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ABSTRACT A new method for topology optimization of truss-like structures with stress con-
straints under multiple-load cases (MLCs) is presented. A spatial truss-like material model with
three families of orthotropic members is adopted, in which the three families of members along
three orthotropic directions are embedded continuously in a weak matrix. The densities and
directions of the three families of members at the nodes are taken as the design variables. An
optimality criterion is suggested based on the concept of directional stiffness. First, under each
single-load case (SLC), the truss-like structure is optimized as per the fully stressed criterion.
Accordingly, the directional stiffness of the optimal structure under an SLC at every node is
obtained. Next, the directional stiffness of the truss-like structure under MLCs is determined
by ensuring that the directional stiffness is as similar as possible to the maximum directional
stiffness of the optimal structure under every SLC along all directions. Finally, the directions
and densities of the members in the optimal truss-like structures under MLCs are obtained by
solving the eigenvalue problems of the coefficient matrix of the directional stiffness at every node.
Two examples are presented to demonstrate the effectiveness and efficiency of the method.

KEY WORDS Topology optimization, Truss-like structure, Stress constraints, Multiple-load
cases, Eigenvalue problem

1. Introduction
In the past several decades, there have been substantial achievements in structural topology opti-

mization in both theoretical research and practical applications due to the pioneering research [1–4].
However, topology optimization problems are still the most challenging and rewarding tasks in the
structural optimization field owing to their difficulty and complexity. Several approaches for topol-
ogy optimization have been presented so far. Bendsøe and Kikuchi [3] proposed the homogenization
method, in which the sizes and angles of the microstructures in every element are optimized to achieve
the optimal structural topology. Later, the solid isotropic material with penalization (SIMP) method
was proposed to improve the efficiency of topology optimization [5, 6]. Xie and Steven [7] presented
the evolutionary structural optimization (ESO) method that involved generating holes in the uniform
isotropic continuum by deleting inefficient elements based on an optimality criterion. Wang et al. [8]
proposed the level set method to optimize structural topology by optimizing the boundary lines of the
holes in the continuum represented by the level set function. These methods have been widely applied
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to the numerical solution of topology optimization problems and received considerable attention [9–
11]. For more details, readers should refer to the relevant literature and references therein for recent
developments in the field of topology optimization [12, 13]. In addition, new advances have been made
in topology optimization in the past several years. To realize the objective of achieving topology opti-
mization in an explicit and geometric way, the moving morphable component (MMC)-based approach
[14] and moving morphable void (MMV)-based approach [15] were proposed successively. However,
most studies on structural topology optimization focus primarily on the uniform isotropic continuum.
The optimal structural topology is considered in terms of the void and solid material, or the boundaries
of the holes in the uniform isotropic continuum. All the aforementioned studies focused on the uniform
isotropic perforated continuum.

Michell [16] revealed the characteristics of topology optimization structures that generally exist
in the non-uniform anisotropic truss-like continua. Zhou and Li [17] presented a topology optimiza-
tion method based on the truss-like material model, which can describe the topology optimization
structures precisely. In particular, this method can closely approximate the analytical solution. Clear
relations exist between the truss-like material-distributed field and the members, which indicate the
force transferring paths in the truss-like structure. By deleting parts of the members in a truss-like
structure, the truss-like structure can be transformed into a uniform isotropic perforated continuum.
Without the suppression of the intermediate densities, there is no numerical instability. Therefore, the
topology optimization method based on the truss-like material model is valuable. This study focuses
on a method to optimize truss-like structures.

The structural topology optimization focuses primarily on structural compliance, which corresponds
to the global structural performance. However, local structural performances play an important role in
the design of industrial products and engineering structures. Among them, the local stress magnitude
must be taken into consideration to guarantee the strength of a product or structure. The topology opti-
mization with stress constraints is more complicated than the global structural performance-oriented
topology optimization problems. Since the stress constraint is a local constraint, which introduces a
large number of constraint equations into the optimization problem, the topology optimization with
stress constraints represents a more difficult problem. By using the SIMP approach, Duysinx and
Bendsøe [18] conducted pioneering research on the topology optimization involving stress constraints.
On this basis, the topology optimization with stress constraints has been widely studied based on
the SIMP method [19–25]. In addition, many level set-based methods have been proposed to solve
the topology optimization problems involving stress constraints [26–32]. In actual situations, it is
more likely that a product or structure is subjected to the MLC with stress constraints [33, 34]. In
this paper, we present an approach for structural volume minimization under stress constraints and
MLC to solve the three-dimensional topology optimization problems using a spatial truss-like material
model.

