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ABSTRACT Guided waves in the multilayered one-dimensional quasi-crystal plates are, respec-
tively, investigated in the context of the Bak and elasto-hydrodynamic models. Dispersion curves
and phonon and phason displacements are calculated using the Legendre polynomial method.
Wave characteristics in the context of these two models are analyzed in detail. Results show
that the phonon–phason coupling effects on the first two layers are the same at low frequen-
cies; but, they are more significant on the first layer than those on the second layer at high
frequencies. These obtained results lay the theoretical basis of guided-wave nondestructive test
on multilayered quasi-crystal plates.

KEY WORDS Multilayered structures, Quasi-crystal plate, Guided wave, Phonon–phason cou-
pling effect

1. Introduction
As a novel kind of solid matter, quasi-crystals (QCs) are of long-range orientational order and

symmetries that are prohibitive in crystal matters [1], such as fivefold, tenfold and twelvefold rotational
symmetries. Owing to their unique structures, quasi-crystals own a lot of advantageous performances,
such as low adhesion, thermal conductivity and friction coefficient, and high abrasion resistance and
resistivity [2]. Accordingly, quasi-crystals can be utilized as coatings or thin films in engineering [3, 4].

Multilayered structures are commonly used in engineering to take advantage of the superior per-
formances of each layer. Numerous investigations on mechanical properties of multilayered crystal
structures have been conducted [5–7]. Recently, mechanical investigations on multilayered quasi-crystal
structures have also received increasing attention [8–10]. However, they were mainly focused on the
statics of quasi-crystals because the dynamic deformation of quasi-crystals is extremely complicated
owing to the coupled phonon and phason fields. There are two different dynamic models for the dynamic
deformation. The Bak model [11] assumed that the phason field is similar to the phonon field denoted
by wave propagation. The elasto-hydrodynamic model presented by Lubensky et al. [12] considered
phason modes to be diffusive with a large diffusive time. These two models are, respectively, used
to investigate dynamics of quasi-crystal structures, such as conservation laws [13], free vibration and
harmonic response [14, 15], bending analyses [16], wave propagation [17] and other dynamic prob-
lems [18, 19]. From the above review, rare references of guided waves in the multilayered quasi-crystal
structures are available.
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Due to the limit of manufacturing techniques and processes, the bonding of the multilayered quasi-
crystal plate would cause micro-cracks in joints. Therefore, to ensure the safety of structures, it is
necessary to develop an efficient nondestructive testing method. The guided-wave nondestructive test
technology has been successfully applied to a lot of crystal structures [20], which also has promis-
ing applications on quasi-crystal structures. However, the prerequisite for using it is to understand
guided wave characteristics in detail. Therefore, guided waves in the multilayered one-dimensional (1D)
hexagonal quasi-crystal plates in the context of Bak and elasto-hydrodynamic models are, respectively,
investigated. The traction-free boundary condition is assumed.

2. Mathematics and Formulation
An infinite horizontally N -layered quasi-crystal plate with a total thickness of hN is illustrated in

Fig. 1. The horizontal (x, y)-plane is placed on the top surface, and it occupies the region 0 ≤ z ≤ hN

in the positive z-direction.
Combining the Bak’s and elasto-hydrodynamic models, the dynamic governing equations without

body forces are as follows [21]:

Tij,j = ρüi,Hij,j = κẇi + ρpẅi (1)

where ρ is the density; ui and wi represent displacement components; Tij and Hij are phonon and
phason stress tensors, respectively; κ = 1/Γw is the friction coefficient; and ρp is the effective phason
mass density. If ρp = 0, the elasto-hydrodynamic model is recovered. If κ = 0 and ρp = ρ, the Bak’s
model is recovered.

The generalized relationships of strain–displacement are as follows:

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, wij =

∂wi

∂xj
(2)

where εij and wij are phonon and phason strain tensors, respectively.
For the multilayered quasi-crystal plate, its initial boundary conditions are required: (a) the normal

stresses are 0 at the top and bottom surfaces (Tzz = Txz = Tyz = Hzz = 0); (b) the normal stresses
and displacements are continuous at the interfaces. To deal with it, a window function is introduced.

