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ABSTRACT In this paper, correspondence relations between the solutions of the static bending
of functionally graded material (FGM) Reddy–Bickford beams (RBBs) and those of the corre-
sponding homogenous Euler–Bernoulli beams are presented. The effective material properties of
the FGM beams are assumed to vary continuously in the thickness direction. Governing equa-
tions for the titled problem are formulated via the principle of virtual displacements based on
the third-order shear deformation beam theory, in which the higher-order shear force and bend-
ing moment are included. General solutions of the displacements and the stress resultants of the
FGM RBBs are derived analytically in terms of the deflection of the reference homogenous Euler–
Bernoulli beam with the same geometry, loadings and end conditions, which realize a classical
and homogenized expression of the bending response of the shear deformable non-homogeneous
FGM beams. Particular solutions for the FGM RBBs under specified end constraints and load
conditions are given to validate the theory and methodology. The key merit of this work is to be
capable of obtaining the high-accuracy solutions of thick FGM beams in terms of the classical
beam theory solutions without dealing with the solution of the complicated coupling differential
equations with boundary conditions of the problem.

KEY WORDS Functionally graded material beams, Reddy–Bickford beam theory, Euler–
Bernoulli beam theory, Bending solution, Shear deformation

1. Introduction
Functionally graded materials (FGM) are novel and advanced engineering materials designed for

specific performance of function, in which a special gradation in structure and/or composition leads
to a smooth variation of material properties from point to point [1]. A great variety of potential
applications are offered by functionally graded beams, plates and shells with continuous variation of
material properties from one surface to another, which can eliminate the stress concentration at the
interfaces of layers in the traditional laminated composites. Particularly, an FGM structure made from
the constituents of ceramic and metal can minimize the thermal stress concentration produced by
the high temperature gradient. Therefore, as the simplest FGM structural elements, the static and
dynamic responses of FGM beams have widely attracted the intensive attention of researchers [2, 3].
Numerous studies based on deterministic analysis have been conducted on modeling, analysis and
simulation of static and dynamic responses of FGM beam structures based on different beam theories
[4–13, 21–33, 41–45].
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The classical beam theory (CBT) or the Euler–Bernoulli beam theory (EBBT) was applied to
analyze the static and dynamic response of thin or slender FGM beams [4–7]. Among them, Simsek
and Kocatur [4], and Khalili et al. [5] investigated forced vibration of FGM beams subjected to moving
loads. Alshorbagy et al. [6] computed the natural frequencies of FGM slender beams under different
boundary conditions by the finite element method (FEM). Yang and Chen [7] performed theoretical
analysis on free vibration and elastic buckling of FGM beams containing open edge cracks by using
the rotational spring model.

However, for moderately thick FGM beams, the CBT usually underestimates the flexibility and
overestimates the natural frequency because of ignoring the transverse shear deformation. In order
to overcome the limitation of the CBT, the first-order shear deformation beam theory (FSDBT), or
Timoshenko beam theory (TBT) taking into account the transverse shear deformation, was applied to
investigate the static and dynamic responses of moderately thick FGM beams [8–13]. For example, Li
presented a new unified approach to find the analytical solutions for static bending and free vibration
of FGM beams by defining a new function to solve the coupled governing equations [8]. Sina et al.
[9] derived the Navier equations of motion for FGM beams based on a new beam theory different
from the traditional TBT and obtained the free vibration response by analytical method. The effect
of shear correction function depending on the spatially continuous variation of material properties was
originally studied and evaluated in modal analysis of FGM beams by Murin et al. [10]. Pradhan and
Chakraverty [11] used the Rayleigh–Ritz method to analyze the free vibration of both Euler–Bernoulli
and Timoshenko FGM beams subjected to different boundary conditions. Esfahani et al. [12] dealt
with the nonlinear thermal buckling and post-buckling of FGM beams supported on nonlinear elastic
foundation using the generalized differential quadrature method (DQM). Moreover, by incorporating
the most general strain gradient elasticity theory into traditional TBT and taking the size-dependent
effect into account, Ansari et al. [13] analyzed size-dependent static bending, buckling and free vibration
of FGM beams by the DQM.

Obviously, the assumption of constant distribution of transverse shear stress along the depth in TBT
violates the shear traction-free conditions at the top and bottom surfaces of the beam. Of course, the
through-depth shear stress distribution given by TBT is different from the actual stress state in deep
beams. So, in order to compensate the discrepancy between the actual shear stress and the assumed
constant shear stress along the depth, a shear correction factor needs to be introduced in TBT.

By giving up the use of a shear correction factor and searching for better prediction of the actual
shear stress distribution in the cross section satisfying the zero shear stress conditions at the surfaces,
various higher-order shear deformation theories were proposed to deal with the homogenous and lam-
inated composite beams [14–20]. According to the selections of shape functions in the displacement
fields to determine the distribution of transverse shear strain, and hence the shear stress, the higher-
order shear deformation beam theories can be divided into different types. The well-known higher-order
beam theories are the parabolic shear deformation beam theory (PSDBT) proposed by Levinson [14],
Bickford [15] and Reddy [16], the trigonometric shear deformation beam theory (TSDBT) by Touratier
[17], the hyperbolic shear deformation beam theory (HSDBT) by Soldatos [18], the exponential shear
deformation beam theory (ESDBT) by Karama et al. [19] and a new shear deformation beam theory
(ASDBT) by Aydogdu [20]. All the above-mentioned higher-order shear deformation theories consider
warping of the cross sections and accurately satisfy the zero transverse shear stress condition at the
top and bottom surfaces without a shear correction factor.