A simple algorithm using the fitting-direction stiffness envelope was adopted to optimize planar
truss-like structures with stress constraints under MLCs [35]. Only three design variables (two densities
and one angle of the member in 2D) occur at every node. Therefore, it is easy to determine the densities
and angles of members at every node by using the fitting-direction stiffness envelope. The idea here is
to extend upon the previous work [35] by solving the three-dimensional topology optimization problem
involving MLCs using a spatial truss-like material model. Compared to the two-dimensional topol-
ogy optimization, the three-dimensional topology optimization problem is more challenging because
there are six design variables (the densities and angles of three families of orthotropic members) at
every node of a spatial truss-like structure. It is very difficult to determine the densities and direc-
tions of the three families of members at every node by using the fitting-direction stiffness envelope
directly. To overcome this difficulty, the fitting problem of the direction stiffness envelope was con-
verted to an eigenvalue problem. It shows that the eigenvalues and eigenvectors of the coefficient matrix
of directional stiffness are the optimal densities and directions, respectively, of the three families of
members.

In this study, the spatial truss-like continuum with stress constraint under an MLC is optimized by
a new optimality criterion. First, under each SLC, the optimal truss-like continua are obtained based on
the fully stressed criterion. Next, an optimality criterion for truss-like continua under MLC is suggested:
The stiffness of the optimal structure under MLC should be as similar as possible to the maximum



228 ACTA MECHANICA SOLIDA SINICA 2020

stiffness of all optimal structures under every SLC along any direction at any point. By using the fitting
maximum stiffness obtained under all SLCs via the least-squares method, a quadric equation for the
directional stiffness is established. Next, the eigenvectors and eigenvalues of the coefficient matrix of
the quadric equation, which serve as the optimal directions and densities of the members under MLC,
respectively, are solved. Consequently, the optimal truss-like continua under MLC are obtained.

2. Truss-Like Material Model and its Elastic Matrix
Generally, the optimal structure with stress constraints under an SLC is a non-uniform orthotropic

truss-like structure. To simulate such a truss-like structure, a three-phase orthotropic truss-like material
model is employed, in which three families of members along the three orthotropic directions are
embedded continuously in a weak matrix as the spatial structure. There are an infinite number of
members in the infinitesimal spaces at any point in the truss-like material. According to the character
of truss-like material, there are no interactions between parallel members. Therefore, the Poisson’s
ratio is assumed as zero.

If the three families of members are arranged along the axes eb with densities tb (b = 1, 2, 3), the
relationship between stress and strain can be expressed as

{σx σy σz τyz τzx τxy }T = D(t1, t2, t3, e1, e2, e3){ εx εy εz γyz γzx γxy }T (1)

where

D(t1, t2, t3, e1, e2, e3) = E · diag[ t1 t2 t3 (t2 + t3)/4 (t3 + t1)/4 (t1 + t2)/4 ] (2)

is the elastic matrix. The components (t2 + t3)/4, (t3 + t1)/4 and (t1 + t2)/4 are the assumed shear
stiffnesses in the three coordinate planes; E is Young’s modulus; and the symbol “diag” denotes a
diagonal matrix. Equation (2) can represent an isotropic material in the case of t1 = t2 = t3.

