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ABSTRACT The present paper deals with the investigation of dynamic responses of a rotating
pre-deformed blade in four cases of resonance, including two subharmonic resonances and two
combination resonances. The dimensionless gas excitation amplitude is assumed to share the
same order with the dimensionless vibration displacement. Four cases of resonance are confirmed
by examining the secular terms. The theoretical analysis framework is established for each res-
onance case based on the method of multiple scales. The original dynamic system is integrated
numerically by the Runge–Kutta method. The frequency components and phases obtained from
fast Fourier transform of the numerical response are used to verify the theoretical results. For the
purpose of contrast, modulation equations are also integrated numerically. In all four resonance
cases, the theoretical results agree well with the numerical simulation. Parameter studies are
conducted to clarify the effects of system parameters on the perturbation curves. Various results
are obtained for the rotating blade. A quasi-saturation phenomenon occurs in both combina-
tion resonances of summed type and difference type, and the corresponding limit value of the
second-mode response can be reduced by decreasing the external detuning parameter. The quasi-
saturation phenomenon of rotating blade only appears with high gas pressure. The subharmonic
resonance of second mode and the combination resonance of summed type are hard to excite in
practice compared with the other two cases.

KEY WORDS Internal resonance, Subharmonic resonance, Combination resonance, Rotating
blade, Stability

1. Introduction
Rotating blades are present in many industry applications. The aircraft engine is one of the most

important instances. Blade vibration failure due to resonance and flutter occupies a large proportion
of the total engine failure. A better understanding of the resonance mechanism and dynamic behavior
of rotating blades is helpful to reduce blade vibration failure.

In the early studies [1–6] of this field, researchers presented numerous dynamic modeling methodolo-
gies of rotating blades and investigated the dynamic characteristics of such structures with only some
classical effects taken into consideration in the framework of small-deformation theory. Afterwards,
some researchers also paid their attention to some nonclassical effects on the dynamic characteristics
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of rotating blade. Qin et al. [7] addressed the influence of hygrothermal environment on a rotating
composite blade. Liang et al. [8] clarified the contributions of gyroscopic term and dynamic centrifugal
terms on a rotating blade. Niu et al. [9] built a dynamic model for a rotating functionally graded
cylindrical panel reinforced with graphene platelets (GPLs). Zhang et al. [10] examined the natural
frequencies of the rotating blade with different distribution patterns, weight fractions and geometric
characteristics of the GPLs. Guo et al. [11] studied the coupling effects among six displacement compo-
nents based on the Timoshenko beam theory. Xie et al. [12] modeled a rotating blade with a breathing
crack.

In reality, the engine blade often serves under the extreme environment. The flow field around
the rotating blades is highly unsteady and turbulent. The large amplitude vibration is unavoidable
under strong periodic gas flow disturbance [13]. Results and conclusions obtained based on the small-
deformation theory seem to be inadequate. Hence, an increasing number of researchers have been
focusing their attention on the nonlinear dynamic behavior of such structures nowadays, especially on
the internal resonance behavior due to its potential threat to the fatigue life of rotating blades [14]. Li
et al. [15] modeled a wind turbine blade considering the geometric nonlinearities and studied the effects
of aerodynamic loads on the dynamic characteristics of the blade. Recently, Yao et al. [16] established
a dynamic model of a pre-twisted blade based on the shell theory and reported the influences of system
parameters on the nonlinear dynamic response of the blade. Thomas et al. [17] studied the nonlinear
vibration of a rotating blade considering the large deformation. They reported that rotating speed could
affect the hardening/softening behavior and the jumping phenomena. Wang et al. [18] studied the 1:1
internal resonance of a turbine blade considering the fluid-structure interactions. Zhang et al. [19]
established a nonlinear dynamic model of rotating pre-twisted blade considering the pre-deformation
caused by the thermal gradient. They verified the possibility of the occurrence of 2:1 internal resonance
and conducted parameter studies to reveal the nonlinear dynamic behavior of the blade. Zhang et al.
[20] explored the second primary resonance of the same blade and presented a saturation phenomenon.

