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ABSTRACT This paper establishes an empirical formula to predict the strain amplitude effect.
A viscoelastic constitutive model—the superposition of a hyperelastic model and a viscoelastic
model—is constructed based on the laws of thermodynamics. The Mooney–Rivlin model and the
Prony series are employed for uniaxial tension testing. The empirical formula is derived using a
hysteresis loop; it obtains results that are in agreement with the experimental results of dynamic
mechanical analysis (DMA). The empirical formula proposed in this paper has certain accuracy
in predicting the dynamic modulus under different strain amplitudes.

KEY WORDS Viscoelasticity, Strain amplitude effect, Storage modulus, Loss modulus,
Hysteresis loop

1. Introduction
Filled rubber materials, such as carbon black or silica, are widely used in automobiles, machines,

and buildings owing to their superior elastic and damping properties [1–6]. These materials exhibit
mechanical properties such as hyperelasticity and viscoelasticity. Similar to the Mullins effect [7–9],
reversible softening was observed with an increase in strain amplitude, known as the Payne effect [10].
The Payne effect is related to filler–filler and filler–rubber interactions, and can be described as the
breakage and recovery of the network during cyclic loading. Among the specifically developed models,
the Kraus model [11] is based on microstructural destruction and reorganization rates of the carbon
black network. The modeling results fit the test data without any time-domain formulation, while the
material parameters need reidentification if the frequency changes. Luo [12] further extended the Kraus
model and used it to model frequency- and amplitude-dependent dynamic modulus and hysteresis loss.
Lion [13–15] developed a time-domain formulation valid for arbitrary deformation and employed a
constitutive model using a series of nonlinear Maxwell elements. Youn [16] extended the Kraus model
to consider a large static pre-strain. Tomita [17] further proposed a visco–hyperelastic eight-chain
network model that incorporates a nonlinear dashpot with Langevin springs.

As a standard experimental approach, the dynamic mechanical analysis (DMA) is very helpful for
studying these effects. In DMA, an oscillating elongation is applied to the sample and the response of
the material is analyzed as a force signal, which includes all material nonlinearities. The processing
of these signals allows computing new dynamic measures known as the dynamic modulus. Further,
considering time signals is very helpful for investigating transient effects in the time domain directly.
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This paper first builds a nonlinear constitutive model of chloroprene rubber considering the strain
amplitude effect, which is specified by the Mooney–Rivlin model and Prony series under uniaxial
tension. Second, with the DMA test results, an empirical formula of the loss modulus is obtained from
the hysteresis loop to predict the strain amplitude effect. Finally, the storage modulus is fitted by the
same expression as that for the loss modulus. The proposed empirical formula has certain accuracy in
predicting the dynamic modulus under different strain amplitudes for both the storage modulus and
the loss modulus, and it can be further expressed in a simple form.

2. Dynamic Characteristics
2.1. General Theory

The time-dependent vector function x = χ(X, t) is defined as the time-dependent mapping between
the position vector X(P ) of the reference configuration and the position vector x(P ) of the current
configuration. The deformation gradient F (t) at the current time t is written as

F (t) = Grad(χ(X, t)) =
∂x

∂X
(1)

The relative deformation gradient in Cartesian coordinates is defined as

Ft(s) = F (s)F−1(t)0 ≤ s ≤ t (2)

The deformation gradient tensor F (t) maps the material tangent vectors from the current configura-
tion at time t to the tangent vectors at previous time s. The right and left Cauchy–Green deformation
tensors C and B are separately defined as

C = FT F, B = FFT (3)

Further, the Piola and Green–Lagrange strain tensors e and E are defined as

e =
1
2
(C−1 − I), E =

1
2
(C − I) (4)

Using Eq. (2), the relative right Cauchy–Green deformation tensor is expressed as

Ct(s) = FT
t (s)Ft(s) = F−T (t)C(s)F−1(t) (5)

and the relative Piola and Cauchy–Green strain tensors are

et(s) =
1
2
(C−1

t (s) − I), Et(s) =
1
2
(Ct(s) − I) (6)

