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ABSTRACT The nonlinear vibration problem is studied for a thin-walled rubber cylindrical
shell composed of the classical incompressible Mooney–Rivlin material and subjected to a radial
harmonic excitation. With the Kirchhoff–Love hypothesis, Donnell’s nonlinear shallow shell the-
ory, hyperelastic constitutive relation, Lagrange equations and small strain hypothesis, a system
of nonlinear differential equations describing the large-deflection vibration of the shell is derived.
First, the natural frequencies of radial, circumferential and axial vibrations are studied. Then,
based on the bifurcation diagrams and the Poincaré sections, the nonlinear behaviors describ-
ing the radial vibration of the shell are illustrated. Examining the influences of structural and
material parameters on radial vibration of the shell shows that the vibration modes are highly
sensitive to the thickness–radius ratio when the ratio is less than a certain critical value. More-
over, in terms of the results of multimodal expansion, it is found that the response of the shell to
radial motion is more regular than that without considering the coupling between modes, while
there are more phenomena for the uncoupled case.

KEY WORDS Thin-walled cylindrical shell, Incompressible Mooney–Rivlin material, Donnell’s
nonlinear shallow shell theory, Nonlinear vibration

1. Introduction
As typical hyperelastic materials, some important properties of rubber materials (such as high elas-

ticity and large deformation) are an indispensable part of many engineering fields. Correspondingly,
these materials have a wide range of products, such as ordinary tires, gaskets and tubing. Cylindri-
cal shells, due to their excellent mechanical properties, are widely used, such as spacecraft housings,
conveyor tubes or engine drums. For thin and flexible structures, they produce nonlinear responses
to typical disturbances. Under both static and dynamic excitations, nonlinearity becomes an impor-
tant aspect of structural behavior [1]. In addition, the hyperelastic cylindrical shell can combine the

�
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advantages of geometric and physical nonlinearities, so it is worth studying the nonlinear and chaotic
vibration characteristics.

As a result, researchers have long been interested in the chaotic dynamic response of cylindrical
shells. In the field of mechanics, shell and plate structures are the most economical in practical appli-
cations, and the research on chaotic vibration of shell and plate has attracted much attention. Wang
et al. [2] investigated the natural frequencies, complex modes and critical speeds of an axially moving
rectangular plate. The authors used the classical thin plate theory to formulate the equations of motion
of a vibrating plate and discussed the influences of distance ratio, moving speed, immersed depth ratio,
boundary conditions, stiffness ratio and aspect ratio of the plate as well as the fluid–plate density ratios
on the free vibrations of the moving plate–fluid system. Hao et al. [3] analyzed the nonlinear dynam-
ics of a simply supported functionally graded material rectangular plate in a thermal environment
subjected to transversal and in-plane excitations, and gave the periodic, quasi-periodic and chaotic
motions. Yang et al. [4] presented a unified solution for the vibration analysis of cylindrical shells with
a general stress distribution using the Flügge shell theory and modal orthogonality simplification. Li
et al. [5] studied the global bifurcations and multi-pulse chaotic dynamics for a simply supported rect-
angular thin plate by the extended Melnikov method. Bich et al. [6] analyzed the nonlinear vibration
of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads based on
the improved Donnell’s shell theory, and they examined the effects of preloaded axial compression, the
characteristics of functionally graded materials and dimensional ratios on the behaviors of the shells.
Sofiyev et al. [7] employed the first-order shear deformation theory and the homotopy perturbation
method to investigate the nonlinear free vibrations of a functionally graded orthotropic cylindrical
shell interacting with the two-parameter elastic foundation. Zhu et al. [8] investigated the nonlinear
free vibration behaviors of orthotropic piezoelectric cylindrical nano-shells and examined the influences
of surface parameters and geometric characteristics. Amabili et al. [9] studied the nonlinear vibration
of a water-filled circular cylindrical shell subjected to a radial harmonic excitation experimentally and
numerically, and detected the chaotic motion in the frequency region where the traveling wave response
was presented. Yamaguchi et al. [10] presented the chaotic vibrations of a shallow cylindrical shell panel
under a harmonic lateral excitation and discussed the effect of the in-plane elastic constraint on the
chaos of the shell. Han et al. [11] studied the chaotic motion of elastic cylindrical shells by dynamic
equations containing quadratic and cubic nonlinear terms, and briefly explained the validity of ana-
lyzing chaotic motion with a single-mode model in the conclusions. Kryskoa et al. [12] investigated
the chaotic vibrations of a closed cylindrical shell in a temperature field. Zhang et al. [13] studied the
resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell and found
that there exist the twin phenomena between the Pomeau–Manneville-type intermittent chaos and the
period doubling bifurcation. Li et al. [14] analyzed the nonlinear transient dynamic response of a func-
tionally graded material sandwich doubly curved shell with the homogenous isotropic material core
and functionally graded face sheet using a new displacement field on the basis of Reddy’s third-order
shear theory for the first time. Amabili et al. [15] investigated the geometric nonlinear response of a
water-filled, simply supported circular cylindrical shell and manifested the response undergoes some
interesting behaviors with the increasing excitation amplitude, such as period doubling bifurcation,
sub-harmonic response, quasi-periodic response and chaotic behaviors.

