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ABSTRACT The solution of a half-plane containing a micro-crack and an edge macro-crack
under mixed loads is presented based on the distributed dislocation technique. The complete
stress field and stress intensity factors are obtained. The finite element model is established
to simulate the macro-crack propagation path. The effect of a micro-crack on the macro-crack
propagation is analyzed comprehensively. The results show that the shielding effect region is like
two ‘petals’ under uniaxial tensile load and rotates with the change in micro-crack angle. For
mixed loads, the shielding effect region rotates clockwise with the increasing ratio of applied loads
τ∞/σ∞. It is like two ‘petals’ at τ∞/σ∞ ≤ 2 and divides into two parts from the macro-crack tip
at τ∞/σ∞ ≥ 5. The micro-crack has the attraction effect on the macro-crack propagation path.
These results are useful for predicting the fracture or fatigue behaviors of materials containing
micro-cracks.

KEY WORDS Micro-crack, Macro-crack propagation, Distributed dislocation technique, Com-
plete stress field

List of Symbols
a Half-length of the micro-crack
l Initial macro-crack length
θ Micro-crack orientation
α Micro-crack angle
d Distance between the macro-crack tip and the micro-crack center

σ∞ Uniform tensile load
τ∞ Uniform shear load
σ̃ij Stress components contributed by the applied loads
σ̄ij Stress components contributed by distributed dislocations

xmicro Horizontal ordinate of the micro-crack center
ymicro Vertical ordinate of the micro-crack center

Keff Equivalent stress intensity factor
K∞

eff Equivalent stress intensity factor for the case without micro-crack
K∞

I Mode I stress intensity factor for the case without micro-crack
KI Mode I stress intensity factor at the macro-crack tip
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KII Mode II stress intensity factor at the macro-crack tip
bx, by Components of Burgers vector

μ Shear modulus
κ Kolosov constant

G(ξ, x, y) Dislocation influence function
B(ξ) Dislocation density function

β Crack propagation direction
E Elasticity modulus
ν Poisson’s ratio

σvon von Mises stress
γ Intersection angle between the micro-crack face and the line composed by the micro-

crack center and macro-crack tip
SIF Stress intensity factor

ESIF Equivalent stress intensity factor
FE Finite element

FEM Finite element method
DDT Distributed dislocation technique

MCTSC Maximum circumferential tensile stress criterion

1. Introduction
There are many micro-cracks in solid materials, which is very difficult to avoid. These micro-cracks

have significant influences on the fatigue and fracture performances of materials. The formation of
micro-cracks is random, so there is great uncertainty in fracture and fatigue tests. Fatigue and fracture
are the most dangerous forms of materials’ failure. Fracture mechanics has been studied widely since the
last century. Fatigue and fracture behaviors can be predicted effectively by investigating the interaction
between the micro-crack and macro-crack. In addition, the toughening effect of micro-cracks for brittle
materials is an important research field. Therefore, the interaction problem between micro-cracks and
a macro-crack has been considered by many researchers in recent decades.

Kachanov et al. [1–3] proposed a simple solution to solve crack problems and investigated the effect
of multiple micro-cracks on a finite macro-crack. Based on the complex function method, Gong et
al. [4–6] investigated the influence of a micro-crack on a semi-infinite macro-crack and analyzed the
amplifying and shielding effects of the micro-crack on the macro-crack tip. Tamuzs and Petrova [7]
considered the problem of two micro-cracks and a finite macro-crack in an infinite plane. Soh and
Yang [8] investigated the effect of a cluster of micro-cracks on a macro-crack propagation by the FEM.
Alam et al. [9] studied the influence of a crack on an edge crack propagation by experiments and
simulations. Budyn et al. [10] studied the propagation paths of multiple cracks in an elastic media by
the extended FEM. Bouiadjra et al. [11] investigated the effect of micro-cracks on the plastic zone by
the FEM. Li et al. [12] studied the effect of a micro-crack on the SIF and plastic zone at a macro-
crack tip in an infinite plane based on the DDT. The DDT is an effective tool to solve complex crack
problems, which was introduced in detail by Hills et al. [13]. The basic idea of DDT is that cracks can
be replaced equivalently by continuously distributed dislocations. Based on the DDT, Jin and Keer
[14] analyzed the interactions between edge cracks in an elastic half-plane. The DDT was also applied
to solve the problem of a finite plane containing cracks [15–18]. The interactions between cracks and
inhomogeneities were also investigated in many studies based on the DDT [19–23]. Therefore, the DDT
will be employed in this work.