In recent years, many researchers extended the higher-order shear deformation beam theories, orig-
inally developed for the homogenous and laminated composite beams, to the analysis of the static and
dynamic response of thick FGM beams [21–33]. Based on the PSDBT, Kadoli et al. [21] performed
a numerical analysis on the static bending of FGM beams using the finite element method (FEM).
Benatta et al. [22] and Sallai et al. [23] derived analytical solutions of static bending of a short hybrid
composite beam with continuously variable glass and graphite fiber reinforcement constituents and
of a thick sigmoid FGM beam with AI/AI203 constituents subjected to a transverse uniform load
and simply supported boundary constraints. Kapuria et al. [24] presented both FEM analysis and
experimental validation on the bending and free vibration of FGM beams with layer-wise variation
of the material properties through the depth, where the axial displacement was assumed to follow a
global third-order variation with a linear variation in each layer across the thickness. Analytical and
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numerical investigations on static and free vibration responses of FGM beams were also performed
by Thai and Vo [25]. Vo et al. [26] used the Navier solution procedure and FEM approach based on
different higher-order beam theories. Moreover, considering third-order variation of both the axial and
transverse displacements through the depth, Vo et al. [27] developed a finite element model and Navier
solutions of functionally graded sandwich beams for various power-law indices, skin-core-skin thickness
ratios and boundary conditions. Furthermore, the 1-D Carrera unified formulation (CUF) was used by
Filippi et al. [28] to search for numerical solutions of stresses and displacements in static bending FGM
beams by FEM. Aydogdu and Taskin [29] investigated free vibration of simply supported FGM beams
based on the TBT, PSDBT and ESDBT, in which natural frequencies were obtained by using Navier’s-
type solution method. Simsek [30] and Pradhan and Chakraverty [31] examined the effects of different
higher-order shear deformation beam theories on the natural frequencies of FGM beams under differ-
ent boundary conditions by using the Lagrange multiplier formulation and Rayleigh–Ritz methods,
respectively. Mahi et al. [32] analyzed the free vibration of FGM beams with temperature-dependent
material properties and considered the effect of the initial thermal stress on the natural frequencies.
More recently, based on the PSDBT conjunction with von Karman’s nonlinear strain–displacement
relation, Shen et al. [33] investigated the nonlinear bending and thermal post-buckling behaviors of
functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in
thermal environments.

In order to search for higher accuracy in prediction of displacement field and stress state, the 2-
D elasticity theory was also used in analyzing thick FGM beams [34–36]. For instance, Sankar [34]
developed an elasticity solution for simply supported FGM beams subjected to symmetrical sinusoidal
transverse loads, with Young’s modulus varying exponentially along the thickness. On the other hand,
Zhong and Yu [35] derived a 2-D solution in terms of Airy functions for static bending of a cantilever
FGM beam with arbitrary through-the-thickness variation of material properties. Again, Ding et al.
[36] considered the plane stress problem of generally anisotropic beams with the elastic compliance
parameters being arbitrary functions of the thickness coordinate, derived plane stress functions for the
FGM and obtained bending solutions under different boundary conditions.

Different from the above-mentioned investigations on the static and dynamic behaviors of FGM
beams based on different shear deformation beam theories by the traditional analytical or numer-
ical approaches, some researchers sought for the correspondence relations between the responses of
homogenous and FGM beams based on the shear deformation theories and those of the corresponding
homogenous Euler–Bernoulli beams (HEBBs). However, what needs to be specially noted here is the
pioneering work contributed by Reddy, Wang and their collaborators, in which they elaborated at
length the relationships between the solutions of classical beam theory and those of different shear
deformation beam theories for the homogenous material beams [37–40]. For instance, they presented
the bending solutions of Timoshenko beams (TBs) [37], Levinson beams (LBs) [38] and Reddy–Bickford
beams (RBBs) [39, 40] analytically in terms of that of the corresponding HEBBs which realized the clas-
sical expressions of the static responses of shear deformable homogenous thick beams. More recently,
Li et al. extended Reddy and Wang’s work to the analysis of FGM beams with inhomogeneity of the
material properties in the depth direction and developed the relationships of static bending/buckling
solutions of FGM TBs [41, 42] and FGM LBs [43, 44] to those of the reference homogenous Euler–
Bernoulli beams (HEBBs). Consequently, instead of dealing with the complicated differential equations
of the FGM beams including tension-bending coupling and shear deformation effects, solutions of the
shear deformable FGM beams are simplified as the calculation of some transitional coefficients deter-
mined easily by the given gradient profile of the material properties and the geometry of the FGM
beams if the solutions of HEBBs are available.

To the best of the authors’ knowledge, there is still a lack of knowledge on how to establish the
relationship between the static response of a shear deformable FGM beam and that of the related
HEBBs, particularly using the Reddy–Bickford’s higher-order beam theory. Recently, the authors [43,
44] presented classical and homogenized expressions for static bending and buckling responses of the
shear deformable FGM beams based on the Levinson beam theory. However, the Levinson beam theory
is a quasi-third-order beam theory, or a lower-order beam theory than the Reddy–Bickford beam theory
without containing the higher-order stress resultants. Although the assumed displacement fields in the
two theories are the same, the derived equations of equilibrium are obviously different. It is well known



502 ACTA MECHANICA SOLIDA SINICA 2019

,x u

,z w

l
b

y

z

/ 2h
/ 2h

Fig. 1. The geometry and coordinates of an FGM beam

that the equations of equilibrium of the LBs are derived by using a vector approach [14], but those of
the RBBs are obtained by using the principle of virtual displacements which leads to the inclusion of
higher-order shear force and bending moment [15, 16]. Therefore, to search for the relationship between
the static responses of FGM RBBs and those of the reference HEBBs is still an original theoretical
problem.