Generally, chaotic motion is a part of nonlinear vibrations, and the study of nonlinear behavior is
the basis of analyzing chaotic phenomena. The nonlinear responses of hyperelastic cylindrical shells
mainly come from two aspects: One is the large-deflection deformation of the shell and the other is the
nonlinear constitutive relations of hyperelastic materials. The large deformation of the structure usu-
ally introduces geometric nonlinearity, which is the main difficulty in studying the nonlinear vibrations
of cylindrical shells. Amabili [16] presented the original and consistent first-order shear deformation
theory that retains all nonlinear terms in the in-plane displacements and rotations, and gave numerical
applications of nonlinear forced vibration of a simply supported composite laminated cylindrical shell.
In the framework of the classical nonlinear theory, Krysko et al. [17] studied the complex vibrations
of a closed infinite cylindrical shell subjected to a transversal local load. Breslavsky et al. [18] studied
the nonlinear response of a water-filled, thin circular cylindrical shell that was simply supported at
the edges and subjected to multi-harmonic excitations, and explored the nonlinear dynamics. Employ-
ing the Lagrangian theory and the multi-scale method, Du et al. [19] studied the nonlinear forced
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vibrations of an infinite FGM cylindrical shell and revealed the path leading to chaos of the sys-
tem. In addition to the geometric nonlinearity caused by large deformation, material nonlinearity is
another major factor of nonlinear response. Since hyperelastic materials have physical nonlinearity, the
corresponding structures are prone to finite deformations, so geometric nonlinearity may occur after
deformation. Therefore, the research related to hyperelastic structures usually involves geometric and
physical nonlinearities. For this reason, the nonlinear responses of hyperelastic structures have received
a lot of attention. Iglesias et al. [20] investigated the large-amplitude axisymmetric free vibrations of
an incompressible hyperelastic orthotropic cylinder and proved that the motion of the structure can
evolve from periodic to quasi-periodic and chaotic motions. Gonçalve et al. [21] presented detailed anal-
yses of the nonlinear vibration of a pre-stretched hyperelastic circular membrane subjected to finite
deformations and a time-varying lateral pressure. Breslavsky et al. [22] investigated the free and forced
nonlinear vibrations of a hyperelastic thin square plate, and the results stated that the frequency shift
between low- and large-amplitude vibrations of the plate weakens with an increased initial deflection.

There are many studies on cylindrical shells or hyperelastic structures in the field of dynamics,
while some involve hyperelastic cylindrical shells. Based on the finite deformation theory, Shahinpoor
et al. [23] analyzed the large-amplitude radial vibrations of a thin hyperelastic tube and obtained an
exact solution to its simplified problem. Wang et al. [24] examined the radially and axially symmetric
nonlinear motions of a hyperelastic cylindrical tube composed of a class of transversely isotropic com-
pressible neo-Hookean materials about the radial direction. Breslavsky et al. [25] studied static and
dynamic responses of a circular cylindrical shell made of hyperelastic arterial material and found the
complex nonlinear dynamic behaviors in a resonant regime with both driven and companion modes.

At present, there are many studies on the nonlinear vibrations of cylindrical shells; however, most of
the studies are based on linear constitutive relationships, while little literature has reported the nonlin-
ear motion of cylindrical shells based on hyperelastic constitutive relations. This paper mainly focuses
on the hyperelastic property of rubber materials but not other properties, such as viscoelasticity. The
nonlinear behaviors are studied for a rubber cylindrical shell composed of the classical incompressible
Mooney–Rivlin material, in which the shell is subjected to a radial harmonic excitation. In Sect. 2, the
necessary preliminaries of tensor analysis are given, and a system of nonlinear differential equations
describing the motion of the shell is derived based on some necessary hypotheses and reasoning pro-
cesses. In Sect. 3, for the case of multimodal expansion, the influence of the interaction between modes
on the calculation results is first compared. Particularly, the effects of excitation, structural parame-
ters and material parameters on the modes of radially nonlinear vibration of the shell are analyzed in
detail by bifurcation diagrams and Poincaré sections, respectively. Finally, the conclusions drawn in
this paper are presented in Sect. 4.

2. Formulation
2.1. Preliminaries

Let X be a particle in the initial configuration χ0, and let X = χ0(X) be the place of the particle.
Correspondingly, in the current configuration χt, the particle occupies the place x , given by

x = χt(X) = χt

[
χ−1

0 (X)
]

= χ(X) (1)

In order to analyze the deformation from the initial configuration χ0 to the current configuration χt,
differentiating Eq. (1) with respect to X yields

dx =
dx
dX

· dX = F · dX (2)

where F = dx/dX is the deformation gradient tensor, and for future reference, the standard notation
[26] is defined as

J = detF (3)

and the Green–Lagrange strain tensor is as follows

E =

⎡

⎣
εxx εxθ εxz

εθx εθθ εθz

εxz εθz εzz

⎤

⎦ =
1
2

(
FT · F − I

)
(4)
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The polar decomposition theorem is of considerable assistance in the geometrical interpretation of the
deformation. With the aid of this theorem, the deformation gradient tensor F can be decomposed
into the product of an orthogonal rotation tensor R and a symmetric tensor (the right Cauchy stretch
tensor U or the left Cauchy stretch tensor V ); then, the general deformation is decomposed into
pure stretch and rotation. The polar decomposition theorem states that F has uniquely right and left
decompositions of the following form

F = R · U = V · R (5)

Based on the right decomposition of F, the right Cauchy–Green deformation tensor can be expressed
as

C = FT · F = U 2 (6)

Substitution of Eq. (6) into Eq. (4) leads to

C = 2E + I =

⎡

⎣
2εxx + 1 2εxθ 2εxz

2εθx 2εθθ + 1 2εθz

2εxz 2εθz 2εzz + 1

⎤

⎦ (7)