Ih0,hN
(z) = Heaviside[h0] − Heaviside[hN ] =

{
1, h0 ≤ z ≤ hN

0, elsewhere (3)

where h0 = 0.
Material parameters of the N -layered quasi-crystal plates are written as:

C
(N)
ij =

N∑
n=1

C
(n)
ij Ihn−1,hn

, K
(N)
i =

N∑
n=1

K
(n)
i Ihn−1,hn

, R
(N)
i =

N∑
n=1

R
(n)
i Ihn−1,hn

ρ(N) =
N∑

n=1

ρ(n)Ihn−1,hn
, κ(N) =

N∑
n=1

κ(n)Ihn−1,hn
(4)
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Fig. 1. Schematic diagram of an infinite multilayered quasi-crystal plate
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where C
(n)
ij ,K

(n)
i , R

(n)
i , ρ(n) and κ(n) are, respectively, elastic parameters in the phonon and phason

fields, phonon–phason coupling coefficients, density and friction coefficient of the nth layer.
For the 1D hexagonal quasi-crystal plate, only one direction is quasi-periodic. If the quasi-periodic

axis is consistent with the x-axis, it is named as the x-direction plate. Similarly, there are also the
y-direction and z-direction plates. Guided waves in these three cases are investigated in detail, respec-
tively.
(1) The z-direction plate

For the z-direction plate, only the phason displacement in the z-direction is not 0. Therefore, the
displacements of guided wave propagating in the x-direction are as follows:

ux = U(z)eikx−iwt, uy = V (z)eikx−iwt, uz = W (z)eikx−iwt, wz = γ(z)eikx−iwt (5)

where U(z), V (z), W (z) and γ(z) represent phonon displacement amplitudes in the x-, y- and z-
direction and the phason displacement amplitude, respectively.

The constitutive equations [22] are as follows:

Txx = C
(N)
11 εxx + C

(N)
12 εyy + C

(N)
13 εzz + R

(N)
1 wzz

Tyy = C
(N)
12 εxx + C

(N)
11 εyy + C

(N)
13 εzz + R

(N)
1 wzz

Tzz = C
(N)
13 εxx + C

(N)
13 εyy + C

(N)
33 εzz + R

(N)
2 wzz

Tyz = Tzy = 2C
(N)
44 εyz + R

(N)
3 wzy

Txz = Tzx = 2C
(N)
55 εxz + R

(N)
3 wzx

Txy = Tyx = 2C
(N)
66 εxy (6a)

Hzz = R
(N)
1 εxx + R

(N)
1 εyy + R

(N)
2 εzz + K

(N)
1 wzz

Hzx = 2R
(N)
3 εxz + K

(N)
2 wzx

Hzy = 2R
(N)
3 εyz + K

(N)
2 wzx (6b)

Submitting Eqs. (2)–(6) into Eq. (1), the differential equations of wave motion are obtained:

−C
(N)
11 k2U + C

(N)
55 U ′′ + (C(N)

13 + C
(N)
55 )ikW ′ + (R(N)

1 + R
(N)
3 )ikγ′

+
(
C

(N)
55

)′
U ′ +

(
C

(N)
55

)′
ikW +

(
R

(N)
3

)′
ikγ]} = −ρ(N)ω2U (7a)

−C
(N)
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(N)
44 V ′′ +

(
C

(N)
44

)′
V ′ = −ρ(N)ω2V (7b)

(C(N)
13 + C

(N)
55 )ikU ′ − C
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55 k2W + C

(N)
33 W ′′ − R

(N)
3 k2γ + R

(N)
2 γ′′

+
(
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1 + R
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3 )ikU ′ − R

(N)
3 k2W + R
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2 W ′′ − K

(N)
2 k2γ + K
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+
(
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)′
ikU +

(
R

(N)
2

)′
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p ω2γ − κ(N)iωγ (7d)

where (′) denotes the derivation with respect to z. SH waves are governed by Eq. (9b) that is indepen-
dent of the phason field. So, SH waves are not investigated in this case.

Subsequently, the phonon and phason displacements of each layer are expanded into the Legendre
orthogonal polynomial series.