Equations (5) and (6) have the properties

Et(s) = et(s) = 0, d/ds(Et(s) · 1) = E′(s) · C−1(t) and d/ds(et(s) · 1) = e′(s) · C(t) (7)

As rubber-like materials exhibit mechanical properties such as hyperelasticity and viscoelasticity,
the Helmholtz free energy per unit reference volume W depends not only on the Cauchy–Green defor-
mation tensor C, but also on the rate of Cauchy–Green strain tensor Ė, which is the sum of two
parts

W = W (C, Ė) = We(C) + Wv(C, Ė, ηi)

= We(I1, I2, I3, Cj)+
1
2
(EL(ηi, t) ∗ Ė) : C

= We(I1, I2, I3, Cj)+
1
2

[∫ t

0

EL(ηi, t − τ)Ė(τ)dτ

]
: C (8)

where We represents the elastic strain energy density corresponding to the equilibrium state; We(C)
is obtained from hyperelastic parameters Cj and three independent invariants I1, I2, and I3 of the
right Cauchy–Green deformation tensor C; Wv(C, Ė) is the viscous dissipation of the solid during the
mechanical response; EL is the relaxation function; the notation “:” denotes the contraction over two
tensors A and B (A : B = AijBij); and the symbol “*” represents the convolution integral between
two functions f(t) and g(t) (i.e., f ∗ g =

∫ t

0
f(t − τ)g(τ)dτ).
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As the rubber-like material is considered incompressible, the independent invariant I3 equals 1;
thus, Eq. (8) becomes

W = W (C, Ė) = We(C) + Wv(C, Ė, ηi)

= We(I1, I2, Cj)+
1
2

[
EL(ηi, t) ∗ Ė

]
: C (9)

Then, the Clausius–Duhem inequality is written in the alternative form

1
2
T : Ċ − Ẇ − sṪ − q

T
· ∇T ≥ 0 (10)

where T is the second Piola–Kirchhoff stress tensor, and s and q are the entropy and heat flux flowing
outside the material, respectively.

Substituting Eq. (9) into Eq. (10), and considering the isothermal process, the total energy dissi-
pation rate Ḋ can be derived as

Ḋ =

(
T + pC−1 − 2

(
∂We

∂I1
+ I1

∂We

∂I2

)
I + 2

∂We

∂I2
C − EL ∗ Ė

)
:

Ċ

2
− 1

2

(
∂EL

∂t
∗ Ė + EL(ηi, 0)Ė(t)

)
: C

−
m∑

j=1

∂We

∂Cj
Ċj −

n∑
i=1

ηi

2

(
∂EL

∂ηi
∗ Ė

)
: C ≥ 0 (11)

where p is a multiplier representing hydrostatic pressure that could be determined from the boundary
conditions.

When the current stretch does not exceed the maximum reached in the loading, Ċj and η̇i equal to
zero, i.e., the third and fourth terms of Eq. (11) vanish. The first term of Ḋ vanishes if an instantaneous
mechanical balance is assumed for any arbitrary Ċ, and then, the second Piola–Kirchhoff stress tensor
is written as

T = −pC−1 + 2
(

∂We

∂I1
+ I1

∂We

∂I2

)
I − 2

∂We

∂I2
C + EL ∗ Ė (12)

Considering the relationship between Cauchy stress and the second Piola–Kirchhoff stress, Eq. (12)
can be expressed as

σ = −pI + 2
(

∂We

∂I1
+ I1

∂We

∂I2

)
B − 2

∂We

∂I2
B2 + F (EL ∗ Ė)FT . (13)

The second term represents the energy loss rate caused by the viscosity of the rubber-like materials.