There are two main aspects in the study of fracture mechanics: crack propagation direction and rate.
The problem of crack propagation direction was investigated by many previous studies. Erdogan and
Sih [24] proposed the MCTSC and verified the criterion by tensile fracture experiments. Palaniswamy
and Knauss [25] proposed the maximum energy release rate criterion. Sih [26] proposed the minimum
strain energy density criterion. Li [27] proposed the vector crack tip displacement criterion. Khan and
Khraisheh [28] proposed the minimum plastic zone size criterion. Bouchard et al. [29], Dündar and
Ayhan [30], Ayhan [31], Varfolomeev et al. [32] and Liu et al. [33] simulated the crack propagation
path by the FEM. Considering the elastic solid, it is reasonable and convenient to predict the crack
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propagation direction using the MCTSC, which, therefore, is applied in this study. The crack propa-
gation rate is an important parameter for predicting the fatigue life of structures and materials. Many
formulas were proposed to predict the crack propagation rate. The studies on crack propagation rate
by Paris [34, 35], Elber [36], Newman [37] and Walker [38] showed a positive correlation between the
crack propagation rate and the SIF. Therefore, in this paper, the SIF is applied to analyze the crack
propagation rate qualitatively. In many cases, the material surface is a region of high stress or strain,
so it is common for an edge crack to initiate at the material surface. The edge crack propagation has
been an interesting problem and investigated by many researchers [9, 13, 14, 29, 39].

Few theoretical studies have been reported on the edge macro-crack propagation affected by a
micro-crack in a half-plane. In this paper, the edge macro-crack propagation in the existence of a
micro-crack is studied comprehensively. Firstly, the solution of a half-plane containing an arbitrary
micro-crack and an edge macro-crack under mixed loads is presented in Sect. 2. The complete stress
filed and SIFs are obtained. In Sect. 3, an FE model is established to compare with the theoretical
solution and simulate the macro-crack propagation path. In Sect. 4, the effects of the micro-crack
on stress field and macro-crack propagation rate and path are analyzed. In Sect. 5, some important
conclusions are drawn.

2. Formulation
2.1. Problem Description

An elastic half-plane containing an edge macro-crack and an arbitrarily oriented micro-crack under
uniform tension and shear loads is considered, as shown in Fig. 1. This problem can be divided into two
subproblems. The first subproblem refers to an elastic half-plane without cracks under mixed loads,
and the second one is an elastic half-plane containing continuously distributed dislocations in the crack
regions without external loads.

2.2. Solution Scheme

For the first subproblem, the stress field can be given by

σ̃yy(x, y) = σ∞, σ̃xy(x, y) = τ∞, σ̃xx(x, y) = 0 (1)

where σ∞ and τ∞ are the applied tension and shear loads, respectively, and σ̃ij denote the stress
components contributed by the applied loads. The second subproblem will be presented in detail. For
an edge dislocation located at (ξ, 0) in an elastic half-plane, the stress components at (x, y) due to
the dislocation can be given by

σ̄ij(x, y) = c [bxGxij(ξ, x, y) + byGyij(ξ, x, y)] , c =
2μ

π(κ + 1)
(ij = xx, xy or yy) (2)

where μ and κ are the material constants; σ̄ij denote the stress components contributed by the dis-
tributed dislocations; bx and by are components of the Burgers vector; and the first subscript on G
denotes the Burgers vector. The expressions of G(ξ, x, y) can be obtained from [13]. For convenience,
the macro-crack and the micro-crack are described as crack 1 and crack 2, respectively. By setting
y = 0 for Eq. (2), the stresses along crack 1 induced by the dislocation located at crack 1 can be
obtained as

σ̄11
ij (x) = c

[
bxG11

xij(ξ, x, 0) + byG11
yij(ξ, x, 0)

]
(ij = xx, xy or yy) (3)

A local coordinate system x′ − o′ − y′ is established, as shown in Fig. 1. The local coordinate system
is related to the global one by

x = l + d cos θ + x′ cos α − y′ sin α

y = d sin θ + x′ sin α + y′ cos α (4)

where l is the length of the macro-crack; θ is the micro-crack orientation; α is the micro-crack angle;
and d is the distance between the macro-crack tip and the micro-crack center. The stress field in the
local coordinate system can be obtained by

σ̄ij(x′, y′) = c [bxGxij(ξ, x′, y′) + byGyij(ξ, x′, y′)] , ij = x′x′, x′y′ or y′y′ (5)
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Fig. 1. A half-plane containing an edge macro-crack and an arbitrarily located micro-crack under mixed loads

where

Gix′x′(ξ, x′, y′) = Gixx(ξ, x, y) cos2 α + Giyy(ξ, x, y) sin2 α + Gixy(ξ, x, y) sin 2α

Giy′y′(ξ, x′, y′) = Gixx(ξ, x, y) sin2 α + Giyy(ξ, x, y) cos2 α − Gixy(ξ, x, y) sin 2α