The objective of this paper is to develop exact correspondence relationships between the static
bending solutions of FGM RBBs and those of the reference HEBBs under arbitrary loading and
boundary conditions. Governing equations in terms of the displacements for the problem are derived
by using the energy-variation principle. By using the equivalence of the applied force, generalized
solutions of static bending of FGM RBBs with arbitrary material gradient profile in the depth direction
are presented in terms of deflection of the reference HEBBs with the same loading and end constrains.
Analytical expressions for the transitional coefficients in the general solutions are given, which depend
only on the parameters of the geometry and the material gradient profile of the FGM beams. Finally,
particular solutions of the FGM RBBs under specified boundary conditions and loading are given to
show the validity of this analytical approach.

2. Mathematical Formulations of the Problem
Consider an FGM beam with a uniform rectangular cross section as illustrated in Fig. 1. The length,

width and depth are denoted as l, b and h, respectively. The geometry and coordinates of the FGM beam
are shown in Fig. 1. It is assumed that the FGM beam is made of two different homogenous constituents,
named material 1 (M1) and material 2 (M2), with the parameters of the material properties denoted
by P1 and P2, respectively. Furthermore, it is also assumed that the material properties of the FGM
beam vary continuously along the depth from the material properties of full M1 at the top surface to
those of full M2 at the bottom one by continuous change of the volume fractions of the constituents.

According to the pioneering studies by Levinson [14], Bickford [15] and Reddy [16], the displacement
field in the FGM beam based on PSDBT can be written as

u(x, z) = u0(x) + zϕ(x) − αz3γ, w(x, z) = w0(x), γ =
dw0

dx
+ ϕ (1)

where u0 and w0 represent the displacements of the geometrical middle plane along the x- and z-
directions, respectively, ϕ(x) is the rotation of the cross section about the y-axis, and α = 4/(3h2).
It is worth noting that the axial displacement u0 arises from the stretching-bending coupling due to
the asymmetric distribution of the material properties about the geometrical middle surface, and it
vanishes in homogenous beams [14–16, 37–40] or in the FGM beams with material gradient distribution
profile symmetric with respect to the geometrical middle plane.

Based on the linear deformation assumption, strain components can be readily obtained from dis-
placement field (1),

εx (x, z) =
du0

dx
+ z

dϕ

dx
− αz3

dγ

dx
(2)

γxz (x, z) = (1 − 3αz2)γ (3)

Using Hooke’s law, stresses in the FGM beam are

σx = E

(
du0

dx
+ z

dϕ

dx
− αz3

dγ

dx

)
(4)
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τxz =
E

2(1 + ν)
(1 − 3αz2)γ (5)

where the Young’s modulus E is a specified function of coordinate z, but the Poisson’s ratio is assumed
to be constant since it is usually very small in the FGM beam. Apparently, the displacement field (1)
gives rise to the parabolic variations of shear strain (3), and hence to the shear stress (5) through the
depth of the FGM beam in such a way that the shear stress vanishes on the top and bottom surfaces
of the beam.

In the Levinson beam theory, the equilibrium equations are derived by using the thickness-
integration equivalence of the equations of elasticity [44, 45]. Here, the governing equations together
with the boundary conditions for the static bending of FGM RBBs are derived by employing the
principle of virtual displacements [15, 16, 21–23], i.e.,

∫ l

0

∫ h/2

−h/2

(σxδεx + τxzδγxz)bdzdx −
∫ l

0

qδwdx = 0 (6)

where q = q(x) is the transversely distributed external force, and δ is the variational symbol. By
substituting Eqs. (2)–(5) into Eq. (6) and performing some mathematical calculations, we have the
equilibrium equations of the FGM beams [39]

dFN

dx
= 0 (7)

dMx1

dx
= Fs0 + α

dMx3

dx
− 3αFs2 (8)

dFs0

dx
= −q + 3α

dFs2

dx
− α

d2Mx3

dx2
(9)

where FN is the axial force; Fs0 and Mx1 are, respectively, the shearing force and bending moment
similar to those defined in the Euler–Bernoulli beam theory; Mx3 and Fs2 are the higher-order bending
moment and shearing force, respectively.

The boundary conditions at the two ends of the beam (x = 0, l) are given as the following criteria
for the specific problem:

either FN or u0 is specified (10)
either M̄x = Mx1 − αMx3 or ϕ is specified (11)

either F̄s = Fs0 − 3αFs2 + α
dMx3

dx
or w0 is specified (12)

either Mx3 or
dw0

dx
is specified (13)

where F̄s and M̄x are the total shearing force and bending moment, respectively. The resultant forces
and bending moments in the above equations are defined by

(FN ,Mx1,Mx3) = b

∫ h/2

−h/2

σx(1, z, z3)dz (14)

(Fs0, Fs2) = b

∫ h/2

−h/2

(1, z2)τxzdz (15)

It is noted that different from the Levinson beam theory-based equilibrium equations [39, 40], Eqs. (7)–
(13) include the higher-order bending moment and shear force, i.e., Mx3 and Fs2. Also, in the boundary
conditions (11) and (13), both the rotational angle and the slope of the deflection are specified inde-
pendently.

