain the expression of the nodal forces according to
Eq. (18) and Eq. (16) as
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where εncj =
(
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)
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2
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√
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2ω2 (j = 1, 2, 3, 4) . Equation (21) can be simply
noted as {Fnc} = [Gnc] {A}.

Then, we can get the relationship between nodal forces and nodal displacements

{Fnc} = [Knc] {Wnc} (22)

and the called local stiffness matrix

[Knc] = [Gnc] [Pnc]
−1 (23)

Similarly, for the BNNT part of the n-th period, we have

{Fnb} = [Knb] {Wnb} (24)

and

[Knb] = [Gnb] [Pnb]
−1 (25)
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where
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We can obtain the local stiffness matrix of the n-th period section constructed by CNT and BNNT
parts by assembling their local stiffness matrices, which can be expressed as

[Kn] =
[

[Knc] {0}4×2

{0}2×4 [0]2×2

]
+

[
[0]2×2 {0}2×4

{0}4×2 [Knb]

]
(31)

And the corresponding relationship between nodal forces and nodal displacements in the whole n-th
period is

{Fn} = [Kn] {Wn} (32)

with {Wn} =
{

Y n1 θn1 Y n2 θn2 Y n3 θn3

}T
and {Fn} =

{
Qn1 Mn1 Qn2 Mn2 Qn3 Mn3

}T
.

Similarly, we can get the global dynamic stiffness matrix [K] of the periodic nanotube which indi-
cates the relationship {F} = [K] {W}. We can also apply the displacement boundary conditions in
the stiffness matrix [K] and the nodal forces can be set as {F} = {0} in the free vibration case.
Therefore, we have a new relation

[
K

] {
W

}
= {0}. To obtain the nontrivial solution of

{
W

}
, we set

det
([

K
])

= 0, from which we can obtain the natural frequencies of the structure.

4. Numerical Results and Discussions
DSM is employed in this section and the influence of periodic heterostructure on the stability of

the fluid-conveying nanotube is discussed. We study the natural frequencies and critical flow velocities
of nanotubes with different period numbers, length ratios of the material and boundary conditions,
which correspond to the three subsections below, respectively. We also add the homogeneous cases with
the same integrals of material properties (as those of the corresponding heterogeneous ones) along the
whole length to isolate the influence of periodic structure in the three situations. The mass density
and Young’s modulus of CNT are 2300 kg/m3 and 1 TPa, while those of BNNT are 2180 kg/m3 and
1 TPa, respectively.

For validation, we calculate the natural frequencies of a uniform CNT in Fig. 3a and a constructed
nanotube with only one period in Fig. 3b, and the results agree well with those in references [29, 34],
respectively.

4.1. Different Period Numbers

We first calculate the dimensionless natural frequencies of the systems varying with inner flow
velocity, as shown in Fig. 3.The real part of each natural frequency represents the vibration frequency,
and the imaginary part denotes the damping ratio of that mode. For simplicity, we use Re(ω) and
Im(ω) to denote the real part and the imaginary part of natural frequency, respectively. We take
the length ratio ξc = 0.5, and both ends of the nanotubes are simply supported (SS). And we take
the dimensionless nonlocal parameter en = 0.1. From Fig. 3, we can see that with the increase in
flow velocity, Re(ω1) falls to zero, then appears again and couples with the second natural frequency.
Meanwhile, the imaginary part maintains zero with small flow velocity, then appears in pairs and
also couples with the second natural frequency. In the first stage, when Re(ω1) > 0 and Im(ω1) = 0,
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Fig. 3. Variation of the first and second dimensionless natural frequencies with dimensionless flow velocity with different
period numbers
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Fig. 3. continued

according to Eqs. (6) and (7), we can find that in the first mode, the nanotube vibrates and the
amplitude of the nanotube would not become larger or smaller, which indicates that the system can
maintain stable. In the second stage, when Re(ω1) = 0 and Im(ω1) �= 0, the nanotube does not have a
vibration frequency of the first mode and the displacement of that mode keeps increasing with time,
which can be called the static instability. In the third stage of the increasing flow, when Re(ω1) > 0
and Im(ω1) �= 0, the first mode of the nanotube vibrates again and the amplitude increases as time
goes on. And the system is of dynamic instability. To simply describe these three stage, we use ucr1

and ucr2 to denote the critical flow velocities of the disappearance and reappearance of Re(ω1). In the
second mode, the three stages also happen but with different critical flow velocities.