Then the principal invariants of the right Cauchy–Green deformation tensor C are given by

I1 = tr (C ) , I2 =
1
2

[
(trC )2 + tr

(
C 2

)]
, I3 = J2 = det C (8)

2.2. Hyperelastic Materials

As a classical hyperelastic constitutive model, the Mooney–Rivlin model is used to simulate the
nonlinear elastic responses of certain rubber and rubber materials, and the associated strain energy
function is as follows

Φ =
μ1

2
(I1 − 3) +

μ2

2
(I2 − 3) (9)

where μ1, μ2 are material constants; with Eqs. (7) and (8), the detailed expressions of the principal
invariants I1, I2, I3 are, respectively, given by

I1 = 2 (εxx + εθθ + εzz) + 3
I2 = 4

(
εxxεθθ + εxxεzz + εθθεzz − ε2xθ − ε2xz − ε2θz

)
+ 3

I3 = J2 = (2εzz + 1)
[
(2εxx + 1) (2εθθ + 1) − 4ε2xθ

]

− 4ε2θz (2εxx + 1) − 4ε2xz (2εθθ + 1) + 16εxθεθzεxz (10)

The incompressibility constraint requires that J = 1 [26]. With the third equation in Eq. (10), it gives

εzz =
1 + 4ε2θz (2εxx + 1) + 4ε2xz (2εθθ + 1) − 16εxθεθzεxz

2 [(2εxx + 1) (2εθθ + 1) − 4ε2xθ]
− 1

2
(11)

Under the assumption of small strain, the expression of εzz in a polynomial form is derived, namely

εzz = − (εxx + εθθ) + 2
(
ε2xx + ε2θθ + εxxεθθ + ε2xθ + ε2θz + ε2xz

) − 4εxx

(
ε2xx + ε2θθ + 2ε2xθ + ε2xz

)

− 4εθθ

(
ε2θθ + ε2xx + ε2θz + 2ε2xθ

) − 8εxθεxzεθz + 8
(
ε3xxεθθ + εxxε3θθ + 4εxxεθθε

2
xθ

)

+ 16 (2εxxεxθεxzεθz + 2εθθεxθεxzεθz) + 8
(
ε4xx + ε4θθ + ε4xθ + ε2xxε2θθ + 3ε2xxε2xθ + 3ε2θθε

2
xθ

)

+ 8
(
3ε2θθε

2
xθ + ε2xxε2xz + ε2θθε

2
θz + ε2xθε

2
θz + ε2xθε

2
xz

)
+ · · · (12)

Substituting Eqs. (12) and (10) into Eq. (9) yields the specific expression of the strain energy function
(9) associated with the incompressible Mooney–Rivlin material. With the consideration of the com-
plexity of computation, expanding the strain energy function for small strains, including εxx, εθθ, εzz,
εxθ, εxz and εθz, up to the fourth order, it gives

Φ ≈ 2μ1

(
ε2xx + ε2θθ + εxxεθθ + ε2xθ + ε2θz + ε2xz

)
+ 8μ1

(
ε3xxεθθ + εxxε3θθ + 4εxxεθθε

2
xθ

)

− 4μ1

[
εxx

(
ε2xx + ε2θθ + 2ε2xθ + ε2xz

)
+ εθθ

(
ε2θθ + ε2xx + ε2θz + 2ε2xθ

)
+ 2εxθεxzεθz

]
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Fig. 1. Sketch map of a cylindrical shell: a symbols used for dimensions and displacements of a generic point; b cross
section of the shell about the x direction

+ 8μ1

[
4 (εxxεxθεxzεθz + εθθεxθεxzεθz) +

(
ε4xx + ε4θθ + ε4xθ + ε2xxε2θθ + 3ε2xxε2xθ +3ε2θθε

2
xθ

)]

+ 8μ1

(
3ε2θθε

2
xθ + ε2xxε2xz + ε2θθε

2
θz + ε2xθε

2
θz + ε2xθε

2
xz

)
+ 2μ2 [εxxεθθ − (

ε2xθ + ε2xz + ε2θz

)]

− 2μ2 (εxx + εθθ)
[
(εxx + εθθ) − 2

(
ε2xx + ε2θθ + εxxεθθ + ε2xθ +ε2θz + ε2xz

)]

− 8μ2 (εxx + εθθ)
[
εxx

(
ε2xx + ε2θθ + ε2xz + 2ε2xθ

)
+ εθθ

(
ε2θθ + ε2xx +ε2θz + 2ε2xθ

)
+ 2εxθεxzεθz

]

(13)

2.3. Shell Theory and Discretization of Displacement

Consider a thin-walled rubber cylindrical shell in the shell cylindrical coordinate system (x, θ, z);
see Fig. 1. A cylindrical coordinate system is established in the middle surface of the shell, with x,
θ and z the axial, circumferential and radial directions, respectively. Figure 1b shows a cross section
with respect to the x direction, and the displacements of a point in the middle surface of the shell are
indicated by u, v and w. The displacements of an arbitrary material point in the shell are denoted
by u1, u2 and u3. The initial length, initial thickness and radius of the middle surface of the shell are
denoted by l, h and R, respectively.