If the three families of members are laid along directions nb =
∑3

i=1 nibe i(b = 1, 2, 3), with the
definition of coordinate transformation matrix

T (n1,n2,n3)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n2
11 n2

12 n2
13 n12n13 n13n11 n11n12

n2
21 n2

22 n2
23 n22n23 n23n21 n21n22

n2
31 n2

32 n2
33 n32n33 n33n31 n31n32

2n21n31 2n22n32 2n23n33 n22n33 + n32n23 n23n31 + n33n21 n21n32 + n31n22

2n31n11 2n32n12 2n33n13 n32n13 + n12n33 n33n11 + n13n31 n31n12 + n11n32

2n11n21 2n12n22 2n13n23 n12n23 + n22n13 n13n21 + n23n11 n11n22 + n21n12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

the elastic matrix can be expressed as

D(t1, t2, t3,n1,n2,n3) = TT(n1,n2,n3)D(t1, t2, t3, e1, e2, e3)T (n1,n2,n3) (4)

The element in the first row and the first column of the matrix in Eq. (4) is defined as the directional
stiffness along e1 and denoted as

S(e1) = D11 = E

3∑

b=1

n2
1btb = E

3∑

b=1

(e1 · nb)2tb (5)

From Eq. (5), the directional stiffness along any unit vector x =
∑3

i=1 xie i can be expressed as

S(x ) = E

3∑

b=1

(x · nb)2tb = E

3∑

i=1

3∑

j=1

(
3∑

b=1

nibnjbtb

)

xixj = ExTCx (6)

where

[C ]ij =
3∑

b=1

nibnjbtb (7)
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Fig. 1. Directional stiffness

This is a quadratic equation about the unit vector x . The stiffness along any direction is illustrated
by the black solid line in Fig. 1. To obtain the maximum stiffness in Eq. (6), the Lagrange function
with constraint |x | = 1 is established as

L = S(x ) + λE(1 − xTx ) (8)

where λ is the Lagrange multiplier. The direction of the maximum stiffness can be obtained by setting
the derivative of Eq. (8) with respect to the direction vector equal to zero, as

∂L

∂x
= 2ECx − 2λEx = 0 (9)

or

Cx = λx (10)

This is an eigenvalue problem. Equations (6) and (10) show that the eigenvectors and eigenvalues are
the directions and densities of the members, respectively.

3. Finite Element Analysis
The elastic matrix at any point (ξ, η, ζ) within an element e can be calculated by the interpolation

of the elastic matrices at the nodes belonging to the element

De(ξ, η, ζ) =
∑

j∈Se

Nj(ξ, η, ζ)Dj (11)

where Dj is the elastic matrix at node j, Nj is the shape function and Se is the set of nodes belonging
to element e.

According to the finite element method, we can obtain the element stiffness matrix

ke =
ˆ

Ve

BTDeBdV (12)

where B is the geometry matrix. The structural stiffness matrix K can be assembled from the element
stiffness matrices

K =
∑

e

ke (13)

The structural stiffness equation can be written as

KU = F (14)

where U and F denote the nodal displacement vector and the nodal force vector of the structure,
respectively. The nodal displacement vector U can be obtained by solving the structural stiffness
equation

U = K−1F (15)
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The strain at node j is calculated by the average value of the strains at the nodes belonging to the
element around node j

εj =
1
nj

∑

e∈Sj

BjU e (16)

where Bj is the geometry matrix of the elements around node j, Sj is the set of elements around node
j, nj is the number of elements around node j and U e is the nodal displacement vector of an element.
For convenience, Eq. (16) is denoted simply as

εj = BjU e (17)

The nodal stress vector for each element is obtained as follows

σ = DBjU e (18)

The material volume is calculated by the summation of the integration of member densities over
the structure

V =
∑

e

3∑

b=1

ˆ
Ve

tbdV (19)

where Ve is the volume of element e.