In the above studies, researchers studied the dynamic behavior of rotating blades when primary
resonance occurs, that is, the exciting frequency is near one of the natural frequencies of the blade.
There exist more complex resonance mechanisms in the nonlinear system. Other exciting frequencies
could also result in resonance, such as super-harmonic resonance, subharmonic resonance and combi-
nation resonance. Cao et al. [21] constituted the Campbell diagram of a pre-twisted rotating plate to
demonstrate the possibility of complex harmonic resonances in such structures when nonlinearities are
taken into account. Inoue et al. [22] validated the occurrence of super-harmonic resonance of a wind
turbine blade in their experiment. Recently, Zhang et al. [23] studied the super-harmonic resonance of
a rotating blade based on the previous dynamic model [19]. Shahgholi et al. [24] utilized the harmonic
balance method to address the combination and subharmonic resonances of a rotating shaft. From the
literature review, it could be concluded that although the subharmonic resonance [25] and combina-
tion resonance [26, 27] have been studied for various structures, the related theoretical analyses of the
dynamic responses of pre-deformed rotating blades, especially those subjected to high gas pressure,
are rather limited. To close the gap, we consider four cases of resonances, including two subharmonic
resonances and two combination resonances, and calculate the corresponding steady-state response of
a rotating blade in this study.

2. Equations of Motion and Analytical Solutions
Consider a rotating pre-twisted blade attached to a disk with a certain setting angle, as shown in

Fig. 1. The rotating speed of the disk is Ω. A strong harmonic gas pressure Pgas is acted on the blade.
The blade serves in a thermal gradient environment. The notations gy and gz denote the thermal
gradients in two principle directions, i.e., the width direction and the thickness direction of the blade
section, respectively. It must be mentioned that the present load status of the blade is rather idealized,
and is a simplification of the real one. In reality, the turbine blade suffers from complex loads, for
example, the blade-casing impact and rubbing, the air blast loads, etc. The detailed consideration of
the complex loads exerted on the turbine blade exceeds the scope of the present investigation, which,
however, is a challenging and rewarding research direction. For details of the force state on blades,
readers are referred to [16, 28, 29].
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Fig. 1. The model of a rotating pre-deformed blade subjected to gas pressure

The governing equation of the blade, including the effects of geometric large deformation and
the pre-deformation caused by thermal gradient, could be derived via Lagrange principle and modal
transformation [20].

¨̃qi+cd
˙̃qi+ω2

i q̃i = f̃i cos (ωt)+
n2+n3∑

j=1

n2+n3∑

k=1

ηijk q̃j q̃k+
n2+n3∑

j=1

n2+n3∑

k=1

n2+n3∑

l=1

ξijklq̃j q̃k q̃l (i = 1, 2 . . . , n2 + n3)

(1)
in which, q̃i and f̃i denote the system response and the excitation amplitude in modal space, respec-
tively. Here, f̃i are proportional to the gas pressure amplitude Pgas. The symbols cd and ωi are the
dimensionless damping coefficient and the blade dimensionless natural frequencies, respectively. ηijk

are the quadratic nonlinear coefficients introduced by the pre-deformation. ξijkl are the cubic non-
linear coefficients introduced by the large deformation, which is proved to be ignorable, especially in
the presence of 2:1 internal resonance in the previous study [20]. n2 and n3 are the numbers of trial
functions assumed chordwise and flapwise, respectively.

The previous studies [19, 20] were confined to the resonance mechanism and dynamic behavior of
rotating blade under weak excitation. In the present study, a strong gas pressure is applied to the
blade. Hence, the excitation amplitude is assumed to have the same order as the blade response [30].
The vibration response, damping coefficient and gas pressure are rescaled as follows.

q̃i ↔ εq̃i, cd ↔ εcd, f̃i ↔ εf̃i (2)

where ε is a small dimensionless parameter. The solution of the system is assumed to have the following
form

q̃i (t) = q̃i0 (T0, T1) + εq̃i1 (T0, T1) + O
(
ε2

)
(3)

in which T0 = t and T1 = εt are the fast and slow time scales, respectively. Then we substitute Eqs.
(2) and (3) into Eq.(1) and set the coefficients of each power of ε to be zero. The following equations
can be obtained.