In terms of the Kirchhoff–Love hypothesis [27], the relation between the displacement (u1, u2, u3)
of an arbitrary material point and the displacement (u, v, w) of a point at the middle surface of the
shell is that

u1 = u (x, θ) − ∂w

∂x
z, u2 = v (x, θ) − 1

R

∂w

∂θ
z, u3 = w (x, θ) (14)

Based on Donnell’s nonlinear shallow shell theory, the relations between strains and displacements are,
respectively, given by [28].

εxx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

− ∂2w

∂x2
z

εθθ =
1
R

(
∂v

∂θ
+ w

)
+

1
2R2

(
∂w

∂θ

)2

− 1
R2

∂2w

∂θ2
z

εxθ =
1
R

∂u

∂θ
+

∂v

∂x
+

1
R

∂w

∂θ

∂w

∂x
− 2

1
R

∂2w

∂θ∂x
z (15)

Generally, for thin-walled shells, it gives εzz ≈ 0, εxz ≈ 0, εθz ≈ 0. Then the expressions describing the
kinetic energy T and the elastic strain energy P of the shell are given as follows

T =
1
2
ρ

∫ 2π

0

∫ l

0

∫ h
2

− h
2

(u̇2
1 + u̇2

2 + u̇2
3)Rdθdxdz (16)
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P =
∫ 2π

0

∫ l

0

∫ h
2

− h
2

ΦRdθdxdz (17)

where h, ρ and Φ are the thickness, the density of the material and the strain energy function, respec-
tively.

The simply supported boundary conditions at the shell edges, x = 0, l, require that

v = w = 0 (18)

In order to simplify the problem, the continuous system with infinite degrees of freedom is discretized
into a finite degree of freedom using approximate functions. The base functions describing the inter-
mediate surface displacements, which satisfy identically the geometric boundary conditions, are used
to discretize the system, i.e.,

⎧
⎨

⎩

u(x, θ, t) = umn(t) cos(nθ) cos(λmx) + u10(t) cos(λ1x) + u30(t) cos(λ3x)
v(x, θ, t) = vmn(t) sin(nθ) sin(λmx) + v10(t) sin(λ1x) + v30(t) sin(λ3x)
w(x, θ, t) = wmn(t) cos(nθ) sin(λmx) + w10(t) cos(λ1x) + w30(t) cos(λ3x)

(19)

where m and n are the numbers of longitudinal half wave and circumferential wave, λm = mπ/l, t is
time, and umn(t), vmn(t) and wmn(t) are generalized displacements with respect to t, respectively.

2.4. Lagrange Equations, External Forces and Damping

Let We be the virtual work done by the periodic external force and Wd be Rayleigh’s dissipation
function [29] describing the virtual work done by the non-conservative damping force. The correspond-
ing expressions are, respectively, given by

We =
∫ 2π

0

∫ l

0

(Fxu + Fθv + Fzw)Rdθdx

Wd =
1
2
c

∫ 2π

0

∫ l

0

(u̇2 + v̇2 + ẇ2)Rdθdx (20)

where Fx, Fθ and Fz are distributed forces per unit area acting on the shell in the directions of x, θ
and z, respectively; and c is a coefficient related to the dumping. Simple calculation yields [29]

Wd =
1
2

l

2
R

N∑

n=1

M∑

m=1

ψncm,n(u̇2
m,n + v̇2

m,n + ẇ2
m,n) (21)

where ψn =
{

2π, n = 0
π, n > 0 and cm,n is the damping coefficient related to the modal damping ratio, which

can be evaluated from experiments.
Let ςm,n = cm,n/ (2ρm,nωm,n), where ωm,n is the natural frequency of mode (m,n) and ρm,n is

the modal mass of this mode. Let q = (um,n, vm,n, wm,n)T, where the generic elements of the time-
dependent vector q are referred to as qi(i = 1, 2, . . . , 9). The generalized forces Gi (i = 1, 2, . . . , 9) can
be obtained by differentiating Rayleigh’s dissipation function and the virtual work done by external
forces, i.e.,

Gi = −∂Wd

∂q̇i
+

∂We

∂qi
(i = 1, 2, . . . , 9) (22)

Then, the Lagrange equations describing the motion of the shell are given by

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Gi (i = 1, 2, . . . , 9) (23)

where L = T −P is the Lagrangian function associated with the system and i is the number of modes.
Substituting the related expressions into the Lagrange equations (23) yields the nonlinear differential

equations

Mq̈ + Cq̇ + Kq + K 2q
2 + K 3q

3 = F cos (Ωt) (24)
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where M is the mass matrix, K is the linear rigid matrix, and K 2 and K 3 are the quadratic and
cubic nonlinear rigid matrices, respectively. C is the Rayleigh damping matrix, and C = βK +
γM , where β and γ are constants to be determined experimentally. q = {q1, q2, . . . , q9}T, and F =
{Fx1, Fx2, Fx3, Fθ1, Fθ2, Fθ3, Fz1, Fz2, Fz3}T. The elements of the mass and linear stiffness matrices are
given in Appendix. This work only considers the radial vibration of the cylindrical shell under a radial
periodic excitation, which means that Fxj = Fθj = 0 (j = 1, 2, 3). It is convenient to introduce the
following transformations,

Qi =
qi

h
(i = 1, 2, . . . , 9) (25)

C̄ = M−1C ,ω = M−1K , K̄ 2 = hM−1K 2, K̄ 3 = h2M−1K 3, F̄ =
M−1F

h
(26)

Multiplying both sides of Eq. (24) by M−1, with Eqs. (25) and (26), it yields

Q̈ + C̄Q +
(
ω + K̄ 2 + K̄ 3

)
Q = F̄ cos (Ωt) (27)

where
[
C̄

]
= diag (2ζm,n,1ωm,n,1, 2ζm,n,2ωm,n,2, . . . , 2ζm,n,9ωm,n,9) (28)

where ζi = ωm,n,iζm,n,i, ωm,n,i and ζm,n,i (i = 1, 2, . . . , 9) are natural frequencies and damping ratios,
respectively.

