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ABSTRACT The dynamic analysis on the ultra-large spatial structure can be simplified drasti-
cally by ignoring the flexibility and damping of the structure. However, these simplifications will
result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.
Taking the spatial beam as an example, the minimum control energy defined by the difference
between the initial total energy and the final total energy in the assumed stable attitude state
of the beam is investigated by the structure-preserving method proposed in our previous studies
in two cases: the spatial beam considering the flexibility as well as the damping effect, and the
spatial beam ignoring both the flexibility and the damping effect. In the numerical experiments,
the assumed simulation interval of three months is evaluated on whether or not it is long enough
for the spatial flexible damping beam to arrive at the assumed stable attitude state. And then,
taking the initial attitude angle and the initial attitude angle velocity as the independent vari-
ables, respectively, the minimum control energies of the mentioned two cases are investigated
in detail. From the numerical results, the following conclusions can be obtained. With the fixed
initial attitude angle velocity, the minimum control energy of the spatial flexible damping beam
is higher than that of the spatial rigid beam when the initial attitude angle is close to or far
away from the stable attitude state. With the fixed initial attitude angle, ignoring the flexibility
and the damping effect will underestimate the minimum control energy of the spatial beam.

KEY WORDS Spatial beam, Structure-preserving method, Generalized multi-symplectic,
Minimum control energy, Hamiltonian

1. Introduction
The attraction of the solar power satellite system (SSPS) concept [1] designed to harvest clean

energy from space-based solar-electric systems using wireless power transfer has captured the imagi-
nation of the government as well as private stakeholders because of its high efficiency, low operating
cost as well as zero pollution. To realize the SSPS concept, many structural schemes for the SSPS have
been proposed, which are comparable to one another.

�
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Various studies of this concept were conducted during the 1970s, by NASA and the Department
of Energy [2], which resulted in the 1979 Reference SPSS. The project named “Research on Con-
cept, Structure and Technology of Space System” was set up in Europe, and the European Sail
Tower concept—a gravity-gradient-stabilized, space-tether-based SSP concept—was proposed. The
solar power satellite via arbitrarily large phased array [3] was proposed by NASA, and the associated
project approachment studies were reported widely [4]. Recently, the Ω concept was suggested by Prof.
Duan [5], which has aroused considerable interest of the Qian Xuesen Laboratory of Space Technology.

However, there is no doubt that proposing a new SPSS concept is easier than demonstrating its
feasibility. During the feasibility demonstration, the controllability and the control strategy design are
two main tasks for the associated researchers before a new SPSS concept is proposed. Even if the
proposed SPSS concept is controllable, the control energy determined mainly by the control strategy
and the structural parameters should be minimal to save the fuel carried by the SPSS, which implies
that optimizing the structural form and the control strategy to seek the minimum control energy is
an important task in the structural/control design of the SPSS. However, the above SPSS concepts
diverse in the structural forms, which suggests that it is difficult to develop a uniform approach to
determine the minimum control energy for these SPSS concepts. Thus, in this work, only a typical
structural component (beam) in the SPSS will be considered.

Certainly, the minimum control time is another objective considered in the process of the control
strategy design. The minimum time control approach was developed and applied on spacecraft attitude
tentatively to reduce the control time. Pao [6] considered the time-optimal control problem for rest-to-
rest maneuvers of flexible spatial structures and presented some analytical results for the number of
control switches for the one-bending-mode case. Liu et al. [7] proposed a near-minimum-time feedback
control law for the agile satellite attitude control system. Zhu et al. [8] investigated the minimal time
problem for the guidance of a rocket and revealed the existence of singular arcs of higher order in the
optimal synthesis that causes the occurrence of a chattering phenomenon. Eldad et al. [9] developed a
new algorithm for large-angle pitch maneuvers of deformable solar sails in minimum time recently.

Choosing the spatial beam as a typical component to study the minimum control energy in this
work is based on the consideration that in the above SPSS concepts, there are many components that
can be simplified as slender structures. For example, the long-span framework, the main load-carrying
component of the solar receiver, can be simplified as the spatial flexible beam, which implies that the
slender component is a basic model in the SPSS. Thus, the controllability and the control strategy
of the slender component (such as the spatial beam) are important in the argument of the structural
scheme for the SPSS.