4. Envelope of Stiffness and Fitting
4.1. Optimal Densities and Directions of Member Under SLC

The optimization problem under each SLC l (l = 1, 2, . . . , Lc) can be described as

find t̄bjl, n̄bjl

min V
s.t. |σbjl| ≤ σp

,
b = 1, 2, 3
j= 1, 2, . . . , J
l= 1, 2, . . . , Lc

(20)

where t̄bjl, n̄bjl = { n̄1bjl n̄2bjl n̄3bjl }T and σbjl denote the member densities, orientations and the
stresses along the member (namely, the principal stresses in a truss-like continuum) at node j under
load case l, respectively; σp is the permissible stress; V is the structural volume; and Lc is the number
of load cases. The optimal member densities under each SLC are optimized according to the fully
stressed criterion

t̄k+1
bjl =

σbjl

σp
t̄kbjl (b = 1, 2, 3; j = 1, 2, . . . , J ; l = 1, 2, . . . , Lc) (21)

where superscript k is the iterative index. The members are aligned with the principal stress directions.
According to Eq. (6), the stiffness along any direction x in the optimal structure under an SLC is

expressed as

Sl(x ) = E
3∑

b=1

(
3∑

i=1

xin̄ibjl

)2

t̄bjl (l = 1, 2, . . . , Lc) (22)

The maximum stiffness along x under all single-load cases is expressed by

Sm(x ) = max
l

Sl(x ) = E max
l

3∑

b=1

(
3∑

i=1

xin̄ibjl

)2

t̄bjl (23)

The maximum stiffness is illustrated by the black thick line in Fig. 2.
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4.2. Optimal Densities and Directions of Members Under MLCs

The optimization problem of minimum volume with stress constraints under MLCs is elaborated
as follows. In the optimal structures under MLCs, the members at every node may exist in more than
three directions, and the members may even be non-orthogonal to one another. To simplify the problem
herein, a spatial truss-like material model with three families of orthotropic members is still employed.

Based on the fully stressed criterion, the optimal densities and directions of the members under a
SLC can be determined easily. However, the optimization problem under an MLC becomes rather com-
plicated. It is difficult to determine the directions of members at a node under MLC given three principal
stress directions under each SLC. To overcome this difficulty, an optimality criterion based on the direc-
tion stiffness is suggested. According to Eq. (4), once the optimal truss-like continua under each SLC are
obtained, the elastic matrix D(t̄1jl, t̄2jl, t̄3jl, n̄1jl, n̄2jl, n̄3jl) (l = 1, 2, . . ., Lc) of the optimal structure
under the SLC at every node is determined. The elastic matrix D(t1, t2, t3,n1,n2,n3) of the optimal
structures under an MLC can be estimated based on the elastic matrix D(t̄1jl, t̄2jl, t̄3jl, n̄1jl, n̄2jl, n̄3jl).
As we know, the strains along the members in the optimal structures under an SLC should not exceed
the allowable strain. Thus, the densities and directions of the members under an MLC can be adjusted
to ensure that the maximum strains along the directions of the members under all SLCs are not allowed
to exceed the allowable strain. Therefore, it is reasonable to assume that the stiffness along any direc-
tion at any point of the optimal structure under an MLC would not be less than the stiffness of the
structure under every SLC.

S(x ) ≥ Sm(x ), x ∈ S
2 (24)

where Sm(x ) denotes the maximum stiffness under all SLCs and S
2 is the surface of the unit sphere,

which can express all directions.
Therefore, the optimization problem of minimum volume with stress constraints under MLC is

transformed into

find tbj ,nbj

min V

s.t.
S(x ) ≥ Sm(x )

nT
p nq =

{
1 (p = q)
0 (p �= q)

,
b = 1, 2, 3
j = 1, 2, . . . , J

(25)

Unfortunately, it is very difficult to solve the optimization problem directly. To this end, we must
consider other methods and tools. A greater stiffness is known to correspond to the requirement of
a greater volume of material. To satisfy the constraint S(x ) ≥ Sm(x ) with minimal volume, it is
reasonable to assume that the stiffness along any direction at any point of the optimal structure under
an MLC should be as close as possible to the stiffness under every SLC. The optimization problem in
Eq. (25) is transformed into that of minimizing the summation of the difference between the stiffness
under the MLC and the maximum stiffness under all SLCs. In other words, the volume of the shaded
regions shown in Fig. 2 needs to be minimized. A surface, illustrated by the red solid line in Fig. 2, is
used to fit with the stiffness under the MLC and approach the envelope surface of the stiffness under
all SLCs. The distance from the center of symmetry to a point on the surface indicates the magnitude
of the directional stiffness.