D2
0q̃i0 + ω2

i q̃i0 = f̃i cos (ωT0) (4)

D2
0q̃i1 + ω2

i q̃i1 = −2D0D1q̃i0 − cdD0q̃i0 +
n2+n3∑

j=1

n2+n3∑

k=1

ηijk q̃j0q̃k0 (5)
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where Di (i = 0, 1) represents the derivative operator ∂/∂Ti. It should be noted that the derivative
operator will also get perturbed after the multiple time scales are introduced. The solution to Eq. (4)
holds the following form.

q̃i0 = Ai (T1) exp (iωiT0) + Biexp (iωT0) + cc (6)

which consists of the general solution (i.e. the free vibration component) and the particular solution
(i.e. the forced vibration component). Ai and Bi denote the corresponding amplitudes. The symbol cc
denotes the complex conjugate of the terms ahead. Ai and Bi can be written as:

Ai (T1) =
ai (T1)

2
exp (iζi (T1)) , Bi =

f̃i

2 (ω2
i − ω2)

(7)

Ai(T1) is an undetermined complex function of T1, while Bi is a real. ai and ζi stand for the magnitude
and phase angle of Ai(T1), respectively. Substituting Eq. (6) into Eq. (5) yields

D2
0q̃i1 + ω2

i q̃i1 = −iωi (2D1Ai + cdAi) exp (iωiT0) − iωcdBiexp (iωT0)

+
n2+n3∑

j=1

n2+n3∑

k=1

ηijk {BjBkexp (2iωT0)

+ AjAkexp (i (ωj + ωk) T0) + AjĀkexp (i (ωj − ωk) T0) + AjBkexp (i (ωj + ω) T0)

+ ĀjBkexp (i (ω − ωj) T0) +BjAkexp (i (ωk + ω) T0) + BjĀkexp (i (ω − ωk) T0)
}

+ cc
(8)

The possibility of the 2:1 internal resonance, i.e. 2ω1 ≈ ω2, has been confirmed in the present model [19].
The internal detuning parameter σ1 is introduced to describe the nearness between ω2 and 2ω1, ω2 =
2ω1+εσ1. Hence, the termAjĀkexp (i (ωj − ωk) T0) (j = 2, k = 1) and the termAjAkexp (i (ωj + ωk) T0)
(j = k = 1) will contribute to the secular terms for the first and the second modes, respectively. In the
present study, our attention is focused on the cross terms, such as the term AjBkexp (i (ωj + ω) T0)
and the term ĀjBkexp (i (ω − ωj) T0). When the excitation frequency ω is set as several special values,
the cross terms can also contribute to the secular terms.

2.1. The Case of ωωω Being Close to 2ω1ω1ω1

When ω is close to 2ω1, the term ĀjBkexp (i (ω − ωj) T0) (j = 1, k = 1 or 2) contributes to the
secular terms of the first mode. In addition, the term −iωcdBi exp (iωT0) (i = 1) can also contribute to
the secular terms of the second mode due to the presence of the 2:1 internal resonance. In the present
case, B2 is a small divisor term. This resonance is often defined as the subharmonic resonance of the
first mode. The external detuning parameter σ2 is introduced as ω = 2ω1+εσ2. Eliminating the secular
terms of the first two modes yields the solvability conditions.

D1A1 = Γ11A1 + Γ12Ā1A2 exp(iσ1T1) + Γ13Ā1exp (iσ2T1)

D1A2 = Γ21A2 + Γ22A
2
1 exp(−iσ1T1) + Γ23 exp(i (σ2 − σ1) T1)

(9)

where

Γ11 = Γ21 = −cd/2, Γ12 = (η121 + η112)/(2iω1), Γ22 = η211/(2iω2), Γ13 = B1

n2+n3∑

k=1

(η11k + η1k1)/2iω1,

Γ23 = −ωcdB2/2ω2

(10)
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Separating the real from the imaginary part on both sides of Eq. (9), one can derive the autonomous
modulation equations.

da1

dT1
=

(
ΓR
12 cos ψ1 − Γ I

12 sinψ1

) a1a2

2
+

(
ΓR
13 cos ψ2−Γ I

13 sin ψ2

)
a1 + ΓR

11a1

da2

dT1
= 2

[
ΓR
23 cos(ψ2 − ψ1) − Γ I

23 sin(ψ2 − ψ1)
]
+ ΓR

21a2 +
(
ΓR
22 cos ψ1 + Γ I

22 sin ψ1

) a2
1

2
dψ1

dT1
=

[
ΓR
23 sin(ψ2 − ψ1) + Γ I

23 cos(ψ2 − ψ1)
] 2

a2
− (

ΓR
22 sinψ1 − Γ I

22 cos ψ1

) a2
1

2a2
− (

ΓR
12 sin ψ1

+Γ I
12 cos ψ1

)
a2 − 2

(
ΓR
13 sin ψ2 + Γ I

13 cos ψ2

)
+ σ1 + Γ I

21 − 2Γ I
11

dψ2

dT1
= − (

ΓR
12 sin ψ1 + Γ I

12 cos ψ1

)
a2 − 2

(
ΓR
13 sin ψ2+Γ I

13 cos ψ2

)
+ σ2 − 2Γ I

11

(11)