Substituting Eqs. (4) and (5) into Eqs. (14) and (15) gives the resultant forces and bending moments
in terms of the displacement components:
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FN = S0
du0

dx
+ S1

dϕ

dx
− αS3

dγ

dx
(16)

Mx1 = S1
du0

dx
+ S2

dϕ

dx
− αS4

dγ

dx
(17a)

Mx3 = S3
du0

dx
+ S4

dϕ

dx
− αS6

dγ

dx
(17b)

Fs0 = Szx0γ (18a)
Fs2 = Szx2γ (18b)

where Si(i = 0, 1, 2, 3, 4, 6) and Szxi(i = 0, 2) are stiffness coefficients calculated by

Si = b

∫ h/2

−h/2

Ezidz (19)

Szxi = b

∫ h/2

−h/2

E

2(1 + ν)
zi(1 − 3αz2)dz (20)

By choosing a reference homogenous material beam with Young’s modulus E1, the stiffness coefficients
can be expressed as

Si = E1Ahiφi(i = 0, 1, 3, 4, 6), S2 = E1Iφ2, Szxi = E1Ahiφzxi(i = 0, 2) (21)

Herein, φi and φzxi are the dimensionless stiffness coefficients that can be analytically determined
from Eqs. (19)–(21) for the designed material gradient distribution profile along the beam depth; E1

is also the Young’s modulus at the bottom surface of the FGM beam; A = bh and I = bh3/12.
For the convenience of the following analysis, some dimensionless quantities are further introduced

as:

(δ, ξ, U,W ) = (h, x, u0, w0)/l (22a)
(fN ,mx1,mx3, fs0, fs2, Q) = (FN l2,Mx1l,Mx3/l, Fs0l

2, Fs2, ql
3)/(E1I) (22b)

Then, by substituting Eqs. (16)–(18) into Eqs. (7)–(9) and using Eqs. (21) and (22), we arrive at the
dimensionless equilibrium equations in terms of the displacements, i.e.,

φ0
d2U

dξ2
+ δφ1

d2ϕ

dξ2
− 4δφ3

3
d2γ

dξ2
= 0 (23)

δ

(
φ1 − 4

3
φ3

)
d2U

dξ2
+

δ2

12
(φ2 − 16φ4)

d2ϕ

dξ2
− 4δ2

3

(
φ4 − 4

3
φ6

)
d2γ

dξ2
= (φxz0 − 4φxz2) γ (24)

16φ3

δ

d3U

dξ3
+ 16φ4

d3ϕ

dξ3
− 64

3
φ6

d3γ

dξ3
+

12
δ2

(φxz0 − 4φxz2)
dγ

dξ
= −Q (25)

Different from the governing equations of the homogenous RBBs [39], the axial displacement as an
independent unknown function is included in Eqs. (23)–(25). This leads to the stretching-bending and
stretching-warping couplings between the three differential equations. The full coupling between the
independent variables, U , W and ϕ, makes it difficult to find the analytical solutions of Eqs. (23)–(25)
by using direct approach.

3. General Solutions
First, by eliminating the axial displacement U in Eqs. (23)–(25), it yields(

1
c

+ cα1

)
d2ϕ

dξ2
+ (cα1 − cα2)

d2γ

dξ2
=

(
1

cs0
− 1

cs2

)
γ (26)

−cα1
d3ϕ

dξ3
+ cα2

d3γ

dξ3
+

(
1

cs0
− 1

cs2

)
dγ

dξ
= −Q (27)
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The dimensionless parameters in Eqs. (26) and (27) are defined by

c =
1

φ2 − 12φ2
1/φ0

, cα1 = 16
(

φ1φ3

φ0
− φ4

)
, cα2 =

64
3

(
φ2
3

φ0
− φ6

)
(28a)

cs0 =
δ2

12φxz0
, cs2 =

δ2

48φxz2
(28b)

The above five dimensionless coefficients integrate the information of material properties, beam geom-
etry and beam theories. Meanwhile, they also depend on the material gradient profile in the depth
and the aspect ratio of the FGM beam. A special case is that an FGM RBB reduces to a homogenous
material RBB by letting E ≡ E1. Thus, by using Eqs. (19)–(21), we can obtain the dimensionless
coefficients as

φ1 = φ3 = 0, φ0 = φ2 = 1, φ4 =
1
80

, φ6 =
1

448
, φxz0 =

1
3(1 + ν)

, φxz2 =
1

60(1 + ν)

c = 1, cα1 = −1
5
, cα2 = − 1

21
, cs0 =

1
4
(1 + ν)δ2, cs2 =

5
4
(1 + ν)δ2

Consequently, the tension-bending coupling and tension-warping coupling terms in Eqs. (23)–(25)
vanish [39] in this special case.

Herein, it is assumed that the bending solution of the reference HEBB is already known. For the
reference HEBB subjected to the same applied load Q(ξ), we have the following equations

dm∗
E

dξ
= f∗

sE ,
df∗

sE

dξ
= −d4W ∗

E

dξ4
= −Q (29)

where W ∗
E , m∗

E and f∗
sE are the dimensionless deflection, bending moment and shearing force of the

reference HEBB, respectively.
Furthermore, elimination of function ϕ(ξ) from Eqs. (26) and (27) gives

cs0(ccα1cα1 + cα2)
d3fs0

dξ3
+

(
1 − cs0

cs2

)
dfs0

dξ
= −(1 + ccα1)Q (30)

where fs0 = γ/cs0. Then, integration of Eq. (30) and use of Eq. (29) yield

cs0(ccα1cα1 + cα2)
d2fs0

dξ2
+

(
1 − cs0

cs2

)
fs0 = (1 + ccα1)(f∗

sE + β1) (31)

in which β1 is an integration constant.
Equation (31) can be written as

d2fs0

dξ2
− λ2fs0 = −μ(f∗

sE + β1) (32)

where

λ =

(
cs0 − cs2

cs0cs2(cα2 + cc2
α1)