Comparing Fig. 3a with b, we find larger ucr1 and ucr2 in Fig. 3b than in Fig. 3a, which indicates
that both static instability and dynamic instability occur later after we construct BNNT with CNT.
The higher stability is due to the higher strength of BNNT. In order to further reveal the effect of
the constructed structure and eliminate the influence from the difference in material properties, we
choose a homogeneous nanotube in Fig. 3c, and the material properties are determined by the weighted
averages of the material properties of CNT and BNNT, respectively. The two weighting coefficients
are the same as the two length ratios, respectively, to make sure the compared homogeneous nanotube
has the same integrals of material properties along the length direction with those of the constructed
nanotube (with one period or more). This method to eliminate the influence of material properties has
been introduced in our previous work [35].
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Table 1. First five natural frequencies with different N

u =0 ξc = 0.5 1st order 2nd order 3rd order 4th order 5th order

N = 1 10.8 39.8 74.4 116.3 153
N = 2 10.9 38.4 75.7 117.1 154.3
N = 3 10.9 38.5 74.1 115.5 154.7
N = 4 10.9 38.6 74 112.4 156.3
N = 5 10.9 38.6 74.3 111.9 151.3
N = 7 10.9 38.6 74.5 113 151.4
N = 9 10.9 38.6 74.5 113.2 152.2
N = 12 10.9 38.6 74.6 113.3 152.4
N = 15 10.9 38.6 74.6 113.3 152.6

Comparing Fig. 3b with Fig. 3c, we can find that the ucr1 of the homogeneous nanotube (at
u = 3.64) is slightly larger than that of the constructed nanotube with N = 1 (at u = 3.39). The ucr2

of the homogeneous nanotube (at u = 6.44) is also slightly larger than that of the case with N = 1(at
u = 6.32). Larger 1st order and 2nd order of Re(ω) are also found in the homogeneous nanotube
before they decline to zero. Therefore, we can see that the homogeneity itself can slightly enhance the
stability.

From Fig. 3b, d and e, we cannot see much difference in the first order of Re(ω), while the 2nd
order of Im(ω) in Fig. 3d (with N = 3) or Fig. 3e (with N = 5) is quite larger than that in Fig. 3b.
As to velocities, ucr1 changes little with N . And as N increases from 1 to 5, ucr2 decreases.

The influences of period number on higher-order frequencies are further studied, and the results are
shown in Table 1. We find that all the first five frequencies fluctuate and reach certain values as we
increase the value of N . In particular, there is a relatively large gap when N passes the order number of
the frequency we observe. For example, when N increases from 3 to 4, the 4th-order frequency changes
from 115.5 to 112.4 with a gap of 3.1, while 0.8 is found between N = 1 and N = 2.

4.2. Different Length Ratios

In Fig. 4, we calculate the real parts and imaginary parts of natural frequencies with varying flow
velocity with the length ratio of CNT ξc equaling 0.2, 0.4 and 0.8. The period number N is 3 in
this subsection. Both ends of the nanotube are simply supported. For each value of ξc, we also give
the frequency results of homogeneous nanotube whose integrals of material properties along the length
direction are the same with those of the heteronanotube with corresponding value of ξc for comparison.
Similar to the previous subsection, we hope to isolate the influence of periodic constructing structure
from the effect of divergence in material properties between CNT and BNNT.

The heterogeneity seems to make system less stable in all the three values of ξc, especially when
ξc = 0.4 in Fig. 4b. Both static and dynamic instability flow velocity points of the nanotube decrease.
We also find that the longer the BNNT part is, the higher the real part of the natural frequencies are.
These results indicate that if we increase the integrals of the material properties more smoothly, the
strengthening effect tends to become more significant.