There are amount of studies discussing the nonlinear dynamic behaviors of spatial beams. da Silva
and Zaretzky [10] presented the nonlinear differential equations controlling the coupling motions of the
beam capable of undergoing bending and pitching in space and studied the coupled nonlinear pitch-
bending response of the beam in a circular orbit [11]. Chen and Agar [12] proposed an Lagrangian
formulation of the spatial beam element for a purely geometric nonlinear analysis, in which the geo-
metric stiffness matrix was expressed by either a one-dimensional integration of the stress resultants
or a closed form of element-end forces. Quadrelli and Atluri [13] presented a general finite-element
formulation for the dynamic analysis of spatial elastic beams with small strains in a multi-body con-
figuration. Yang et al. [14] established a finite-element model for a flexible hub-beam system with a
tip mass considering the viscous damping and the air drag force. Cai and Lim [15] studied dynamics of
a flexible hub-beam system using a first-order approximation coupling model and the assumed mode
discretization method. Zhang et al. [16] developed a two-node spatial beam element with the Euler–
Bernoulli assumption for the nonlinear dynamic analysis of slender beams undergoing arbitrary rigid
motions and large deformations. Yin et al. [17] presented a Hamiltonian formulation for the rigid model
of the spatial beam and developed the symplectic method for it. Hu et al. [18–23] improved the above
Hamiltonian formulation for the spatial flexible damping beam and developed the structure-preserving
method for it based on the generalized multi-symplectic method.

In the above references, it has been proved that ignoring the flexibility and the damping effect
of the spatial beam can accelerate the analysis speed of the method employed. Unfortunately, such
simplifications may result in some deviations in the dynamic analysis of practical structures. In this
work, the difference of the minimum control energy for the spatial beam model with the assumed
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Fig. 1. Dynamic model of spatial beam

attitude adjustment target between the models considering and ignoring the flexibility and the damping
effect will be investigated in detail by the structure-preserving method.

2. Dynamic Model of Spatial Beam
In this section, the dynamic model of the spatial beam will be reviewed and the preliminary theo-

retical analysis on the minimum control energy of the spatial beam will be presented.
In our previous studies [18, 19, 24], a homogeneous spatial flexible beam moving in the XOY plane

(with both the deformation and the motion out of the XOY plane ignored) was considered (see Fig. 1).
In this paper, considering the flexibility as well as the non-sphere perturbation [19], the Lagrangian
function of the spatial beam can be formulated by the state vector [r, α, θ, u]T,

L =
ρl
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in which r = r(t) = |Oo1| is the orbit radius, θ = θ(t) is the orbit true anomaly of the center of
mass, α = α(t) is the attitude angle describing the attitude of the beam, u = u(x, t) is the transverse
displacement in the local coordinate system uo1v denoting the transverse vibration induced by the
plane motion of the beam when the flexibility of the spatial beam is considered, ρ and l represent the
linear density and the length of the beam, respectively, μ is the gravitational constant of the Earth,
J2 and J22 denote the coefficients of the Earth’s zonal harmonic term and tesseral harmonic term,
respectively, Re is the average equatorial radius of the Earth, and EI is the flexural stiffness when the
flexibility of the spatial beam is considered.

Then, the plane motion and the transverse vibration of the spatial flexible beam with damping can
be controlled by [19],
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Here c is the damping factor of the beam.
It has been proved that there are two stable attitude states for dynamic system (2)–(3). One is

the stable attitude angle α = 0, and the other is the stable attitude angle α = π
2 [18, 19] employing

the structure-preserving method [20–26]. Only the stable attitude state α = 0 is considered in this
paper, because the subsequent simplified system only has this stable attitude state when the flexibility
and damping of the spatial beam are ignored. For system (2)–(3), there are a variety of attitude
adjustment strategies reported, which can be employed to unify the attitude of system (2)–(3) into
one of the stable attitude states. The typical strategies include that reaction/momentum wheels are
assembled to provide continuous control action according to the desired torque profile for attitude
control, and as on-off devices, thrusters are normally capable of providing the fixed torque [27]. To
simplify the practical engineering problems, the concrete attitude adjustment strategy will not be
discussed in detail. However, the energy loss of the system during the transient process (i.e., the period
from the initial state to the assumed stable attitude state) for system (2)–(3) with certain parameters
is independent of the specific adjustment strategy and will be studied in this work, which is named
the minimum control energy of the spatial beam with the assumed attitude adjustment target.