)1/2

, μ = − 1 + ccα1

cs0(cα2 + cc2
α1)

(33)

It is easy to get the general solution of differential equation (32) as

fs0(ξ) = β7 sinh λξ + β8 cosh λξ + g(ξ) (34)

where β7 and β8 are integration constants; g(ξ) is a particular solution of Eq.(32), which depends
on the dimensionless shearing force, f∗

sE , of the reference HEBB. From the definition of parameters
λ and μ, one can see that solution (34) contains the integrated information of material properties
and geometry of FGM beams in the sense of the Reddy–Bickford beam theory. It also contains the
information of the reference HEBB in terms of f∗

sE . The integral constants in the general solution (34)
will be determined by the boundary conditions for specific end constrains.
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The terms of fs0 in Eq. (26) can be eliminated by using Eq. (32), then

d2ϕ

dξ2
= −ccs0cα1

d2fs0

dξ2
+ c(f∗

sE + β1) (35)

Twice integration of Eq. (35) and use of Eq. (29) arrive at the general solution of the rotational angle
as

ϕ = −c
dW ∗

E

dξ
− ccs0cα1fs0 +

cβ1

2
ξ2 + β2ξ + β3 (36)

where β2 and β3 are dimensionless constants.
Furthermore, from the dimensionless form of Eq. (18a,18b), we have

dW

dξ
= −ϕ + cs0fs0 (37)

Substitution of Eq. (36) into Eq. (37) gives the general solution of the dimensionless deflection as

W = cW ∗
E + K

∫ ξ

0

fs0(ζ)dζ − cβ1

6
ξ3 − β2

2
ξ2 − β3ξ + β4 (38)

where β4 is a dimensionless constant, and K = cs0(1 + ccα1).
Integration of Eq. (23) yields the general solution of the dimensionless axial displacement as

U = −δφ1

φ0
ϕ +

4δ

3
φ3

φ0
cs0fs0 + β5ξ + β6 (39)

where β5 and β6 are dimensionless constants. So far, we have obtained general solutions for the dis-
placement components of FGM RBBs expressed in terms of the dimensionless deflection of the reference
HEBB.

By substituting Eqs. (36)–(39) into the dimensionless forms of Eqs. (16)–(18) (see “Appendix”),
general solutions of the dimensionless resultant forces and bending moments can be expressed in terms
of the solution of the reference HEBB as

fN =
12
δ2

φ0β5 (40)

mx1 = m∗
E + β1ξ +

β2

c
+

12
δ

φ1β5 (41)

mx3 =
3
4
δ2

(
−ccα1m

∗
E + cs0(cα2 + ccα1cα1)

dfs0

dξ
− cα1(cβ1ξ + β2)

)
+ 12δφ3β5 (42)

fs2 =
δ2cs0

4cs2
fs0 (43)

Equations (36)–(43) constitute the general solutions of FGM RBBs in terms of the deflection of the
reference HEBB, which are valid for arbitrary gradient profile of the material properties in the depth
direction. Herein, it is assumed that deflection W ∗

E is produced by the same loading and has satisfied
the boundary conditions of the reference HEBB. Then, the load information has been included in the
solution of W ∗

E(ξ). Accordingly, constants βi (i = 1, 2, . . . , 8) will actually be determined only by the
difference between the boundary conditions of the FGM RBB and the reference HEBB. Eventually, we
realize a homogenized and classical expression for the bending solution of FGM beams based on the
Reddy–Bickford beam theory. In the case of homogenous material beam, the axial displacement van-
ishes and general solutions (34), (36), (38) and (41)–(43) reduce to the bending solutions of homogenous
RBBs as given by Reddy et al. [37, 38]

In order to express the natural boundary conditions in Eqs. (10)–(13), the total bending moment
and the total shearing force are further written in dimensionless forms as

mR =
lM̄x

E1I
= mx1 − 4

3δ2
mx3

= (1 + ccα1)
(

m∗
E + β1ξ +

β2

c

)
+

12
δ

(φ1 − 4φ3/3)β5 + cs0(cα2 + cc2α1)
dfs0

dξ
(44a)
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fR =
l2F̄s

E1I
=

l2

EbI

(
dMx1

dx

)
=

dmx1

dξ
= f∗

sE + β1 (44b)

4. Particular Solutions
In this section, particular solutions for the FGM RBBs under specified end constraints and load

conditions are given to validate the application of the theory and methodology. Three kinds of the
end constraints of beams are considered: clamped (C), simply supported (S) and free (F). The eight
integral constants in the general solutions can be determined by the boundary conditions of a given
problem. In the analysis of static bending of the FGM RBBs with small deformation, we assume that
there are no axially external forces acting on the beam, and the beam is axially static determined so
that fN ≡ 0, which leads to β5 ≡ 0 by using Eq. (40). Constant β6 represents the rigid body movement
in the axial direction which vanishes for the axially static determined FGM RBBs. Consequently, it
can be seen from Eq. (39) that for the homogenous beam or FGM beam with the material properties
symmetrical about the geometrical middle surface, we have U ≡ 0 due to φ1 = φ3 = 0.

As examples to derive the particular solutions of the FGM RBBs based on the general solutions
(36)–(43), we consider the beams with four kinds of boundary conditions (S-S, C-C, C-F and C-S) and
subjected to uniformly distributed transverse load Q = 1.