In addition, since the in-plane displacement is relatively small compared with the radial displace-
ment, the inertia and damping terms in the corresponding plane are negligible. Currently, most of the
literature simplifies the above differential equations into those of radial motion via introducing stress
functions and ignoring the inertia and damping terms in the surface. Then the equations are simplified
into a differential equation only regarding the radial displacement w. However, after introducing the
stress function, the computing process will become more complex. In order to simplify the process,
this paper deals with Eq. (27) based on the concept of condensation of degree of freedom. Under
the conditions of neglecting the in-plane inertia and damping terms, Eq. (27) may give the following
approximate motion and deformation relations

⎡

⎢
⎣

1 · · · 0 0 0 0
...

. . .
...

...
...

...
0 · · · 1 0 0 0

⎤

⎥
⎦

6×9

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
...
0
ẅj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
9×1

+

⎡

⎢
⎣

K̄11 · · · K̄19

...
. . .

...
K̄61 · · · K̄69

⎤

⎥
⎦

6×9

⎧
⎨

⎩

uj

vj

wj

⎫
⎬

⎭
9×1

= {0}6×1 (29)

Moreover,

{
uj

vj

}

6×1

=[S]T6×6

{
wj

ẅj

}

6×1

=

⎡

⎢
⎣

S11 S12 S13

...
. . .

...
S61 S62 S63

⎤

⎥
⎦

6×3

{wj}3×1 +

⎡

⎢
⎣

S14 S15 S16

...
. . .

...
S64 S65 S66

⎤

⎥
⎦

6×3

{ẅj}3×1

(30a)

where

[S]T = −

⎡

⎢
⎣

K̄11 · · · K̄16

...
. . .

...
K̄61 · · · K̄66

⎤

⎥
⎦

−1 ⎡

⎢
⎣

K̄17 K̄18 K̄19 0 0 0
...

...
...

...
...

...
K̄67 K̄68 K̄69 0 0 0

⎤

⎥
⎦ (30b)

With the aid of Eq. (30), the differential equation of motion is given as follows

Ẅ + ςẆ +
(
ω + K̄ 2c + K̄ 3c

)
W = F z cos (Ωt) (31)

where Wj = wj/h
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Fig. 2. Natural frequencies of the shell versus the number circumferential waves n for α = 0.02, β = 0.5

3. Numerical Simulations and Results
Next, to simulate numerically the nonlinear oscillation problem considered in this paper, it is

necessary to take some material and structure parameters, i.e., μ1 = 416185.5 Pa, μ2 = −498.8 Pa,
ρ = 1100 kgm−3 (the linearized material parameters of the incompressible Mooney–Rivlin material
given in [22]), R = 150×10−3 m (the radius of the cylindrical thin-walled shell) and ζm,n,3 = 0.0005 (the
damping ratio with ζm,n,i = ζm,n,1ωm,n,i/ωm,n,1 given in [30]). To discuss the influences of structural
parameters, it is convenient to introduce the following two structural parameters

α =
h

R
, β =

2R

l
(32)

where α is the thickness–radius ratio and β is the diameter–length ratio.

3.1. Natural Frequencies

To determine the structural damping coefficient, the natural frequencies of the shell are required to
be analyzed. The detailed information of natural frequencies can be obtained with the aid of Eq. (24).
Additionally, the relations between natural frequencies and different parameters are also obtained, as
shown in Fig. 2.

Comparing among the circumferential, axial and radial directions, Fig. 2 illustrates that the nat-
ural frequency of radial motion is usually smallest. To determine the characteristics of fundamental
frequency of the shell, further analysis of the radial natural frequency should be conducted.

Some relations between the structural parameters and radial natural frequencies are given via
analyzing different combinations of structural parameters, as shown in Fig. 3. Generally, for short
cylindrical shells, the diameter–length ratio β > 1; otherwise, they are long shells. In terms of the
curves shown in Fig. 3, for moderately long shells, β = 0.5, the comparison among α = 0.005, α = 0.01
and α = 0.02 indicates that the larger is the thickness–radius ratio α, the larger are the natural
frequencies of modes, and the influence is more significant for the mode with a larger circumferential
wave number n. And the comparison among β = 0.5, β = 1.0 and β = 1.5 manifests that the larger is
the diameter–length ratio, the larger are the natural frequencies of modes, and the influence is more
significant for the mode with a lower circumferential wave number n.

Additionally, Fig. 3 clearly illustrates that, generally speaking, the fundamental frequency of the
shell is not equal to the frequency of the mode with the wave numbers m = 1 and n = 0. Comparing
the influences of the thickness–radius ratio α and the diameter–length ratio β, it is obvious that the
diameter–length ratio β affects the fundamental frequency more significant. With the increasing value
of diameter–length ratio β, the circumferential wave number n of the mode with the lowest frequency
increases remarkably. Nevertheless, the higher-order natural vibration mode is difficult to be excited;
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Fig. 3. Relations of radial natural frequencies with different values of α and β

actually, this paper mainly focuses on the influence of the thickness–radius ratio α. Then, further
mode analyses with the circumferential wave numbers n = 0–4 are carried out. Next, the influences of
structural parameters on the five modal frequencies are considered.