As mentioned above, the minimum control energy is the difference between the initial total energy
and the total energy in the stable attitude state of system (2)–(3). If the flexibility and damping of
the beam is considered, the minimum control energy is,
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where the subscript “0” represents the moment t = 0 and the subscript “s” represents the moment
t = ts. The attitude angle tends to be α = 0 when t = ts.

As the initial conditions employed in our previous studies [18, 19, 24], the initial state of the
transverse vibration of the beam is assumed as u0 = 0, ∂tu|t=0 = 0. Then, the minimum control
energy ΔE1 can be simplified as,
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which contains the loss of potential energy resulting from the decrease in orbit radius and the loss of
kinetic energy resulting from the transverse damping vibration as well as the plane state change of the
beam.

It has been mentioned that, to simplify and accelerate the analysis process for system (2)–(3), the
flexibility and the damping effect are always neglected. In this case, system (2)–(3) degrades into the
following conservative system,
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This simplified system only owns one stable attitude state (α = 0) and is a conservative system
obviously, which implies that the attitude adjustment cannot be performed by the dissipative effect of
itself. The minimum control energy is the energy difference between the initial total energy and the
total energy in the stable attitude state of system (6), that is,
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which only contains the loss of kinetic energy resulting from the state change of plane motion of the
rigid beam.

The difference between ΔE1 and ΔE2 is,
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When t → ts, the attitude angle approaches the assumed stable attitude (in the following numerical
experiments, the assumed stable attitude angle is α = 0), which implies that αs = α̇s = 0. Then, Eq.
(8) can be rewritten as,
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is also an infinitesimal quantity. However, to investigate the effects of the initial conditions on the
minimum control energy, all these infinitesimal quantities are taken into account in the following
numerical experiments.
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Fig. 2. The evolutions of the attitude angle, the attitude angle velocity and the transverse vibration at the end of the
beam

3. Numerical Results of Minimum Control Energy
In this section, the comparison between the minimum control energy (7) of the simplified system

(6) ignoring both flexibility and damping of the spatial beam and the minimum control energy (5) of
the coupled dynamic system (2)–(3) will be investigated by the proposed structure-preserving method
[18, 19, 24] in detail.

The parameters of the beam, some initial conditions and constants are assumed as ρ = 0.5 kg/m, l =
2000 m, E = 6.9 × 1011 Pa, I = 1 × 10−4 m4, c = 0.1, μ = 3.986005 × 1014 m3/s2, r0 =
6,700,000 m, ṙ0 = 0, θ0 = 0, θ̇0 =

√
μ/r30 rad/s, u(x, 0) = ∂tu(x, t)|t=0 = 0. The minimum con-

trol energy of the rigid spatial beam can be obtained directly from Eq. (7).
In the following experiments, the minimum control energy of the spatial flexible damping beam

will be obtained by the proposed structure-preserving method with different initial attitude angles and
different initial attitude angle speeds. The constants associated with the non-sphere perturbation are
assumed as J2 = 1.08263 × 10−3, J22 = 1.81222 × 10−6 and Re = 6.371 × 106 m. The step lengths are
fixed as Δx = 1 m, Δt = 1000 s in the structure-preserving method, and the simulation time span is
assumed as about three months (90 days) preliminarily, i.e., T0 = 7,776,000 s.