According to Eq. (6), the directional stiffness of the optimal structure under an MLC at any point
is expressed as an equation for the quadric surface along any direction x

S(x ) = P(x )C̄
C̄ = { c1 c2 c3 c4 c5 c6 }T
P(x ) = {x2

1 x2
2 x2

3 2x1x2 2x2x3 2x3x1 } (26)

or

S(x ) = xTCx , C =

⎡

⎣
c1 c4 c6
c4 c2 c5
c6 c5 c3

⎤

⎦ (27)

where c1–c6 are constants to be determined.
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Fig. 2. Envelope surface of stiffness under every SLC

The summation of the differences between the stiffness of the optimal structure under an MLC
and the maximum stiffness under all SLCs over all directions, i.e., the volume of the shaded regions
illustrated in Fig. 2, is defined as

δ2 =
‹

[S(x ) − Sm(x )]2dA (28)

where the integral domain is the surface S
2 of the unit sphere, which represents all directions. To

minimize Eq. (28), with the aid of Eq. (26), the differentiation of δ2 with respect to C̄ yields

∂δ2

∂C̄
= 2

‹
PT(x )[P(x )C̄ − Sm(x )]dA = 0 (29)

This leads to
[‹

PT(x )P(x )dA

]

C̄ =
‹

PT(x )Sm(x )dA (30)

Under the spherical coordinate system, the left-hand side of Eq. (30) is integrated as

‹
PT(x )P(x )dA =

ˆ 2π

0

dθ

ˆ π

0

PT(x )P(x ) sin ϕdϕ =
4π

15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 1 1
1 3 1 0
1 1 3

4
0 4

4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)

Its inverse matrix is calculated by

[‹
PT(x )P(x )dA

]−1

=
3

16π

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

8 −2 −2
−2 8 −2 0
−2 −2 8

5
0 5

5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)
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The coefficient in Eq. (26) is obtained by

C̄ =
[‹

PT(x )P(x )dA

]−1 ‹
P(x )TSm(x )dA (33)

The right-hand side of Eq. (30) is integrated by a numerical method in the spherical coordinate system
‹

PT(x )Sm(x )dA =
ˆ 2π

0

ˆ π

0

PT(x )Sm(x ) sin ϕdθdϕ (34)

At every node, vector C̄ is established by Eq. (33). Subsequently, the coefficient matrix C in Eq.
(27) is obtained accordingly. To determine the local extrema of the quadric surface subject to the
condition that the points lie on the unit sphere, the corresponding Lagrange function is established as

L = xTCx + λ(1 − xTx ) (35)

The extremum condition of Eq. (35) is obtained by the differentiation of Eq. (35) with respect to unit
vector x

∂L

∂xi
= 2Cx − 2λx = 0 (36)

which leads to the eigenvalue problem

Cx = λx (37)

According to Eq. (10), we can find that the eigenvectors and eigenvalues of matrix C are the directions
and densities of the three families of members, respectively.

The eigenvectors and eigenvalues of matrix C are taken as the optimal directions and densities,
respectively, of the members under the MLC at the nodes. The optimal truss-like continua under the
MLC are obtained.

5. Optimization Approach
The densities and directions of the three families of members at the nodes are taken as the design

variables. The volume of the structure is the objective function. The densities of the members are
optimized by the fully stressed criterion under each SLC. The optimal truss-like continua under each
SLC are obtained. Next, the truss-like continua under the MLC are optimized based on the criterion
that the stiffness of the optimal structure under the MLC along any direction should be as close
as possible to the envelope surface of the stiffness under every SLC. The equation for the quadric
surface is used to fit with the stiffness of the optimal structure under the MLC, which is close to the
envelope surface of the stiffness under every SLC. Next, the coefficient matrix C of the quadric surface
is determined by this optimality criterion. The eigenvectors and eigenvalues of the coefficient matrix
of the direction stiffness are the optimal directions and densities, respectively, of the members under
the MLC at every node. The concrete optimization procedure involves the following steps:

(1) The design domain is meshed, and design variables are initialized.
(2) The structures are analyzed by the finite element method. The densities and directions of the

members in the structures under every SLC are determined by Eq. (21).
(3) The stiffness under the MLC is fitted by a quadric surface represented in Eq. (26), based on Eq.