where ψ1 = σ1T1 – 2ζ1 + ζ2, ψ2 = σ2T1 – 2ζ1, and the real part and imaginary part of coefficients Γij

are denoted by superscripts R and I, respectively. Given that the left side of Eq. (11) is equal to 0 in
the steady state, the modulation equations lead to a set of nonlinear quaternary algebraic equations.
Apparently, the solutions of the algebraic equations include two types: the single-mode solution (a1 =
0 and a2 �= 0), and the coupled-mode solution (a1 �= 0 and a2 �= 0). Substituting a1 = 0 into the right
side of Eq. (11), one can obtain the single-mode solution as follows.

a1l = 0, a2l = 2 |Γ23|/
√(

ΓR
21

)2 +
(
σ2 − σ1 − Γ I

21

)2 (12)

In the present case, it is hard to derive the analytical expressions of the coupled-mode solution. The
command “NSolve” in Mathematica is employed to find numerical approximations of the corresponding
equations.

In order to determine the stability of these two types of solution, it is convenient to cast the
modulation equations into the Cartesian form as follows.

dx1

dT1
=

(
ΓR
11 + ΓR

13

)
x1 +

(
Γ I
11 − Γ I

13

)
y1 − ν1y1 +

1
2
ΓR
12 (x1x2+y1y2) +

1
2
Γ I
12 (x1y2 − x2y1)

dy1
dT1

= − (
Γ I
11 + Γ I

13

)
x1 +

(
ΓR
11 − ΓR

13

)
y1 + ν1x1 − 1

2
Γ I
12 (x1x2+y1y2) +

1
2
ΓR
12 (x1y2 − x2y1)

dx2

dT1
= ΓR

21x2 + Γ I
21y2 − ν2y2 +

1
2
ΓR
22

(
x2
1 − y2

1

)
+ Γ I

22x1y1 + 2ΓR
22

dy2
dT1

= −Γ I
21x2 + ΓR

21y2 + ν2x2 − 1
2
Γ I
22

(
x2
1 − y2

1

)
+ ΓR

22x1y1 − 2Γ I
22

(13)

in which ν1 = σ2/2, ν2 = σ2 − −σ1. The eigenvalues of the Jacobian matrix of Eq. (13) are calculated
at the steady-state solutions. If there exist positive real parts among the eigenvalues, the corresponding
solution is unstable.

Ultimately, the first approximate solutions can be written as

q̃1 = a1 cos (ωt/2 − ψ2/2) + 2B1 cos (ωt) + O
(
ε2

)

q̃2 = a2 cos (ωt+ (ψ1 − ψ2)) + 2B2 cos (ωt) + O
(
ε2

)

q̃i = 0 (i = 3, 4, · · · , n2 + n3)

(14)

2.2. The Case of ωωω Being Close to 2ω2ω2ω2

When ω is close to 2ω2, the term ĀjBkexp (i (ω − ωj) T0) (j = 2, k = 1 or 2) contributes to the
secular terms of the second mode. This resonance is often defined as the subharmonic resonance of the
second mode. The external detuning parameter σ2 is introduced as ω = 2ω2+εσ2. After the mathematic
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manipulations similar to those in subsection 2.1, we can obtain the polar form of modulation equations

da1

dT1
= ΓR

11a1 +
(
ΓR
12 cos ψ1 − Γ I

12 sin ψ1

) a1a2

2
da2

dT1
= ΓR

21a2 +
(
ΓR
22 cos ψ1 + Γ I

22 sin ψ1

) a2
1

2
+

(
ΓR
24 cos ψ2−Γ I

24 sin ψ2

)
a2

dψ1

dT1
= σ1 + Γ I

21 − (
ΓR
22 sin ψ1 − Γ I

22 cos ψ1

) a2
1

2a2
+

(
ΓR
24 sin ψ2+Γ I

24 cos ψ2

) − 2Γ I
11

− (
ΓR
12 sin ψ1+Γ I

12 cos ψ1

)
a2

dψ2

dT1
= σ2 − 2Γ I

21 +
(
ΓR
22 sinψ1 − Γ I

22 cos ψ1

) a2
1

a2
− 2

(
ΓR
24 sin ψ2+Γ I

24 cos ψ2

)