3.1. Are Three Months Long Enough for Spatial Flexible Damping Beam to Arrive at the Stable
Attitude State?

If the attitude of the beam converges to the stable attitude state α = π/2, the results obtained
in the following numerical simulations will not own the comparability with that of the simplified
system (6) [19]. To avoid this and to judge whether or not the assumed interval (T0 = 7,776,000 s)
is long enough for the spatial flexible damping beam to arrive at the stable attitude state α = 0,
the initial attitude angle and the initial velocity of the attitude angle are, respectively, assumed as
α0 = π/2 rad, α̇0 = 0.000081 rad/s in this section (which are the most rigorous initial conditions
requiring almost the longest interval to arrive at the stable attitude state α = 0, referring to the
results presented in our previous study [19]).

In this case, the plane motion, the attitude angle evolution, as well as the transverse vibration of
the spatial flexible damping beam are simulated by the proposed structure-preserving method deriving
from the generalized multi-symplectic approach. Here, only the evolutions of the attitude angle, the
attitude angle velocity and the transverse vibration at the end of the beam (x = 1000 m) are shown
in Fig. 2.

From Fig. 2, it can be found that the attitude angle, the attitude angle velocity and the transverse
vibration at the end of the beam tend to be zero in about two months, which implies that three months
is long enough for the spatial flexible damping beam to arrive at the stable attitude state α = 0. In
addition, similar to the results presented in our previous study [18], the transverse vibration at the
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Fig. 3. Minimum control energy of spatial beam with fixed initial attitude angle velocity

end of the beam contains two periods obviously. During the first period, the vibrational amplitude
increases rapidly. And during the second period, the vibrational amplitude decreases slowly.

3.2. Minimum Control Energy of Spatial Beam with Assumed Attitude Adjustment Target

In the above numerical experiments, we can confirm that three months is long enough for the spatial
flexible damping beam to arrive at the assumed stable attitude state α = 0; that is, the attitude of the
spatial flexible damping beam tends to be stable and the transverse vibration of the spatial flexible
damping beam decreases to the degree that is too weak to be detected after three months.

In this section, we set the initial attitude angle α0 and the initial attitude angle velocity α̇0 as inde-
pendent variables. And then, the minimum control energy for the spatial rigid beam can be obtained
from Eq. (7) directly. Subsequently, the plane motion and the transverse vibration of the spatial flexi-
ble damping beam are simulated. During the simulation, the minimum control energy for the spatial
flexible damping beam can be recorded by referring to Eq. (5).

Firstly, the initial attitude angle velocity is fixed as α̇0 = 0.000081 rad/s (referring to the numerical
results presented in our previous study [19], the attitude angle will not tend to be of the stable state
α = π/2 when α̇0 = 0.000081 rad/s), and the initial attitude angle α0 is assumed to increase from 0
to π/2 rad with the step length Δα0 = π/200 rad. The comparison on the minimum control energy
for this case between the spatial rigid beam and the spatial flexible damping beam is shown in Fig. 3.
And then, the initial attitude angle is fixed as α0 = 1.555 rad (referring to the numerical results
presented in our previous study [19], the attitude angle will not tend to be of the stable state α = π/2
when α0 = 1.555 rad) and the initial attitude angle velocity α̇0 is assumed to increase from 0 to
α̇0 = 0.0001 rad/s with the step length Δα̇0 = 0.000001 rad/s. The comparison on the minimum
control energy for this case between the spatial rigid beam and the spatial flexible damping beam is
shown in Fig. 4.

From the numerical results shown in Fig. 3, it can be found that when α0 < 0.15916 rad or
α0 > 1.30578 rad, the minimum control energy for the spatial flexible damping beam is higher than
that for the spatial rigid beam with the fixed initial attitude angle velocity α̇0 = 0.000081 rad/s; when
1.30578 rad > α0 > 0.15916 rad, the result is just the opposite. These conclusions imply that the
energy loss of the spatial flexible damping beam is more acute than the energy loss of the spatial rigid
beam when the initial attitude angle is close to the stable attitude state α = 0 (α0 < 0.15916 rad) or
is far away from the stable attitude state α = 0 (α0 > 1.30578 rad).