For the first quasi-crystal layer:

u1
a =

∞∑
m=0

pa,1
m Q1

m(z) exp(ikx − iωt), w1
z =

∞∑
m=0

r1mQ1
m(z) exp(ikx − iωt) (8)

where

Q1
m(z) =

√
2m + 1
h1 − h0

Pm

(
2z − (h1 − h0)

h1 − h0

)
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u1
a(z = h1) = u1,h1

a =
∞∑

m=0

pa,1
m Q1

m(z = h1) exp(ikx − iωt)

w1
z(z = h1) = w1,h1

z =
∞∑

m=0

r1mQ1
m(z = h1) exp(ikx − iωt)

where pa,n
m (n = 1, 2), r1m denote expansion coefficients, Pm represents the mth Legendre polynomial,

and ua are ux and uz, respectively.
For the second quasi-crystal layer:

u2
a = u1,h1

a + (z − h1)
∞∑

m=0

pa,2
m Q2

m(z) exp(ikx − iωt)

w2
z = w1,h1
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m=0

r2mQ2
m(z) exp(ikx − iωt) (9)

where
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√
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For the Nth quasi-crystal layer:

uN
a = uN−1,hN

a + (z − hN )
∞∑

m=0
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m QN

m(z) exp(ikx − iωt)

wN
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where

QN
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√
2m + 1
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Pm

(
2z − (hN − hN−1)
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)

uN
a (z = hN ) = uN,hN

a = uN−1,hN
a + (z − hN )
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m=0

pa,N
m QN

m(z = hN ) exp(ikx − iωt)
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rN
mQN
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Submitting Eqs. (8)–(10) into Eq. (7), multiplying the obtained equations by Q1
j (z), Q2

j (z) · · · QN
j (z)

with j running from 0 to M , and integrating over z from h1 to hN , the following equation is deduced:
⎡
⎣

nAm,j
11

nAm,j
12

nAm,j
13

nAm,j
21

nAm,j
22

nAm,j
23

nAm,j
31

nAm,j
32

nAm,j
33

⎤
⎦

⎧⎨
⎩

p1m,j

p2m,j

rm,j

⎫⎬
⎭ = −ω2

⎡
⎣

nMm,j 0 0
0 nMm,j 0
0 0 nMm,j

⎤
⎦

⎧⎨
⎩

p1m,j

p2m,j

rm,j

⎫⎬
⎭ (11)

where nAm,j
q,s (q = 1, 2, 3 and s = 1, 2, 3 ) and nMm,j are matrix elements that can be obtained from

Eq. (7). Therefore, it is transformed into an eigenvalue problem. Angular frequencies are square roots
of eigenvalues. Phonon and phason displacement components can be calculated from eigenvectors.
(2) The y-direction plate
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The phonon displacements are the same as those in Eq. (5), and only the phason displacement in
the y-direction is not 0, which is as follows:

wy = β(z)eikx−iωt (12)

where β(z) represents the phason displacement amplitude.
The constitutive equations are as follows:

Tzz = C
(N)
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1 wyy
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Submitting Eqs. (12)–(13) and Eq. (2) into Eq. (1), the differential equations of wave motion are
obtained:
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The Lamb waves are governed by Eqs. (16a) and (16b) that are independent of the phason field.
Therefore, Lamb waves are not investigated in this case.
(3) The x-direction plate

The phonon displacements are also the same as those in Eq. (5), and the phason displacement in
the x-direction is not 0, which is:

wx = α(z)eikx−iωt (15)

where α(z) represents the phason displacement amplitude.
The constitutive equations are as follows:
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Submitting Eqs. (15)–(16) and Eq. (2) into Eq. (1), the differential equations of wave motion are
obtained:
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The SH waves are governed by Eq. (17b) that is independent of the phason field. Therefore, SH waves
are not investigated in this case.

3. Numerical Results
In this section, dispersion curves and phonon and phason displacements are calculated using the

software “Mathematica”. For the multilayered 1D quasi-crystal plates, they are composed of two kinds
of quasi-crystal materials (simplified as QC1 and QC2), whose material parameters are listed in Table 1.
As a special case, the dissipative kinetic coefficients Γω of QC1 and QC2 are assumed to be the same.