(15)

where

ψ1 = σ1T1 − 2ζ1 + ζ2, ψ2 = σ2T1 − 2ζ2, Γ24 =
n2+n3∑

k=1

(η22k + η2k2)Bk/2iω2 (16)

The solutions of the corresponding algebraic equation include two types: the trivial solution (a1 = 0
and a2 = 0), and the non-trivial solution or coupled-mode solution (a1 �= 0 and a2 �= 0). Eliminating
ψ1 and ψ2, we conclude that the steady-state response of the first mode is the root of the following
frequency response equation. Due to the limitation of space, the explicit analytical expressions of a1

and a2 are not recorded here. Ultimately, the first approximate solutions can be written as

q̃1 = a1 cos (ωt/4 − (2ψ1 + ψ2)/4) + 2B1 cos (ωt) + O
(
ε2

)

q̃2 = a2 cos (ωt/2 − ψ2/2) + 2B2 cos (ωt) + O
(
ε2

)

q̃i = 0 (i = 3, 4, · · · , n2 + n3)

(17)

2.3. The Case of ω Being Close to ω2ω2ω2 +ω1+ω1+ω1

When ω is close to ω2 + ω1, the termĀjBkexp (i (ω − ωj) T0) (j = 2, k = 1 or 2) contributes to
the secular terms of the first mode, and in the same time, the term ĀjBkexp (i (ω − ωj) T0)( j = 1,
k = 1 or 2) contributes to the secular terms of the second mode. This resonance is often defined
as the combination resonance of summed type. The external detuning parameter σ2 is introduced as
ω = ω2 + ω1 + εσ2. After the mathematical manipulations similar to those in subsection 2.1, we can
obtain the polar form of modulation equations.

da1

dT1
=

(
ΓR
12 cos ψ1 − Γ I

12 sin ψ1

) a1a2

2
+

(
ΓR
16 cos ψ2−Γ I

16 sinψ2

)
a2 + ΓR

11a1

da2

dT1
=

(
ΓR
22 cos ψ1 + Γ I

22 sin ψ1

) a2
1

2
+

(
ΓR
26 cos ψ2−Γ I

26 sin ψ2

)
a1 + ΓR

21a2

dψ1

dT1
= σ1 + Γ I

21 − 2Γ I
11 − (

ΓR
12 sin ψ1 + Γ I

12 cos ψ1

)
a2 +

(
ΓR
26 sin ψ2+Γ I

26 cos ψ2

) a1

a2

− (
ΓR
16 sinψ2 + Γ I

16 cos ψ2

) 2a2

a1
− (

ΓR
22 sin ψ1−Γ I

22 cos ψ1

) a2
1

2a2

dψ2

dT1
= σ2 − Γ I

21 − (
ΓR
12 sinψ1 + Γ I

12 cos ψ1

) a2

2
− Γ I

11 − (
ΓR
16 sin ψ2 + Γ I

16 cos ψ2

) a2

a1

+
(
ΓR
22 sinψ1−Γ I

22 cos ψ1

) a2
1

2a2
− (

ΓR
26 sin ψ2 + Γ I

26 cos ψ2

) a1

a2

(18)

where

ψ1=σ1T1− 2ζ1+ζ2, ψ2=σ2T1−ζ1−ζ2, Γ16=
∑n2+n3

k=1 (η12k + η1k2) Bk

2iω1
, Γ26=

∑n2+n3
k=1 (η21k + η2k1) Bk

2iω2
(19)
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The solutions of the corresponding algebraic equation include two types the same as the previous
subsection. Ultimately, the first approximate solutions can be written as

q̃1 = a1 cos
(

ωt

3
− ψ1 + ψ2

3

)
+ 2B1 cos (ωt) + O

(
ε2

)

q̃2 = a2 cos
(

2ωt

3
+

ψ1 − 2ψ2

3

)
+ 2B2 cos (ωt) + O

(
ε2

)

q̃i = 0 (i = 3, 4, . . . , n2 + n3)