Gix′y′(ξ, x′, y′) = [Giyy(ξ, x, y) − Gixx(ξ, x, y)] sinα cos α + Gixy(ξ, x, y) cos 2α

(i = x or y) (6)

Setting y′ = 0 for Eq. (5), the stress components along crack 2 induced by the dislocation located at
crack 1 can be obtained as

σ̄12
ij (x′) = c

[
bxG12

xij(ξ, x
′, 0) + byG12

yij(ξ, x
′, 0)

]
(ij = x′x′, x′y′ or y′y′) (7)

In the same way, the stress components σ̄21
ij (x) and σ̄22

ij (x′) can be obtained. After the stresses induced
by an edge dislocation are obtained, the stresses induced by an array of edge dislocations along the
crack line can be calculated by integration.

σ̄ij(x) = c

∫ l

0

[
B1

x(ξ)G11
xij(ξ, x, 0) + B1

y(ξ)G11
yij(ξ, x, 0)

]
dξ

+ c

∫ a

−a

[
B2

x′(ξ′)G21
x′ij(ξ

′, x, 0) + B2
y′(ξ′)G21

y′ij(ξ
′, x, 0)

]
dξ′ (ij = xy or yy)

σ̄ij(x′) = c

∫ l

0

[
B1

x(ξ)G12
xij(ξ, x

′, 0) + B1
y(ξ)G12

yij(ξ, x
′, 0)

]
dξ

+ c

∫ a

−a

[
B2

x′(ξ′)G22
x′ij(ξ

′, x′, 0) + B2
y′(ξ′)G22

y′ij(ξ
′, x′, 0)

]
dξ′ (ij = x′y′ or y′y′) (8)

where a is the half-length of the micro-crack; the superscript of B(ξ) denotes the crack; and the
subscript denotes the Burgers vector. For the problem shown in Fig. 1, it must be ensured that the
crack faces are traction-free. So the following equations can be established.

σ̃ij(x) + σ̄ij(x) = 0 (0 < x < l, ij = yy or xy)
σ̃ij(x′) + σ̄ij(x′) = 0 ( − a < x′ < a, ij = y′y′ or x′y′) (9)

Substituting Eq. (8) into Eq. (9), the integral equations are established. The numerical solution of
Eq. (9) can be obtained by the Gauss–Chebyshev quadrature method [13, 40, 41]. Letting ξ = 0.5ls +
0.5l, x = 0.5lt + 0.5l, ξ′ = as′ and x′ = at′ (s and s′ are discrete integration points; t and t′ are
collocation points), the integral intervals [0, l] and [− a, a] can be normalized to interval [− 1, 1].
In the present problem, the half-plane contains an edge macro-crack and a centric micro-crack. The
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centric micro-crack is singular at both ends, so the form of the dislocation density function can be set
as

B(s′) = φ(s′)/
√

(1 − s′)(1 + s′) (10)

The edge macro-crack is singular at the crack tip but bounded at the other end, so the form of the
dislocation density function can be set as

B(s) = φ(s)
√

1 + s/
√

1 − s (11)

φ(s) and φ(s′) are unknown functions. Equation (9) can be replaced approximately by a series of
algebraic equations based on the numerical method. It can be written as

− σ̃ij(tK)
κ + 1
2μ

= 0.5l
N∑

I=1

(1 + sI)
2N + 1

[
φ1

x(sI)G11
xij(sI , tK) + φ1

y(sI)G11
yij(sI , tK)

]

+ a
N∑

I=1

1
N

[
φ2

x′(s′
I)G

21
x′ij(s

′
I , tK) + φ2

y′(s′
I)G

21
y′ij(s

′
I , tK)

]
(ij = xy or yy)

−σ̃ij(t′K)
κ + 1
2μ

= 0.5l

N∑

I=1

(1 + sI)
2N + 1

[
φ1

x(sI)G12
xij(sI , t

′
K) + φ1

y(sI)G12
yij(sI , t

′
K)

]

+ a

N∑

I=1

1
N

[
φ2

x′(s′
I)G

22
x′ij(s

′
I , t

′
K) + φ2

y′(s′
I)G

22
y′ij(s

′
I , t

′
K)

]
(ij = x′y′ or y′y′) (12)

where

s′
I = cos

[
π

2I − 1
2N

]
(I = 1...N ; t′K = cos

[
πK

N

]
, K = 1...N − 1)

sI = cos
[
π

2I − 1
2N + 1

]
(I = 1...N ; tK = cos

[
2πK

2N + 1

]
, K = 1...N) (13)

where N is the number of discrete integration points. The selection of N has a significant effect on the
computational accuracy, which will be discussed later. There are 4N unknown functions of φ(sI) and
φ(s′