In Fig. 5, we present the results of ucr1 and ucr2 varying with length ratio ξc. Here, the period
number N is also taken as 3. In previous literature [29] working on the CNT and BNNT constructed
nanotube with single period, similar trends were observed: stability decreased as length ratio increased.

4.3. Different Boundary Conditions

In Fig. 6, we calculate the relationship between dimensionless natural frequencies and flow velocity
with different boundary conditions. Since the boundary condition being simply supported at both ends
(denoted as SS) has been shown in the first subsection of this section, we here exhibit the frequency
results of the five-period (N = 5) constructed nanotube with the boundary conditions being CC
(clamped at both ends), CS (clamped at the left end and simply supported at the right end) and SC
(simply supported at the left end and clamped at the right end). The black curves represent the results
of homogeneous nanotubes, and the blue curves denote those of the five-period constructed ones. From
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Fig. 4. Variation of the first-two dimensionless natural frequencies with dimensionless flow velocity with different length
ratios
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Fig. 5. Variation of dimensionless critical flow velocity with length ratio ξc

the black curves in Fig. 6b and c, we can observe that the frequencies of nanotubes with SC and CS
conditions are equal. For the homogeneous nanotube, the two boundary conditions do not change the
structure we analyze due to geometric symmetry. As to the blue curves, we can see that the stability
of the CC nanotube is the strongest, followed by the nanotubes with SC and CS boundary conditions.
Considering the nanotube whose left end is CNT and right end is BNNT, we can say that stronger
conditions (clamped conditions) at stronger ends (BNNT) may lead to higher stability of the first mode
and second mode.

We also compare the first five frequencies of periodically constructed nanotube at u = 0 with N = 3
and N = 5 in Table 2. It can be seen that SS nanotubes have the smallest frequencies, whereas CC
nanotubes have the largest frequencies. The difference in frequencies between nanotubes with SC and
CS boundary conditions becomes smaller when we increase period number N from 3 to 5. What’s
more, lower frequencies (1st order, 2nd order and 3rd order) are more easily influenced than higher
frequencies (4th order and 5th order) if the boundary condition is changed from SC to CS.

5. Conclusions
In this paper, we focus on the influence of periodic structure on fluid-conveying stability of hetero-

nanotube. We study the effects of period number N , the length ratio ξc and boundary conditions on
natural frequencies and critical flow velocities. According to the numerical results, we can draw the
following conclusions:

1. The period number has an effect on the natural frequencies of the systems, especially on high-order
frequencies. When the order number of frequency surpasses the period number, the influence of
order number becomes fairly slight.

2. The stability of the periodically constructed nanotube decreases with the increase in length ratio ξc.
Different length ratios can also change the decrement in natural frequencies between homogeneous
nanotube and periodic heteronanotube.
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Fig. 6. Variation of the first and second dimensionless natural frequencies with dimensionless flow velocity with different
boundary conditions
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Table 2. Higher frequencies of the three-period constructed nanotube with different boundary conditions with three periods
(N = 3) and five periods (N = 5)

1st order 2nd order 3rd order 4th order 5th order

N = 3
SS 10.9 38.5 74.1 115.5 154.7
SC 17.7 51.4 82.3 127.8 168.3
CS 16.2 45.9 91.8 128.4 167.3
CC 24.6 59.9 100.3 141.3 179.7
N = 5
SS 10.9 38.6 74.3 111.9 151.3
SC 17.4 49.6 88.7 132.6 157.5
CS 16.5 47.1 83.9 119.9 179.8
CC 24.5 59.1 99 140.5 186.2

3. The boundary conditions have influences on both lower frequencies and higher frequencies, and the
stability relationship of the nanotubes is CC>CS/SC>SS. The difference in frequencies of CS and
SC nanotubes is smaller with higher orders and larger period numbers.
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