(20)

2.4. The Case of ω Being Close to ω2–ω1

When ω is close to ω2–ω1, the term AjBkexp (i (ωj + ω) T0) (j = 1, k = 1 or 2) contributes to
the secular terms of the second mode. This resonance is often defined as the combination resonance
of difference type. The external detuning parameter σ2 is introduced as ω = ω2 − −ω1 + εσ2. After
the mathematical manipulations similar to those in subsection 2.1, we can obtain the polar form of
modulation equations.

da1

dT1
= ΓR

11a1 +
(
ΓR
12 cos ψ1 − Γ I

12 sinψ1

) a1a2

2
+

(
ΓR
17 cos ψ2−Γ I

17 sin ψ2

)
a2

+ 2
(
ΓR
18 cos (ψ1 − ψ2) − Γ I

18 sin (ψ1 − ψ2)
)

da2

dT1
= ΓR

21a2 +
(
ΓR
22 cos ψ1 + Γ I

22 sinψ1

) a2
1

2
+

(
ΓR
27 cos ψ2+Γ I

27 sinψ2

)
a1

dψ1

dT1
= σ1 + Γ I

21 − 2Γ I
11 − (

ΓR
12 sin ψ1 + Γ I

12 cos ψ1

)
a2 − (

ΓR
17 sin ψ2+Γ I

17 cos ψ2

) 2a2

a1
− (

ΓR
27 sin ψ2

−Γ I
27 cos ψ2

) a1

a2
− (

ΓR
22 sinψ1−Γ I

22 cos ψ1

) a2
1

2a2
− (

ΓR
18 sin (ψ1 − ψ2) + Γ I

18 cos (ψ1 − ψ2)
) 4

a1

dψ2

dT1
= Γ I

21 − Γ I
11 − σ2 − (

ΓR
12 sin ψ1 + Γ I

12 cos ψ1

) a2

2
− (

ΓR
18 sin (ψ1 − ψ2)+Γ I

18 cos (ψ1 − ψ2)
) 2

a1

− (
ΓR
22 sinψ1−Γ I

22 cos ψ1

) a2
1

2a2
− (

ΓR
27 sin ψ2−Γ I

27 cos ψ2

) a1

a2
− (

ΓR
17 sinψ2 + Γ I

17 cos ψ2

) a2

a1
(21)

where

ψ1 = σ1T1 − 2ζ1 + ζ2, ψ2 = −σ2T1 − ζ1 + ζ2, Γ17 =
n2+n3∑

k=1

(η12k + η1k2) Bk/2iω1

Γ18 = ωcdB1/2ω1, Γ27 =
n2+n3∑

k=1

(η21k + η2k1) Bk/2iω2

(22)

In the present case, it is hard to derive the analytical expressions of the coupled-mode solution due to
the same reason as the subharmonic resonance of the first mode. The numerical approximate solution
and the corresponding stability of the solutions can be determined following subsection 2.1. Ultimately,
the first approximate solutions can be written as

q̃1 = a1 cos (ωt − (ψ1 − ψ2)) + 2B1 cos (ωt) + O
(
ε2

)

q̃2 = a2 cos (2ωt − (ψ1 − 2ψ2)) + 2B2 cos (ωt) + O
(
ε2

)

q̃i = 0 (i = 3, 4, · · · , n2 + n3)

(23)

3. Validation and Perturbation Curves
In this section, the validation of free vibration component (a1 and a2) is conducted through the 4th-

order Runge-Kutta method [31] and the frequency response and the force response curves are presented
for the aforementioned four resonance cases. The equation of motion is integrated numerically. Only
the past-transient motion is picked up to verify the analytical results. In the present study, parameters
are chosen following the previous paper [20], namely n2 = n3 = 10, Ψ = 10◦, Θ = 30◦, κ = 0.25, δ = 0,
gy = 0, gz = 0.032, η = 200, cd = 0.1, and ε = 0.01. For the complete 2:1 internal resonance (σ1 =
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0) of this rotating blade, the critical rotating speed is γin = 6.5798, and the corresponding first two
natural frequencies are ω1 = 4.4873 and ω2 = 8.9746.