As shown in Fig. 4a, b, the effects of thickness–radius ratio α on the five modal frequencies of the
shell are slightly different. In general, the thickness–radius ratio α has a greater influence on the modes
with larger circumferential wave numbers n, which is also consistent with the results in Fig. 3. Fur-
thermore, the intersection of curves in Fig. 4a indicates that, for moderately long shells, if appropriate
parameters are selected, the frequencies of modes with different circumferential wave numbers could
also be identical, which usually means there is 1:1 internal resonance. Moreover, Fig. 4b manifests
that, when the diameter–length ratio is large, the frequencies of the modes with low circumferential
wave numbers are close to one another. Figure 4c, d shows that the diameter–length ratio β has an
extremely complex effect on the natural frequencies of the shell. They also verify the conclusion drawn
in Fig. 3 that the frequencies of the modes with low circumferential wave numbers are almost identi-
cal when the diameter–length ratio β is larger than 1. For certain range of the diameter–length ratio
β ∈ (0.5, 2), the frequency of the mode (m = 1, n = 4) reaches the lowest value basically; namely,
when the thickness–radius ratio α is large, the frequency of the mode (m = 1, n = 3) may be the
lowest, but the mode (m = 1, n = 4) is also very close to it. In addition, the crossing of the curves
with different circumferential wave numbers versus certain diameter–length ratio β manifests that the
internal resonance depends on the diameter–length ratio.
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Fig. 4. Relations of radial natural frequencies with α or β

Fig. 5. Bifurcation diagram describing the radial motion of the shell with the excitation amplitude Fz
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Fig. 6. Poincaré sections describing the radial chaotic motions of the shell with different excitation amplitudes

Fig. 7. Bifurcation diagram describing the radial motion of the shell with the excitation frequency
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Fig. 8. Poincaré sections describing the radial chaotic motions of the shell with different excitation frequencies

As mentioned above, when the structural parameters satisfy certain conditions, the modal fre-
quencies of the shell may be identical, and the complex internal resonance behavior may occur. The
numerical examples show that the amount of computation will increase significantly due to the strong
coupling effect caused by the interaction between modes. Therefore, in this paper, only the nonlinear
dynamic behaviors of the shell without internal resonance are studied in detail, and some interesting
phenomena are obtained, while the phenomena considering the coupling effect are simply analyzed for
comparison.

3.2. Nonlinear Vibrations Without the Coupling Effect

Obviously, Eq. (24), the vibration characteristics of the shell studied in this paper, is strongly
nonlinear. Next, the fourth-order Runge–Kutta method is used to solve the equations numerically,
and the effects of various parameters on the vibration characteristics of the shell are analyzed. In
addition, it can be seen from the above analysis that the fundamental frequency of the shell is usually
determined by its radial natural frequency. Therefore, this paper only considers the case when the
external excitation equals the fundamental frequency. Based on the analysis of Fig. 3, it is found that
when the circumferential wave number n = 4, the corresponding frequency is the lowest for different
combinations of structural parameters and the influences of structural parameters are obvious. Then,
the following study should consider the mode m = 1, n = 4. Additionally, as is shown in Fig. 3, due
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Fig. 9. Bifurcation diagrams describing the radial motions versus the thickness–radius ratio α

to the increase in diameter–length ratio β, the fundamental mode changes into a higher-order natural
vibration mode which has a large circumferential wave number n.

3.2.1. Influences of Excitation Amplitude and Excitation Frequency
Generally, the amplitude of the external excitation has the most direct relation with the response of

structures. Therefore, the chaotic dynamic performance of the shell on different excitation amplitudes
needs to be analyzed. Setting the structural parameters as α = 0.02, β = 0.5, employing the fourth-
order Runge–Kutta method to solve the nonlinear equations and selecting the Poincaré sections under
different excitation amplitudes, the bifurcation diagram of the radial motion of the shell with respect
to the magnitude of the external excitation can be obtained.

Figure 5 illustrates that the radial motion of the shell is periodic for the excitation amplitude
satisfying Fz < 5 N, and when the excitation amplitude Fz is approximately equal to 5.05 N, the
chaotic radial motion of the shell appears for the first time. After that, with the increase in the
excitation amplitude, the radial vibration presents an alternating change between the periodic and
chaotic motions. It is worth noting that the motion of period-3 can be observed in the bifurcation
diagram. Remarkably, it is found that the motion of period-3 occurs between the two chaotic regions,
and evolves from chaotic to periodic oscillations through the path of period doubling bifurcation. This
is consistent with the idea that period-3 implies chaos [31].

Figure 6 illustrates the Poincaré sections with certain excitation amplitudes. Some structures exhibit
fractal features, which are referred to as the strange attractors. In general, the attractors can be
classified into four different types, namely point attractor, limit cycle attractor, torus attractor and
strange attractor. Here we mainly introduce the strange attractor, an attractor in the phase space,
where the points never repeat themselves and the orbits never intersect, but stay within the same area
of the phase space. Unlike limit cycles or point attractors, strange attractors are non-periodic and can
take countless different forms. As the bifurcation parameters change, they will rotate and stretch to
different degrees, seemingly with complex structures and various shapes, but in fact, there is a self-
similarity between the local instability and the global instability. In addition, the presence of strange
attractors also indicates that the moving area of the shell can determine a large-deflection vibration,
even if its motion is irregular and unpredictable. In other words, the radial motion of any point of the
shell is limited to an area determined by a strange attractor, but it is not possible to confirm the exact
location of the point. This is also an important feature of a system with strange attractors: locally
instable but globally stable. Two adjacent points in the strange attractor, although will be separated
from each other over time, will not escape from the area determined by the strange attractor.