4.1. Simply Supported Beam (S-S)

Firstly, we consider a beam with both ends simply supported. The particular solution of the reference
HEBB is given by

W ∗
E(ξ) =

ξ

24
(1 − 2ξ2 + ξ3), f∗

sE(ξ)=
1
2
(1 − 2ξ) (45)

The corresponding non-homogeneous solution of Eq. (32) is

g(ξ) =
μ

λ2

[
1
2
(1 − 2ξ) + β1

]
(46)

Dimensionless boundary conditions are written by

W (0) = 0, mx1(0) = 0, mx3(0) = 0 (47a)
W (1) = 0, mx1(1) = 0, mx3(1) = 0 (47b)

By substituting the related general solutions (36)–(43) into Eq. (47) and remembering that deflec-
tion W ∗

E has satisfied its boundary conditions beforehand, we determine the integral constants as
follows:

β1 = β2 = β3 = β4 = 0, β7 =
μ

λ3
, β8 = − μ

λ3
tanh

(
λ

2

)
(48)

Then, the particular solution of the S-S FGM RBB becomes:

fs0(ξ) =
μ

λ3

[
sinh λ(ξ − 1/2)

cosh(λ/2)
+

λ

2
(1 − 2ξ)

]
(49a)

U(ξ) =
δcφ1

φ0

dW ∗
E

dξ
+

δcs0

φ0

(
ccα1φ1 +

4
3
φ3

)
fs0 (49b)

W (ξ) = cW ∗
E +

Kμ

λ4

[
cosh λ(ξ − 1/2)

cosh(λ/2)
− 1 +

λ2

2
ξ(1 − ξ)

]
(49c)

ϕ(ξ) = −c
dW ∗

E

dξ
− ccs0cα1fs0 (49d)

mx1 = m∗
E , mR = (1 + ccα1)m∗

E + cs0(cα2 + cc2α1)
dfs0

dξ
, fR(ξ) = f∗

SE(ξ) (49e)
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4.2. Clamped Beam (C-C)

The particular solutions of the reference HEBB with C-C ends are

W ∗
E(ξ) =

ξ2

24
(1 − ξ)2 (50a)

f∗
E(ξ) =

1
2
(1 − 2ξ) (50b)

The non-homogeneous solution of Eq. (32) for FGM RBB with C-C ends is the same as Eq. (46).
According to Eqs. (11)–(13), the boundary conditions for this problem are written by

W (0) = 0, W ′(0) = 0, ϕ(0) = 0 (51a)
W (1) = 0, W ′(1) = 0, ϕ(1) = 0 (51b)

Similarly, the integral constants can be determined as follows:

β1 = β2 = β3 = β4 = 0 (52a)

β7 =
μ

2λ2
coth(λ/2), β8 = − μ

2λ2
(52b)

Particular solutions of the C-C FGM RBB are given by

fs0(ξ) =
μ

2λ2

[
sinh λ(ξ − 1/2)

sinh(λ/2)
+ (1 − 2ξ)

]
(53a)

U(ξ) =
cδφ1

φ0

dW ∗
E

dξ
+

δcs0

φ0

(
φ1ccα1 +

4φ3

3

)
fs0 (53b)

W = cW ∗
E +

Kμ

2λ3

[
cosh λ(ξ − 1/2) − cosh(λ/2)

sinh(λ/2)
+ λξ(1 − ξ)

]
(53c)

ϕ(ξ) = −c
dW ∗

E

dξ
− ccs0cα1fs0 (53d)

mx1(ξ) = m∗
E ,mR(ξ) = (1 + ccα1)m∗

E + cs0(cα2 + cc2α1)
dfs0

dξ
, fR(ξ) = f∗

SE (53e)

It needs to be noted here that solution (53a) gives fs0(0) = fs0(1) = 0, which is obviously inconsistent
with the clamped-end supports. This is because, in the derivation of equilibrium equations (7) and the
boundary conditions (8) from Eq. (6), both the rotational angle and the derivative of the deflection are
treated as independent variables at the same time. This will lead to a physically inconsistent result,
i.e., γ(0) = γ(1) = 0, or fs0(0) = fs0(1) = 0 at the clamped ends. However, the resultant shearing
force fR(ξ) does not vanish but equals the shearing force of the reference HEBB at the clamped ends.
Detailed discussions on this physical inconsistency can be found in [45].

4.3. Cantilever Beam (C-F)

Consider a cantilever beam with the left end clamped and the right end free (C-F). The particular
solution of the reference HEBB with C-F ends is

W ∗
E(ξ) =

1
24

ξ2(6 − 4ξ + ξ2) (54a)

f∗
E(ξ) = (1 − ξ) (54b)

The corresponding non-homogeneous particular solution of Eq. (32) is

g(ξ) =
μ

λ2
[(1 − ξ) + β1] (55)

Boundary conditions of the C-F FGM RBB are

U(0) = 0, W (0) = 0, W ′(0) = 0, ϕ(0) = 0 (56a)
fN (1) = 0, mx1(1) = 0, mx3(1) = 0, fR(1) = 0 (56b)
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The integration constants are determined as follows:

β1 = β2 = β3 = β4 = 0 (57a)

β7 =
μ

λ3

1 + λ sinh λ

cosh λ
, β8 = − μ

λ2
(57b)

The particular solutions of this problem are

fs0(ξ) =
μ

λ2

(
sinh λξ − λ cosh λ(1 − ξ)

λcoshλ
+ (1 − ξ)

)
(58a)

U(ξ) =
cδφ1

φ0

dW ∗
E

dξ
+

cs0δ

φ0

(
φ1ccα1 +

4φ3

3

)
fs0 (58b)