3.1. Subharmonic Resonance of the First Mode

From the first equation in Eq. (14), it is found that the free vibration component of the first mode
response, namely the frequency component of ω/2, is separated from the forced vibration component,
namely the frequency component of ω. So the free vibration component amplitude a1 can be determined
directly from the fast Fourier transform (FFT) of the blade response. However, the situation is more
complicated for the second mode response. The free vibration component and the forced vibration
component share the same frequency ω. To verify the free vibration component amplitude a2, the
second equation of Eq. (14) is cast into

q̃2 = Q2 cos (ωt + ν2) + O
(
ε2

)
(24)

in which Q2 and ν2 stand for the magnitude and phase angle of the frequency component of ω,
respectively, and hold the following relationships.

Q2 =
√

a2
2 + 4B2

2 + 4a2B2 cos (ψ1 − ψ2)

cos ν2 =
a2 cos (ψ1 − ψ2) + 2B2

Q2

(25)

Eliminating ψ1 and ψ2 yields

a2 =
√

4B2
2 + Q2

2 − 4B2Q2 cos ν2 (26)

In the equation above, B2 is calculated from Eq. (7), Q2 and ν2 are determined from the FFT.
Eq. (26) can be used to verify the free vibration component amplitude a2. The comparison between
the frequency responses obtained from theoretical analysis and numerical integrations is displayed in
Fig. 2. The solid and dotted lines denote the stable and unstable solutions calculated by the method
of multiple scales, respectively. The hollow circles and asterisks denote the results obtained from the
numerical integrations of the original system and the modulation equations, respectively. As seen in
Fig. 2, the steady solutions seem to be attracted to the single-mode solution near the jumping [32].
The theoretical results are well consistent with the numerical integrations.

The influences of system parameters on frequency response curves are illustrated in Fig. 3. The
response curves tend to bend more to both sides and the peak responses are enlarged with the increase
of thermal gradient. Actually, the thermal gradient presents quadratic nonlinearities of the system in
some sense. The response curves will tilt to the right with the increase of rotating speed across the
internal critical rotating speed γin. It has been reported in the literature [17, 19] that the variation
in rotating speed will result in the variation in nonlinear hardening/softening behavior of the rotating

(a) (b)  

Fig. 2. The comparison between the frequency responses obtained from theoretical analysis and numerical integrations
in the case of subharmonic resonance of the first mode (Pgas = 10−4): a the first mode; b the second mode



Vol. 33, No. 5 B. Zhang et al.: Subharmonic and Combination Resonance 643

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Parameter study of frequency response curves in the case of subharmonic resonance of the first mode: a, b the
influence of thermal gradient; c, d the influence of rotating speed; e, f the influence of damping coefficient; g, h the
influence of gas pressure
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Fig. 4. The subharmonic force response curves of the first and the second modes in the case of subharmonic resonance
of the first mode (σ1 = 0, σ2 = 1)

(a) (b)

Fig. 5. The comparison between the frequency responses obtained from theoretical analysis and numerical integrations
in the case of subharmonic resonance of the second mode (Pgas = 0.5): a the first mode; b the second mode

blade. The jumping phenomena are limited by the damping. With the increase of damping coefficient,
the peak responses are reduced and the multi-valued ranges are narrowed. The response curves tend
to be flattened for large damping coefficient. However, as expected, the gas pressure seems to have
an opposite influence on the response curves. The jumping phenomena become dramatic with the
increase of the gas pressure. Both the peak response and the multi-valued ranges are enlarged by the
gas pressure. The variation trends of the frequency response curve with parameters in other resonance
cases are similar to the present one. Hence, the related results are not displayed herein.

The force response curves of the first and the second modes are plotted together in Fig. 4. A
hysteresis phenomenon occurs. The single-mode solution turns unstable when the gas pressure increases
beyond the first limit point. Compared with the coupled-mode solution, the single-mode solution of
the second mode is quite small and negligible.

3.2. Subharmonic Resonance of the Second Mode

For the first two modes of response, the free vibration components are separated from the forced
vibration components in the case of subharmonic resonance of the second mode. So the free vibration
component amplitudes a1 and a2 can be determined directly from FFT of the blade response. The
comparisons between the frequency responses obtained from the theoretical analysis and the numerical
integrations are displayed in Fig. 5. The theoretical results agree well with the numerical simulation.
The non-trivial solutions of the first two modes are both v-shaped. Both the trivial and non-trivial
solutions are unstable near the totally external resonance. In order to present the full view of the
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Fig. 6. The subharmonic force response curves of the first and the second modes in the case of subharmonic resonance
of the second mode (σ1 = 0, σ2 = 5)

(a) (b)

Fig. 7. The comparison between the frequency responses obtained from theoretical analysis and numerical integrations
in the case of combination resonance of summed type (Pgas = 1): a the first mode; b the second mode

dynamic behavior, the gas pressure is set as a quite large value, Pgas = 0.5. To a certain extent, this
indicates that the subharmonic resonance of the second mode is hard to excite.