Although the initial attitude angle is not contained in Eq. (9) explicitly, it influences the necessary
time for the spatial flexible damping beam to arrive at the assumed stable attitude state and affects the
energy dissipation in the transverse vibration process of the damping beam. The above phenomena can
be explained in detail as follows. The energy loss of the spatial beam is derived from the attitude control
(as a result, both the attitude angle and the attitude angle velocity tend to be zero), the transverse
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Fig. 4. Minimum control energy of spatial beam with fixed initial attitude angle

flexible vibration attenuates, and the orbit radius decreases due to the damping dissipation if both
flexibility and damping of the beam are considered. Obviously, if the coupling between the plane
motion and the transverse vibration of the spatial flexible damping beam is ignored, the minimum
control energy of the rigid spatial beam will be lower than that of the spatial flexible damping beam
with random initial conditions. This is because the energy loss of the rigid spatial beam resulting from
the attitude control is equal to that of the spatial flexible damping beam, and the energy loss resulting
from the transverse flexible vibration attenuation and the orbit radius decrease is positive. Actually,
the coupling effects between the plane motion and the transverse vibration cannot be neglected during
the longtime dynamic simulation. When the initial attitude angle is close to the stable attitude state
α = 0 (α0 < 0.15916 rad), the time interval needed for the spatial flexible damping beam approaching
the stable attitude state α = 0 is short. In this case, both the orbit radius decrease and the damping
dissipation are weak compared with the necessary attitude control energy. Thus, the minimum control
energy for the spatial flexible damping beam is slightly higher than that for the spatial rigid beam.
When the initial attitude angle is far away from the stable attitude state α = 0 (α0 > 1.30578 rad),
the time interval needed for the spatial flexible damping beam approaching the stable attitude state
α = 0 is up to two months. In this case, both the damping effect and the orbit radius decrease in the
long interval are significant factors affecting the energy loss of the beam. Thus, the minimum control
energy for the spatial flexible damping beam is much higher than that for the spatial rigid beam. When
1.30578 rad > α0 > 0.15916 rad, the coupling between the plane motion and the transverse vibration
is strong and the orbit true anomaly velocity θ̇ increases due to the orbit radius decrease, which implies
that the total energy stored in the spatial flexible damping beam is high and the energy loss is small.

In Fig. 4, for the spatial rigid beam, the minimum control energy is almost independent of the
initial attitude angle velocity, which results from α̇2

0 � 1− cos2 α0 in this case, and the term 1
2

ρl3

12 α̇2
0 is

a higher-order infinitesimal quantity comparing with the term μρl3

8r3
0

(1 − cos2 α0) in ΔE2. However, for
the spatial flexible damping beam, the minimum control energy increases slowly with the increase in
the initial attitude angle velocity, which implies that the increase in the initial attitude angle velocity
will increase the energy loss of the spatial flexible damping beam slightly.

Comparing the minimum control energy of the spatial flexible damping beam with that of the
spatial rigid beam shown in Fig. 4, it can be found that the minimum control energy of the spatial
flexible damping beam is much higher than that of the spatial rigid beam with the fixed initial attitude
angle, which implies that ignoring the flexibility and damping of the spatial beam will underestimate
the minimum control energy of the spatial beam when the initial attitude angle is fixed.
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4. Conclusions
Estimating the minimum control energy for the attitude adjustment of the spatial structure is the

prerequisite to the controller design process and determines the fuel or the control energy required
for the attitude adjustment of the spatial structure. In this paper, the minimum control energy of the
spatial rigid/flexible damping beam for the assumed stable attitude state is studied by the proposed
structure-preserving method in detail.

From the numerical results presented in the experiments, it can be found that,

(1) With the fixed initial attitude angle velocity (α̇0 = 0.000081 rad/s), the minimum control energy
for the spatial flexible damping beam is higher than that for the spatial rigid beam when α0 <
0.15916 rad or α0 > 1.30578 rad.

(2) The effect of the initial attitude angle velocity in the assumed range of this study on the minimum
control energy is weak and can be ignored in the controller design process.

(3) With the fixed initial attitude angle (α0 = 1.555 rad), ignoring the flexibility and the damping
effect will underestimate the minimum control energy obviously.
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