W (ξ) = cW ∗
E +

Kμ

λ4

[
cosh λξ − 1 + λ[sinhλ(1 − ξ) − sinhλ]

coshλ
+ λ2ξ

(
1 − ξ

2

)]
(58c)

ϕ(ξ) = −c
dW ∗

E

dξ
− ccs0cα1fs0 (58d)

mx1(ξ) = m∗
E , mR(ξ) = (1 + ccα1)m∗

E + cs0(cα2 + cc2α1)
dfs0

dξ
, fR(ξ) = f∗

SE (58e)

4.4. Beams with C-S Ends

Finally, we consider the bending solution of the FGM RBB with clamped simply supported (C-S)
ends. The particular solution of the reference HEBB with C-S ends is

W ∗
E(ξ) =

1
48

ξ2(3 − 5ξ + 2ξ2) (59a)

f∗
E(ξ) =

1
8
(5 − 8ξ) (59b)

The corresponding non-homogeneous particular solution of Eq. (32) is

g(ξ) =
μ

λ2

[
1
8
(5 − 8ξ) + β1

]
(60)

Boundary conditions of the C-S FGM RBB are

U(0) = 0, W (0) = 0, W ′(0) = 0, ϕ(0) = 0 (61a)
fN (1) = 0, W (1) = 0, mx1(1) = 0, mx3(1) = 0 (61b)

By using the boundary conditions, the integration constants in the general solutions are determined
as follows:

β3 = β4 = 0, β2 = −cβ1 (62a)

β8 = − μ

λ2

(
5
8

+ β1

)
, β7 =

μ

λ2

(
5
8

+ β1

)
tanhλ +

μ

λ3
sechλ (62b)

β1 =
μ

8λ2 (5 tanh λ − λ) − μ
λ3 (1 − sechλ)

μ
λ2 (λ − tanh λ) + cλ

3K

(62c)

Then, the particular solutions of this problem are given by

fs0(ξ) = β7 sinh λξ + β8 cosh λξ +
μ

λ2

[
1
8
(5 − 8ξ) + β1

]
(63a)

W (ξ) = cW ∗
E +

K

λ
[β7(cosh λξ − 1) + β8 sinhλξ

+
μ

λ2

(
1
8
(5 − ξ)ξ + β1ξ

)]
+

cβ1

6
(3 − ξ)ξ2 (63b)

ϕ(ξ) = −c
dW ∗

E

dξ
− ccs0cα1fs0 (63c)
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U = −δφ1

φ0
ϕ +

4δ

3
φ3

φ0
cs0fs0 + β5ξ + β6 (63d)

mx1 = m∗
E + β1(ξ − 1), mR = (1 + ccα1)mx1 + cs0(cα2 + cc2α1)

dfs0

dξ
,

fR(ξ) = f∗
SE + β1 (63e)

From the above four examples, we can find that the particular solutions of the FGM RBBs consist of
two parts. The first one is the solution of the classical beam theory which is proportional to that of
the HEBB. The second part is a correction to the classical solution based on the RBB theory which is
related to the parameters defined in Eq. (28).

In the special case of homogenous material, we have checked that the reduced forms of solutions
(49) and (58) for S-S and C-F RBBs are in good agreement with those given by Reddy et al. [39],
which validates the present results to some extent.

5. Numerical Results
In this section, some numerical results of the particular solutions will be given to show the accuracy

and validity of the analytical solutions in this paper. The FGM beam is assumed to be made of metal
(aluminum) and ceramic (alumina) with the Young’s moduli of E1 = Em = 70GPa and E2 = Ec =
380GPa, respectively. The Poisson’s ratios of the two constituents are νc = νm = 0.23. The effective
material properties of the FGM beam vary along the depth as power-law functions [41–44]. Then, the
Young’s moduli of the FGM beam that vary in the depth are given by

E = E1 + (E2 − E1)
(

1
2

+
z

h

)p

(64)

where p ∈ [0,∞) is the power index and stands for the material gradient level. By substituting Eq. (64)
into Eqs. (19)–(21), the analytical expressions of dimensionless coefficients, φi and φzxi, are obtained
and given in “Appendix.”

In Table 1, we listed the values of dimensionless deflections at the center of an S-S FGM beam
subjected to uniformly distributed load, Q(ξ) = 1, for some specific values of the thickness to length
ratio, δ, and the material gradient parameter, p, based on the Timoshenko beam theory [41], the
Levinson beam theory [43] and the Reddy–Bickford beam theory, respectively. Furthermore, Fig. 2
plots the continuous variation of the center deflection versus the material gradient parameter of a C-C
FGM beam subjected to a uniformly distributed load for some specific values of the length to thickness
ratio. From Table 1 and Fig. 2, we can find that the differences between the deflections of the FGM

Table 1. Dimensionless deflection (W (0.5) × 103) of an S-S FGM beam for different values of p and δ (Q = 1)

δ p

0.0 0.1 0.3 0.5 1.0 3.0 5.0 10 100 109

1/5 2.6252a 2.9060 3.4676 4.0113 5.1948 7.3593 8.0000 8.8830 12.792 14.251

2.6252b 2.9041 3.4636 4.0069 5.1948 7.4103 8.1040 9.0237 12.820 14.251
2.6289c 2.9039 3.4633 4.0064 5.1945 7.4315 8.1418 9.0554 12.802 14.250

1/10 2.4552a 2.7225 3.2583 3.7779 4.9078 6.9215 7.4692 8.2252 11.908 13.328

2.4552b 2.7221 3.2573 3.7768 4.9078 6.9350 7.4952 8.2604 11.915 13.328
2.4552c 2.7221 3.2582 3.7767 4.9078 6.9397 7.5049 8.2686 11.911 13.328

1/20 2.4127a 2.6766 3.2060 3.7196 4.8361 6.8120 7.3365 8.0608 11.687 13.098

2.4127b 2.6765 3.2057 3.7193 4.8361 6.8154 7.3431 8.0696 11.689 13.098
2.4127c 2.6764 3.2057 3.7193 4.8361 6.8154 7.3355 8.0717 11.688 13.098

0 2.4048d 2.6682 3.1969 3.7098 4.8247 6.7932 7.3114 8.0269 11.644 13.055
aTimoshenko beam theory [41];
b Levinson beam theory [43];
cReddy–Bickford beam theory;
d Euler–Bernoulli beam theory
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beam predicted by different shear deformable beam theories are not obvious. However, the differences
get significant when the beam becomes thicker.