3.1. Validation of the Proposed Method

To our best knowledge, rare references about Lamb wave propagating in the multilayered quasi-
crystal plates are available for comparison. However, the accuracy of the proposed method to investigate
guided waves in multilayered crystal plates has been detailed in [7]. Therefore, it is also appropriate
for quasi-crystal structures. Subsequently, the convergence of the present method is confirmed. The
frequencies with different M of a z-direction sandwich plate (a) with QC1/QC2/QC1-1mm/1mm/1mm
are calculated and listed in Table 2. Here, there are two kinds of wave modes in the quasi-crystal plates.
A kind of wave modes whose wave characteristics are similar to those of the elastic wave modes in
crystal plates are defined as phonon modes. The others are phason modes attributed to the phason
field. Comparing these data, we conclude that the present method is convergent. Furthermore, the
convergence speed at smaller kh is much faster. For example, when M = 7, the first three modes are
convergent at kh = 3, but only one mode is convergent at kh = 15. Hereafter, M = 30 is assumed in
the following calculation.

3.2. Lamb Waves

3.2.1. Comparison Between Two Models
Firstly, the dispersion curves of plate (a) in the context of the Bak and elasto-hydrodynamic models

are illustrated in Fig. 2. Meanwhile, the case of the corresponding crystal plate (Ri = Ki = 0) is inves-
tigated. The phonon modes for Lamb waves are divided into symmetric and anti-symmetric modes,

Table 1. Material parameters of the z-direction QC plate ([14, 23])

Property C11 C12 C13 C22 C23 C33 C44 C55

QC1 23.433 5.741 6.663 23.433 6.663 23.222 7.019 7.019
QC2 20 10 10 20 10 15 5 5

C66 ρ R1 R2 R3 K1 K2 Γω

QC1 8.846 4.186 0.8846 0.8846 0.8846 12.2 2.4 4.8
QC2 5 5.07 0.5 0.5 0.5 5 2 4.8

units: Cij(1010N/m2), ρ(103kg/m3), Ri(109N/m2), Ki(1010N/m2), Γω

(10−10cm3µs g−1)
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Table 2. Frequencies ω(103) of the three fundamental modes with different M

kh M = 6 M = 7 M = 8 M = 9 M = 10 M = 11

3 1st phason mode 2.24674 2.24674 2.24674 2.24674 2.24674 2.24674
1st phonon mode 2.86670 2.86645 2.86645 2.86645 2.86645 2.86645
2nd phonon mode 4.73497 4.73494 4.73494 4.73494 4.73494 4.73494

15 1st phason mode 11.0278 11.0278 11.0278 11.0278 11.0278 11.0278
1st phonon mode 17.0811 17.0687 17.0709 17.0704 17.0704 17.0704
2nd phonon mode 18.1748 18.1411 18.1535 18.1534 18.1539 18.1539
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Fig. 2. Dispersion curves for plate (a) in the context of two models

which are similar to the elastic wave modes in crystal plates. Similarly, they are also named as A0, S0,
A1, S1. . . . . . . And the phason modes are named as PL0, PL1. . . . . . . Moreover, the phonon–phason
coupling effect on dispersion curves in the context of Bak model is considerable. The first three modes
have no cut-off frequencies, not as to the crystal plates, whose first two modes have no cut-off frequen-
cies. Besides, the phonon–phason coupling effect on phonon modes is weak because Ri is far smaller
than Cij and Kij . For example, the phase velocity of A0 mode in Fig. 2a slightly increases.

For the elasto-hydrodynamic model, it is observed from Fig. 2b(I) that there are only phonon
modes, no phason modes. Actually, there are phason modes. However, their phase velocities are very
low in Fig. 2b(II). And the roots of phason modes are complex, whose imaginary parts are very large.
For example, as fh = 1 MHz*mm, its imaginary part of the PL0 mode is 522336i. Therefore, they are
attenuated instantaneously and not propagative. The reason for this is that their friction coefficients
are too large.
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Fig. 3. Dispersion curves of two models with different Ri

Then, the phonon–phason coupling effect on dispersion curves is studied in detail. Figure 3 shows
dispersion curves of these two models with different Ri. All Ri are simultaneously varied. It can be
seen from Fig. 3a that the phonon–phason coupling effect on the phason modes is more significant
than on the phonon modes. Furthermore, the phase velocities of phason modes decrease, and phase
velocities of phonon modes increase at high frequencies as Ri increase. However, the phonon–phason
coupling effect in Fig. 3b only affects the non-propagative phason modes, not the phonon modes. And
the phase velocities of phason modes decrease as Ri increase. Therefore, only the Bak model is utilized
to investigate the phonon–phason coupling effect in the following subsections.