The influence of the excitation frequency is also investigated. In addition, the bifurcation diagrams
for the fixed force Fz = 5.05 N are given as follows.

Figure 7 illustrates the radial motion of the shell with a fixed force excitation and different excitation
frequencies. Clearly, the periodic motion can be bifurcated from the chaotic region with the variation
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Fig. 10. Poincaré sections describing the radial chaotic motions versus different thickness–radius ratios

of frequencies, and vice versa. Additionally, the motion of period-3 can also be observed when the ratio
of natural frequency to excitation frequency is at the range of (1.04, 1.05).

Figure 8 illustrates the Poincaré sections with certain excitation frequencies. The shape charac-
teristics of those strange attractors, particularly in Fig. 8c, are similar to those in Fig. 6a, while the
slender structural features distinguish Fig. 8 from Fig. 6, which means that the strange attractor with
a smaller excitation force may be characterized with a slenderer shape.
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Fig. 11. Bifurcation diagrams describing the radial motions versus material parameters

3.2.2. Influences of Structural Parameters
Furthermore, this subsection analyzes the influences of different values of the thickness–radius ratio

α on radial motions of the shell. For a thin-walled shell, set the diameter–length ratio β = 0.5 and the
excitation amplitude Fz = 5.05 N.

As shown in Fig. 9, when the thickness–radius ratio α is about less than 0.02, the radial motions
of the shell present a frequently alternate change between periodic and chaotic motions. While the
thickness–radius ratio α is larger than 0.02, the radial motion is periodic, which means that the
increase in the thickness–radius ratio is beneficial to the motion stability in certain range.

Figure 10 shows the Poincaré sections with certain thickness–radius ratios. Again, it shows the
existence of strange attractors. The results show that the strange attractors are similar to the above;
and it can be found that for the system with discontinuous chaotic regions, the attractors present
some different structures in different parameter ranges. In particular, Fig. 10b presents the motion of
period-9. With a small increase in the thickness–radius ratio α, the radial motion transforms into the
chaotic motion with three isolated attractor domains immediately, as shown in Fig. 10c. Furthermore,
Fig. 10d illustrates the motion of period-3, and the periodic motion also evolves into chaos with the
increase in thickness–radius ratio α. This manifests that a minor variation in the thickness–radius ratio
α between the period and chaotic regions may give rise to a great change in vibration behaviors.

3.2.3. Influences of Material Parameters
Since the material parameters of rubber materials are usually obtained by fitting experimental data,

the values obtained by different fitting methods may be slightly different. With the assumption that
the material parameters fluctuate up and down close to the initial values, i.e., μ′

1 = k1μ1, μ
′
2 = k2μ2,

where μ′
1, μ

′
2 are the changed material parameters and k1, k2 ∈ [0.9, 1.1] are given in the literature, it

is necessary to analyze the motion characteristics of the shell with variable parameters.
Figure 11 shows that the change in the material parameter μ1 affects the motion characteristics of

cylindrical shell, and its chaotic response evolves from the chaotic motion to the periodic motion on the
path of periodic doubling bifurcation, while the material parameter μ2 has little effect on the response
of the shell. It manifests that the fitting accuracy of the material parameter μ1 is more important than
that of μ2.

3.3. Nonlinear Vibrations with the Coupling Effect

Furthermore, in order to analyze the influence of the interaction between modes, three modes
(m = 1, n = 4; m = 1, n = 0; and m = 3, n = 0) are selected to discretize the displacement,
respectively. Then, the nonlinear dynamic behaviors of the radial motion of the shell are studied,
followed by simple comparative analyses with the help of time responses and Poincaré sections.
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Fig. 12. Uncoupled case: time responses and Poincaré sections for excitation amplitude Fz = 9.8 N



Vol. 32, No. 4 J. Zhang et al.: Nonlinear Vibration Analyses of Cylindrical Shells 479

3.0058 3.006 3.0062 3.0064 3.0066 3.0068 3.007 3.0072 3.0074 3.0076 3.0078

10 4

-4

-3

-2

-1

0

1

2

3

4

(a) Mode ( 1, 4m n= = )

3.0058 3.006 3.0062 3.0064 3.0066 3.0068 3.007 3.0072 3.0074 3.0076 3.0078

10 4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(b) Mode ( 1, 0m n= = )

3.0058 3.006 3.0062 3.0064 3.0066 3.0068 3.007 3.0072 3.0074 3.0076 3.0078

10 4

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) Mode ( 3, 0m n= = )

Fig. 13. Coupled case: time responses and Poincaré sections for excitation amplitude Fz = 9.8 N
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Figure 12a, b, c shows the solutions obtained by the fourth-order Runge–Kutta method for the
uncoupled case. It is found that, under the conditions of multimodal discretization, the chaotic phe-
nomenon may also exist for the uncoupled case, while its fine structural characteristics are no longer
obvious compared with the single-mode discretization. This may be caused by the increase in the degree
of freedom, which leads to the increase in computational complexity and the decrease in the accu-
racy consequently. In addition, since the coupling effect is not taken into consideration, the responses
between modes are independent. It means that when there is a chaotic response of one mode, the
responses of other modes could still be periodic. Moreover, the amplitudes of axisymmetric modes are
much smaller than those of non-axisymmetric modes. This manifests that the single-axisymmetric-
mode analysis is feasible when the coupling effect is not considered.