(33), at every node.
(4) The eigenvectors and eigenvalues of the coefficient matrix C in Eq. (27) are calculated. The eigen-

vectors and eigenvalues are taken as the optimal directions and densities of the members under the
MLC at every node, respectively.

(5) We return to step (2) if the maximum relative change in the densities and directions of the mem-
bers in two successive iterations is larger than a given value (10−2 in this study). Otherwise, the
iterations are terminated. The optimal truss-like continua under MLC are obtained.

(6) The optimal truss-like continua are illustrated.
(7) The optimal truss-like continua are discretized into frame structures.
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Fig. 3. Optimal configuration of the first example: a calculation model; b optimal truss-like structure; c optimal spatial
frame

To demonstrate the truss-like structure, two types of figures are adopted with crossed lines and
continuous lines, respectively. Using crossed lines, the densities and angles of members are presented
using three short lines orthogonal to one another at every node. The angles and lengths of the three
lines stand for the angles and densities of three families of members at every node. A few lines that
are too long are cut short to make the figure distinguishable.
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Fig. 4. Optimal configuration of the second example: a calculation model; b optimal truss-like structure; c optimal spatial

frame
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Fig. 5. Iterative history: a dimensionless volume; b stress ratio (σ/σp)

The structural topology is optimized in two steps. Firstly, an optimal truss-like material distribution
field is formed, which is very close to the analytical solution. Clear relationship exists between the
optimal truss-like material distribution field and the discrete truss used in engineering, which indicates
the optimal force transferring paths. Secondly, by deleting and remaining parts of the members in
a truss-like structure, the truss-like structure can be transformed into a uniform isotropic perforated
continuum or a truss structure to achieve structural topology optimization.

6. Numerical Examples
Two cubes under multiple-load cases are optimized, measuring 1.0 meters on each side. They are

supported at their four corners on the bottom surface. The cubes use 10×10×10 hexahedron elements
with 8 nodes. The Young’s modulus and allowable stress are E = 210 GPa and σp = 160 MPa,
respectively. In the first example, two independent load sets F1 = F2 = 103 kN act at the center on
the top surface along the two orthotropic directions in the horizontal plane as the two load cases. The
mechanical model of the first example is illustrated in Fig. 3a. The truss-like material distribution
field is optimized after 10 iterations. The optimal truss-like material distribution field is represented
in Fig. 3b, in which the lengths and orientations of short lines stand for the densities and orientations
of members at nodes, respectively. The optimal spatial frame structure is demonstrated in Fig. 3c.

In the second example, two groups of forces act on the top of the cube along the vertically down-
ward direction as the two load cases. The mechanical model of the second example is illustrated in
Fig. 4a. The truss-like material distribution field is optimized after 10 iterations. The optimal truss-like
structure and optimal spatial frame structure are demonstrated in Fig. 4b, c, respectively.

The dimensionless volume is defined as

V̄ =
V σp

Fh
(38)

where h is the structural height. The iteration histories of dimensionless structural volume and stress
are given in Fig. 5, where the stress is the maximum stress in all members under all load case.

7. Conclusions
A new method of structural topology optimization is presented to minimize the volume of truss-like

structures with stress constraints under an MLC. An optimality criterion is suggested such that the
stiffness of the optimal structure under the MLC is as close as possible to the stiffness under every
SLC along any direction at any point. The direction stiffness of the optimal structure under the MLC
is fitted to approach the maximum direction stiffness under all SLCs. Next, the coefficient matrix of
the direction stiffness is determined by the optimality criterion. The optimal directions and densities of
the members under an MLC, which represent the eigenvectors and eigenvalues of the coefficient matrix
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of the direction stiffness, respectively, are determined at every node. Finally, the optimal spatial truss-
like continua with stress constraints under an MLC are obtained. Two examples are presented to
demonstrate the effectiveness and efficiency of the method.
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