Ḋv = −1
2

(
∂EL

∂t
∗ Ė + EL(ηi, 0)Ė(t)

)
: C. (14)

2.2. Dynamic Modulus under Tension

In the DMA test, the material is subjected to a harmonic strain ε1 sinωt with a given pre-strain
ε0; thus, the deformation gradient F , the left Cauchy–Green strain tensor B, and the rate of the
Green–Lagrange strain tensor Ė are given as

[F ] =

⎡
⎣λ 0 0

0 1/
√

λ 0
0 0 1/

√
λ

⎤
⎦ [B] =

⎡
⎣λ2 0 0

0 1/λ 0
0 0 1/λ

⎤
⎦ [

Ė
]

=

⎡
⎣λλ̇ 0 0

0 − 1
2λ−2λ̇ 0

0 0 − 1
2λ−2λ̇

⎤
⎦ (15)

Using the Mooney–Rivlin and the generalized Maxwell models to describe the hyperelastic and
viscoelastic characteristics separately, We and Wv are expressed as

We = C1(I1 − 3) + C2(I2 − 3) (16)

Wv =
1
2

[
n∑

i=1

Eie−t/τi ∗ Ė(t)

]
: C (17)
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Substituting Eqs. (15), (16), and (17) into Eq. (13), the constitutive relationship between the stresses
and the stretch are

σ11 = −p + 2
[
C1 + (λ2 + 2λ−1)C2

]
λ2 − 2C2λ

4 + λ2

[
n∑

i=1

Eie−t/τi ∗ (λλ̇)

]
(18)

σ22 = −p + 2
[
C1 + (λ2 + 2λ−1)C2

]
λ−1 − 2C2λ

−2 − λ−1

2

[
n∑

i=1

Eie−t/τi ∗ (λ−2λ̇)

]
(19)

Since the tension experiments are adopted, and the boundary conditions σ22 = 0 are considered,
the hydrostatic pressure is obtained as

p = 2
[
C1 + (λ2 + 2λ−1)C2

]
λ−1 − 2C2λ

−2 − λ−1

2

[
n∑

i=1

Eie−t/τi ∗ (λ−2λ̇)

]
(20)

Thus, the uniaxial stress can be written as

σ11 = 2(λ2 − λ−1)C1 + 2(λ + λ−2)C2 + λ2

[
n∑

i=1

Eie−t/τi ∗ (λλ̇)

]
+

λ−1

2

[
n∑

i=1

Eie−t/τi ∗ (λ−2λ̇)

]

(21)

The relationship between the stretch and the strain is given as

λ = 1 + ε0 + ε1 sin ωt = λ0(1 + ε̂ sin ωt) (22)

with

ε̂ =
ε1

1 + ε0
(23)

As the dynamic strain is usually small to be regarded as ε1 � 1, which means ε̂ � 1 as well.
Neglecting the transient and higher-order terms, Eq. (21) becomes

σ11 = 2(λ2
0 − λ−1

0 )C1 + 2(λ0 + λ−2
0 )C2 + E′ε̂ sin ωt + E′′ε̂ cos ωt (24)

The storage modulus and loss modulus are, respectively, given as

E′ = E0 +
n∑

i=1

Ei
(1 + 2λ6

0)ω
2τ2

i

2λ2
0(1 + ω2τ2

i )

= 2(2λ2
0 + λ−1

0 )C1 + 2(λ0 + 2λ−2
0 )C2 +

n∑
i=1

Ei
(1 + 2λ6

0)ω
2τ2

i

2λ2
0(1 + ω2τ2

i )
(25)

E′′ =
n∑

i=1

Ei
(1 + 2λ6

0)ωτi

2λ2
0(1 + ω2τ2

i )
. (26)

2.3. Hysteresis Loss and Energy Dissipation

When a viscoelastic material is subjected to a sinusoidal excitation under tension, the mechanical
energy absorbed per unit volume of the material in the deformation up to time t is given by

W (t) =
∫ t

0

σ11(τ)ε̇11(τ)dτ (27)

The amount of energy dissipated [18–21] in a full cycle of oscillatory straining can be calculated by
integrating Eq. (27) over the cycle.