The force response curves are plotted in Fig. 6. A saturation phenomenon [33] can be observed.
There exist two critical values of gas pressure, Pcr1 and Pcr2, between which there exist two non-trivial
solutions for a1 (the lager one is stable) and the second-mode response keeps constant. It seems that
the external energy is only imported into the first mode.

3.3. Combination Resonance of Summed Type

The free vibration components are separated from the forced vibration components in the case of
combination resonance of summed type. So the free vibration component amplitudes a1 and a2 can be
determined directly from FFT of the blade response. The comparison between the frequency responses
obtained from theoretical analysis and numerical integrations is displayed in Fig. 7. It can be found
that the non-trivial equilibrium points have strong attraction and several trivial equilibrium points
are attracted to the non-trivial ones. The gas pressure here is quite strong as the previous case. The
trivial solution is unstable near the total external resonance (σ2 = 0). There exist certain ranges, in
which both the non-trivial and the trivial solutions are unstable and the response will be quasi-periodic
motion or chaos.
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(a) (b)

Fig. 8. The force response curves of the first and the second modes in the case of combination resonance of summed type
(σ1 = 0): a the first mode; b the second mode

(a) (b)

Fig. 9. The comparison between the frequency responses obtained from theoretical analysis and numerical integrations
in the case of combination resonance of difference type (Pgas = 0.01): a the first mode; b the second mode

Figure 8 shows the force response curves for certain values of σ2. In the flapwise primary resonance
under low gas pressure [20], the second-mode response is independent of gas pressure after saturated.
In the present case, after a certain value, the second-mode response changes rather slightly with gas
pressure when compared with the first-mode response. The vast majority of the external energy carried
in the gas pressure pours into the first mode. A quasi-saturation phenomenon can be found. The prefix
“quasi-” is used to emphasize the difference between the present phenomenon and the saturation
phenomenon [20]. The quasi-saturation phenomenon can only occur at high gas pressure. The limit
value of the second-mode response can be reduced by decreasing the external detuning parameter σ2.
In the design stage of such structure, engineers may utilize the quasi-saturation phenomenon to control
the quantity and direction of energy transfer from the gas excitation to the vibration of the blade.

3.4. Combination Resonance of Difference Type

From Eq. (23), it is found that for the second-mode response, the free vibration component is
separated from the forced vibration components in the case of combination resonance of difference
type. While the free vibration of the first mode share the same frequency with the forced vibration
component. Hence, the free vibration component amplitude a2 can be determined directly from FFT
of the blade response, and a1 can be verified following subsection 3.1. The comparison between the
frequency responses obtained from theoretical analysis and numerical integrations is displayed in Fig. 9.
There exist three solutions in most situations. The minimum changes slightly with the external detuning
parameter and approximates to zero solution. Both the maximum and the minimum are stable. The
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(a) (b)

Fig. 10. The force response curves of the first and the second modes in the case of combination resonance of difference
type (σ1 = 0): a the first mode; b the second mode

response depends on the initial conditions. The theoretical analysis is in agreement with the numerical
integrations.

The force response curves for several different values of σ2 are presented in Fig. 10. A quasi-
saturation phenomenon can be found, which is similar to subsection 3.3.

4. Conclusion
In this paper, we consider four resonance cases of a rotating blade subjected to harmonic gas

pressure in the presence of 2:1 internal resonance. The method of multiple scales is applied to obtain
the steady-state response. The theoretical results are supported by the numerical simulation. For the
case of the subharmonic resonance of the first mode, a hysteresis phenomenon occurs and the single-
mode solution of the second mode is negligible when compared with the coupled-mode solution. The
quasi-saturation phenomenon of the rotating blade only occurs with high gas pressure. The limit value
of the second mode response can be reduced by decreasing the external detuning parameter in the two
cases of combination resonance. The dynamic behavior observed is expected to be useful for the design
of such structure.
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