Figure 13a, b, c shows the solutions obtained by the fourth-order Runge–Kutta method for the
coupled case. It is obvious that the response is more regular, since the quasi-periodic motion replaces
the chaos for the axisymmetric mode. To some extent, it means that the coupling effect between modes
could improve the stability of motions. At the same time, due to the coupling effect, the modes of each
order also have synchronization effect; that is, the properties of the modal responses of each order are
similar. As is shown in Fig. 13, the Poincaré sections of all the three modes have five isolated regions.

4. Conclusions
This paper investigated the nonlinear behaviors of a rubber cylindrical shell composed of the incom-

pressible Mooney–Rivlin material under a radial harmonic load. It should be noted that, in general,
the description of mechanical behaviors of rubber materials can be approximated by using their asso-
ciated hyperelastic constitutive relations under certain conditions [32], and this paper only takes the
hyperelasticity of rubber materials into consideration, but not other properties, such as viscoelasticity.
A system of differential equations describing the nonlinear vibration of the shell is obtained with the
aid of Donnell’s shallow shell theory and the small strain hypothesis. The nonlinear dynamic behaviors
of the shell are investigated by the corresponding bifurcation diagrams and Poincaré sections. The
conclusions from this work are as follows.

(1) The increases in both the thickness–radius ratio and the diameter–length ratio can raise the
natural frequencies of modes, and the thickness–radius ratio has a significant impact on modes with
large circumferential wave numbers, while the diameter–length ratio has a significant influence on
modes with low circumferential wave numbers.

(2) When the excitation amplitude is larger than a critical value, the radial motion tends to alternate
between the chaotic and the periodic motions in the form of period doubling bifurcation. Moreover,
when the excitation amplitude is sufficiently large, the periodic motion can be bifurcated from
the chaotic region with the variation of excitation frequency.

(3) Thickness–radius ratio can significantly affect the chaotic behavior of the cylindrical shell. For
a given ratio, when the value is less than the critical value, the vibration of the shell is highly
sensitive to the ratio, which means that a small change in the ratio can transform the chaotic
motion into the periodic motion, and vice versa.

(4) For the incompressible Mooney–Rivlin model, the influence of the material parameter μ1 on the
nonlinear vibration behaviors of the rubber cylindrical shell is more significant compared with
that of μ2.

(5) For the multimodal case, when the coupling effect between different modes is not considered,
responses of cylindrical shells are similar to those of the single-mode model. However, if the
coupling effect is taken into account, different conclusions can be drawn. Additionally, the coupling
effect could improve the stability of structural response.
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Appendixes
Elements of the mass matrix:

M =

⎡
⎢⎣

M11 · · · 0
...

. . .
...

0 · · · M99

⎤
⎥⎦

M11 = M44 =
πρlRh

2
, M22 = M33 = M55 = M66 = πρlRh, M77 =

πρh3

24lR

(
n2l2 + π2R2) +

πρlRh

2
,

M88 =
πρhR

12l

(
12l2 + π2h2) , M99 =

πρhR

4l

(
4l2 + 3π2h2) (A1)

Elements of the linear stiffness matrix:

K =

⎡
⎢⎣

K11 · · · K19

...
. . .

...
K91 · · · K99

⎤
⎥⎦

K11 =
πn2lh

2R
(μ1 − 4μ2) +

2π3Rh

l
(μ1 − μ2) , K14 = K41 = −π2nh (μ1 − μ2) − π2nh

2
(μ1 − 4μ2) ,

K17 = K71 = −π2h (μ1 − μ2) , K12 = K13 = K15 = K16 = K18 = K19 = 0,

K22 =
4π3Rh

l
(μ1 − μ2) , K28 = K82 = −2π2h (μ1 − μ2) ,

K21 = K23 = K24 = K25 = K26 = K27 = K29 = 0, K33 =
36π3Rh

l
(μ1 − μ2) ,

K39 = K93 = −6π2h (μ1 − μ2) , K31 = K32 = K34 = K35 = K36 = K37 = K38 = 0,

K44 =
2πn2lh

R
(μ1 − μ2) +

π3Rh

l
(μ1 − 4μ2) , K47 = K74 =

2πnlh

R
(μ1 − μ2) ,

K42 = K43 = K45 = K46 = K48 = K49 = 0, K55 =
π3Rh

l
(μ1 − 4μ2) ,

K51 = K52 = K53 = K54 = K56 = K57 = K58 = K59 = 0, K66 =
9π3Rh

l
(μ1 − 4μ2) ,

K61 = K62 = K63 = K64 = K65 = K67 = K68 = K69 = 0,

K77 =

(
2πlh

R
+

πn4lh3

6R3
+

π5Rh3

6l3
+

π3n2h3

6lR

)
(μ1 − μ2) +

π3n2h3

6lR
(μ1 − 4μ2) ,

K72 = K73 = K75 = K76 = K78 = K79 = 0, K88 =

(
4πlh

R
+

π5Rh3

3l3

)
(μ1 − μ2) ,

K81 = K83 = K84 = K85 = K86 = K87 = 0, K99 =

(
4πlh

R
+

27π5Rh3

l3

)
(μ1 − μ2) ,

K91 = K92 = K94 = K95 = K96 = K97 = K98 = 0. (A2)
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