Dv =
∫ 2π

ω

0

σ11(τ)ε̇(τ)dτ = πε21E
′′ (28)
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Fig. 1. DMA, Gabo Eplexor 500 N
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Fig. 2. Storage modulus under amplitude sweep

3. Experiment, Results, and Discussion
3.1. Experiment

Rectangular specimens with dimensions of 5 mm× 25 mm× 2 mm were selected for the test. These
specimens were provided by the Dongxin rubber company in Hengshui, Hebei, China. The amplitude
sweep experiment of chloroprene rubber was measured using a dynamic mechanical analyzer (DMA,
Gabo Eplexor 500 N), as shown in Fig. 1.

Repeated cyclic stretching was carried out on specimens before the experiment to ensure that the
stress was within the range of linear viscoelasticity during the experiment, and the Mullins effect was
removed. The specimens were sinusoidally stretched under a pre-strain of 5% at various frequencies (1,
5, 10, 20, and 30 Hz); the dynamic strain amplitude ranges from 0.1% to 3% and is linearly distributed
in logarithmic coordinates. The stress responses to the strain excitations were recorded automatically;
the tensile storage modulus and the loss modulus were calculated from these measurements; and the
mechanical hysteresis loop in a full strain cycle was also constructed.

3.2. Results

The test results are shown in Figs. 2 and 3, where the storage and loss moduli are shown as a function
of the applied frequency and strain amplitude. The results indicate that the storage modulus decreases



Vol. 33, No. 3 L. Peng et al.: Strain Amplitude Effect on the Viscoelastic Mechanics of Chloroprene Rubber 397

0.1 1 10
1

2

3

4

5
f=1Hz
f=5Hz
f=10Hz
f=20Hz
f=30Hz

Lo
ss

 M
od

ul
us

 E
'' (

M
Pa

)

Strain Amplitude ε1 (%)

T=23

Fig. 3. Loss modulus under amplitude sweep

with an increase in strain amplitude, while the loss modulus does not show a peak value, which are
similar to the experimental results in [22]. These results are attributed to the filler–filler and filler–
rubber interactions.

Figure 4 shows the hysteresis loops of the material under different frequencies and strain amplitudes.
The area of the hysteresis loop represents the energy dissipated in a full deformation cycle, each of
which is obtained by numerical integration.

Figure 5 shows the integration results at the specified frequency and strain amplitude. It can be
easily determined that hysteresis increases with an increase in the strain amplitude, and it has weak
dependency on the frequency. Compared with the test results, the calculation results of Eq. (28) are
relatively close.

3.3. Discussion

Figure 5a indicates that in the double logarithmic coordinate system, there is a linear relationship
between the hysteresis loss and the strain amplitude, implying that the hysteresis loss and strain
amplitude have a power-law relationship. The log Dv ∼ log ε1 curves are parallel and linear, which
overlap after a vertical shift. Therefore, there is a vertical shift factor, which satisfies the shift relation,

Dv(f, ε1) = ϕfDv(f0, ε1) = ϕf (aεb
1) (29)

To simplify Eq. (29), we regard parameter b as a constant value, i.e., b = 1.934. The specific
relationship between Dv and ε1, and the values of ϕf at each frequency (reference frequency f0 = 1Hz)
are summarized in Table 1.

Considering the strain amplitude εr = 0.1% as a reference to normalize the hysteresis loop for other
strain amplitudes, Dv/Dvr is plotted in Fig. 6. The figure indicates that the hysteresis loss ratio is
weakly dependent on frequency, but strongly dependent on εr/ε1, which is similar to the data in [12].
Assuming that the hysteresis loss ratio is only related to the strain amplitude ratio εr/ε1, we can
express the hysteresis loop Dv as Eq. (30), which is also applicable to [12].