Next, the phonon–phason coupling effects on the first and second layers are, respectively, analyzed.
Firstly, the materials of three layers are assumed to be QC1. Then, Ri of the first and second layers
are multiplied by 5 times, respectively. The dispersion curves are illustrated in Fig. 4. The phonon–
phason coupling effects on the first two layers are the same at low frequencies. However, they are
more significant on the first layer at high frequencies. The reason lies in the fact that energies at high
frequencies mainly propagate in the first layer.

3.2.2. Influences of Volume Fractions and Stacking Sequences
Influences of volume fractions and stacking sequences on wave characteristics are illustrated in

Fig. 5. Here, we consider other three kinds of z-direction sandwich quasi-crystal plates, which are
plate (b): QC1/QC2/QC1-2mm/1mm/1mm; plate (c): QC1/QC2/QC1-1mm/2mm/1mm; and plate
(d): QC2/QC1/QC1-1mm/1mm/1mm. Compared with plate (a), the volume fraction of QC1 in plate
(b) increases, and that in plate (c) decreases. It is observed from Fig. 5a that phase velocities increase
as the volume fraction of QC1 increases, since the wave velocities of QC1 for the phonon and phason
modes are larger than those of QC2. Furthermore, it can be observed from Fig. 5b that the stacking
sequences have a significant influence on dispersion curves, especially at high frequencies.
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Fig. 6. Displacement distributions of the first three modes at kh = 60

3.2.3. Phonon and Phason Displacements
Displacements of the first three modes at kh = 60 are illustrated in Fig. 6. It can be seen that

the symmetry of the phason displacement component γ is always consistent with that of the phonon
displacement component W . Furthermore, amplitudes of the phonon displacement components U and
W of the phonon modes are far greater than that of the phason displacement component γ. However,
they are opposite to the phason modes. Moreover, the phonon and phason displacements at high
frequencies are mainly distributed in the QC2 layer, i.e., energies are mainly distributed in the QC2
layer. This lies in the reason that elastic modulus and stiffness of the QC2 layer are smaller than those
of the QC1 layers.

3.2.4. The Influence of Quasi-Periodic Direction on Wave Characteristics
Figure 7 illustrates the dispersion curves with different quasi-periodic directions. The x-direction

sandwich plate with QC1/QC2/QC1-1mm/1mm/1mm is assumed. It is observed that the influence
of quasi-periodic direction is weak on the phonon modes, but considerable on the phason modes. The
phase velocities of phason modes in the x-direction plate are much higher than those in the z-direction
plate.

3.3. SH Waves

Figure 8 shows the dispersion curves of SH waves in a sandwich y-direction plate with
QC1/QC2/QC1-1mm/1mm/1mm. It can be seen that the phonon modes of SH waves are similar
to the elastic wave modes in the crystal plates. Similarly, they are also named as SH0, SH1. . . . . . .
Phason modes are named as PSH0, PSH1. . . . . . . Furthermore, the phonon–phason coupling effect on
phonon modes is also very weak. Moreover, the trend of the phonon modes is similar to that of the
phason modes.
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Subsequently, the phase velocity dispersion curves with different phonon–phason coupling coef-
ficients Ri are illustrated in Fig. 9. It can be seen that the influence of phonon–phason coupling
coefficients on the phason modes is more significant than on the phonon modes. Furthermore, the
influences on the phonon and phason modes are opposite. As Ri increase, phase velocities of the
phason modes decrease, and those of the phonon modes increase.

4. Conclusions
Guided waves in the multilayered 1-D hexagonal quasi-crystal plates in the context of Bak and

elasto-hydrodynamic models are, respectively, investigated using the Legendre orthogonal polynomial
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method. Dispersion curves and phonon and phason displacement distributions are calculated. Based
on the numerical results, the following conclusions can be drawn:

(1) The phonon–phason coupling effects in the context of Bak model on phonon and phason modes are
significant. However, the phonon–phason coupling effects in the context of elasto-hydrodynamic
model just affect the non-propagative phason modes, not the phonon modes.

(2) The phonon–phason coupling effects on the first two layers are the same at low frequencies. How-
ever, they are more significant on the first layer than those on the second layer at high frequencies.

(3) Energies of both phonon and phason modes at high frequencies mainly propagate in the layer with
smaller elastic modulus and stiffness.
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