Figure 3 shows the continuous variation of the first-order dimensionless shearing force fs0(ξ) along
the beam axis for the FGM RBB subjected to the uniformly distributed unit load, Q(ξ) = 1, with
S-S and C-C end constraints, respectively. It is apparent that the first-order shear force vanishes at
the clamped ends and converges to the linearly varying distribution of the resultant shear force fR(ξ)
equaling the shearing force of HEBB, f∗

sE(ξ). The zero values of the first-order shearing force at the
two clamped ends arise from the use of essential boundary conditions, W ′(0) = W ′(1) = 0. This is
physically inaccurate as the beam can actually rotate at the clamped edge due to the presence of
transverse shear rotation [45]. However, the values of the first-order shearing force of the FGM RBB
with simply supported ends are roughly equal to those of f∗

sE(ξ) even at the end points. Zoom-in of
the variation of the dimensionless shear force fs0(ξ) near the simply supported ends for specific values,
p = 0.5, l = 5h, 10h and 20h, is illustrated in Fig. 4. The differences between the values of fs0(ξ) and
f∗

sE(ξ) at the end points become more significant with the increase in the thickness to length ratio.

6. Conclusions
This paper presents the exact relationships between the static bending solutions of the reference

HEBB and those of the FGM RBB with material properties varying continuously along the depth.
Firstly, based on the Reddy–Bickford higher-order shear deformation beam theory, equilibrium equa-
tions of static bending for the FGM beam were derived in terms of the axial displacement, the deflection
and the rotation of the cross section by using the energy-variation principle. Meanwhile, the stretching-
bending and stretching-shearing coupling effects are included due to the inhomogeneity of the material
properties in the depth direction. By using the load equivalence between the two kinds of beams,
general solutions of the displacements, rotation and bending moments for the FGM RBB are derived
in terms of the deflection of the corresponding HEBB with the same geometry, end constraints and
applied forces. Consequently, the bending solution of an FGM RBB is simplified to that of an HEBB,
together with the calculation of those dimensionless transition coefficients, such as c, cs0, cs2, cα1, and
cα2, which are only dependent on the material gradient profile and the beam geometry. Particular
solutions for the FGM RBBs under four specified end constraints and load conditions are given to
show the validity of application of the theory and methodology. Finally, we arrived at the homogenized
and classical expressions for the static bending solutions of the non-homogeneous FGM RBBs. This
relationship enables us to easily obtain the third-order beam theory solutions of FGM beams without
dealing with the complicated boundary value problems of the resulting coupling differential equations.

Acknowledgements. This research was supported by the National Natural Science Foundation of China with Grant
Numbers 11272278 and 11672260. The authors gratefully acknowledge the financial supports.

Appendix
The dimensionless coefficients, φi, φxz0 and φxz2 for the Young’s moduli that vary as power-law

function (64) are given as follows:

φ0 = 1 +
η

p + 1
, φ1 =

pη

2(p + 1)(p + 2)
(A.1)

φ2 = 1 +
3η(p2 + p + 2)

(p + 1)(p + 2)(p + 3)
, φ3 =

ηp(p2 + 3p + 8)
8(p + 1)(p + 2)(p + 3)(p + 4)

(A.2)

φ4 =
1
80

+
η(p4 + 6p3 + 23p2 + 18p + 24)

16(p + 1)(p + 2)(p + 3)(p + 4)(p + 5)
(A.3)

φ5 =
ηp(p4 + 10p3 + 55p2 + 110p + 184)

32(p + 1)(p + 2)(p + 3)(p + 4)(p + 5)(p + 6)
(A.4)

φ6 =
1

448
+

η(p6 + 15p5 + 115p4 + 405p3 + 964p2 + 660p + 720)
64(p + 1)(p + 2)(p + 3)(p + 4)(p + 5)(p + 6)(p + 7)

(A.5)

φzx0 =
1

2(1 + ν)

(
φ0 − 1

3
φ2

)
, φzx2 =

1
2(1 + ν)

(
1
12

φ2 − 4φ4

)
(A.6)
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in which η = E2/E1 − 1.
The dimensionless resultant forces and moments in terms of the dimensionless displacements are

expressed as:

fN =
12
δ2

(
φ0

dU

dξ
+ δφ1

dϕ

dξ
− 4δ

3
φ3

dγ

dξ

)
(A.7)

mx1 =
12
δ

(
φ1

dU

dξ
+

δφ2

12
dϕ

dξ
− 4δ

3
φ4

dγ

dξ

)
(A.8)

mx3 = 12δ

(
φ3

dU

dξ
+ δφ4

dϕ

dξ
− 4δ

3
φ6

dγ

dξ

)
(A.9)

fs0 =
1

cs0
γ, fs2 =

δ2

4cs2
γ (A.10)
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