Dv(f, ε1) = a

(
εr

ε1

)k

Dvr(f, εr) (30)

Substituting Eq. (28) into Eq. (30), the loss modulus can be derived as

E′′(f, ε1) = a

(
εr

ε1

)k+2

E′′(f, εr) (31)
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Fig. 4. Hysteresis loops under different frequencies and strain amplitudes

The method of least squares is used for the nonlinear fitting of data in Fig. 6, and the parameters are
listed in Table 2. Using Eq. (31), the loss modulus E′′ can be predicted when the reference loss modulus
is provided, which is often obtained from the frequency sweep test. The reference strain amplitude is
selected as εr = 0.1%; and the predicted data at the strain amplitudes of 0.2%, 0.3%, 0.5%, and 1% are
displayed in Fig. 7. In comparison with the experimental data of the loss modulus versus frequency,
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Table 1. Function of Dv and ϕf at each frequency

Frequency f (Hz) Dv = aε1.9341 ϕf log ϕf

5 Dv = 782.7ε1.9341 1.220016 0.086366
10 Dv = 1008.5ε1.9341 1.549854 0.190291
20 Dv = 1143.5ε1.9341 1.754727 0.244209
30 Dv = 1212.8ε1.9341 1.836742 0.264048
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Fig. 6. Experimental data of Dv/Dvr (a Test data; b Literature [12])

Table 2. Parameters of Eq. (30)

Parameters Fitting Value

a 1.065
k −1.901

a good agreement can be seen between the results, indicating that the empirical formula achieves a
good prediction at different strain amplitudes.

In order to determine the accuracy of the predicted results and the experimental data, the variance
formula is used.
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Fig. 7. Fitting results of loss modulus E′′ (solid: Prediction; hollow: Test data)

Table 3. R-square between the predicted and experimental results of loss modulus

Strain amplitude ε1 (%) R2

0.2 0.98
0.3 0.97
0.5 0.96
1.0 0.97
1.4 0.93
2.0 0.91
3.0 0.96

R2= 1−
∑N

n=1 (E
′′2
pre − E

′′2
exp)∑N

n=1 (E′′2
exp − Ē′′2

exp)
(32)

The predicted data and the experimental data are substituted into Eq. (32), and the variance of
each strain amplitude is listed in Table 3.

At last, the storage modulus E′ is predicted as well. It is not difficult to see from Eq. (27) that the
right side is only a polynomial when moving E0 to the left side. Similarly, we take εr/ε as the x-axis
and E′−E0/E′

r−E′
r0 as the y-axis, and the expression takes the form similar to that of Eq. (31).

E′(f, ε1)−E0

E′(f, εr)−Er0
= b

(
εr

ε1

)p

(33)

By fitting the experimentally measured data of storage modulus E′ through the method of least
squares, the parameters are determined as b = 1.1415, p = 0.3163.

The predicted data for the strain amplitudes ε = 0.2%, 0.3%, 0.5% and 1% are displayed in Fig. 8a
in comparison with the original data of storage modulus E′ versus frequency. The variances between
the predicted and experimental values of storage modulus are listed in Table 4. The results indicate a
good agreement, implying that the empirical formula is effective. Further, Eq. (32) is used to fit the
data of storage modulus in [12], which shows a good agreement, as shown in Fig. 8b.
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Fig. 8. Fitting results of storage modulus E′ (a This paper; b Literature [12]; solid: Prediction; hollow: Test data)

Table 4. R-square between the predicted and experimental results of storage modulus

Strain amplitude ε1 (%) R2

0.2 0.99
0.3 0.95
0.5 0.94
1.0 0.98
1.4 0.93
2.0 0.97
3.0 0.91

4. Conclusion
To consider the strain amplitude effect, the superposition of a hyperelastic model and a viscoelastic

model was established. The storage modulus and loss modulus were obtained under uniaxial tension,
and the model was specified based on the Mooney–Rivlin model and Prony series. An empirical expres-
sion was established using the hysteresis loop. A good agreement was observed in comparison with the
experimental data of the loss modulus. In addition, the same type of empirical expression was designed,
and the fitting results were found to be satisfactory. Moreover, the empirical formula was used to fit the
data in the literature, and it proved to be effective. Thus, the empirical formula proposed in this paper,
with a simple expression, has certain accuracy in predicting the dynamic modulus under different strain
amplitudes.
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