I) in Eq. (12), but only 4N − 2 algebraic equations. Two extra equations must be established. On
the micro-crack, there is no net dislocation. So

N∑

I=1

φ2
x′(s′

I) =
N∑

I=1

φ2
y′(s′

I) = 0 (14)

where the superscript of φ2
i denotes the crack. Combining Eqs. (12) and (14), the unknown functions

φ(sI) and φ(s′
I) can be obtained. So the SIFs at the macro-crack tip can be given by

KI,II = c
√

πl
√

2φ1
y,x (15)

where the superscript of φ1
i denotes the crack, and

φ1
i =

2
2N + 1

N∑

I=1

φ1
i (sI) cot

[
π

2I − 1
4N

]
sin

[
Nπ

2I − 1
2N + 1

]
(i = x or y) (16)

The stress field in the global coordinate system can be obtained by superposition of three parts, that
is

σij(x, y) = σ̃ij(x, y) + σ̄1
ij(x, y) + σ̄2

ij(x, y) (ij = xx, xy or yy) (17)

where σ̃ij is the stress components induced by the applied loads; σ̄1
ij is the stress components induced

by the dislocations distributed on the macro-crack; and σ̄2
ij is the stress components induced by the
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dislocations distributed on the micro-crack. Thus, the stress field can be given by an integral formula,
i.e.,

σij(x, y) = σ̃ij(x, y) +
2μ

π(κ + 1)

∫ l

0

[
B1

x(ξ)G11
xij(ξ, x, y) + B1

y(ξ)G11
yij(ξ, x, y)

]
dξ

+
2μ

π(κ + 1)

∫ a

−a

[
B2

x′(ξ′)G21
x′ij(ξ

′, x, y) + B2
y′(ξ′)G21

y′ij(ξ
′, x, y)

]
dξ′ (ij = xy or yy)(18)

Based on the Gauss–Chebyshev quadrature method, the integral terms in Eq. (18) can be discretized.

σij(x, y) = σ̃ij(x, y) +
lμ

κ + 1

N∑

I=1

(1 + sI)
2N + 1

[
φ1

x(sI)Gxij(0.5lsI + 0.5l, x, y)
φ1

y(sI)Gyij(0.5lsI + 0.5l, x, y)

]

+
2aμ

κ + 1

N∑

I=1

1
N

[
φ2

x′(s′
I)Gx′ij(as′

I , x, y)+
φ2

y′(s′
I)Gy′ij(as′

I , x, y)

]
(ij = xx, xy or yy) (19)

where the superscript of φ denotes the crack, and φ1(sI) and φ2(s′
I) have been obtained by solving

Eqs. (12) and (14).
Considering the case of plane stress, the von Mises stress can be given by

σvon =
√

0.5 [(σ1 − σ2)2 + (σ2)2 + (σ1)2]

σ1,2 = 0.5(σxx + σyy) ± 0.5
√

(σxx − σyy)2 + 4σ2
xy (20)

where σ1 and σ2 are the first and second principal stresses, respectively.

2.3. Crack Propagation Direction and Rate

Erdogan and Sih [24] proposed the MCTSC. It was described that the crack propagates along the
direction where the circumferential tensile stress is maximum. According to the criterion, the crack
propagation direction can be given by

β = − arccos

(
3K2

II + KI

√
K2

I + 8K2
II

K2
I + 9K2

II

)

(21)

There is a positive correlation between crack propagation rate and the SIF at crack tip. For a mixed-
mode crack, the ESIF is applied to represent the combination action of KI and KII. The expression of
ESIF can be given by [42–45]:

Keff =
√

K2
I + 2K2

II (22)

The ESIF will be applied to qualitatively analyze the crack propagation rate in this paper.

3. FE Simulation
As shown in Fig. 2, a two-dimensional FE model is established. The material parameters are E =

210 GPa and ν = 0.3. The element type is PLANE183. It is singular at the crack tips, so the classical
singular element is applied at the crack tips. There are 20 elements around the crack tips. The initial
length of the macro-crack is 1 mm. The elements near the crack are about 0.01 mm. The length of the
model is 60 mm, which is sufficiently large in comparison with the macro-crack length. So the model
can be considered as a half-infinite plane. The model is subjected to uniaxial uniform tensile load. The
FE calculation is elastic.

The purposes of FE simulation are to verify the theoretical solution and to simulate the macro-crack
propagation path.

Two cases will be considered to verify the theoretical solution.

(a) Considering the case that a half-plane contains a micro-crack of different orientation near the
macro-crack tip under uniaxial tensile load, SIFs are used to measure the validity of the theoretical
solution.
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Fig. 2. FE model: a global model; b FE meshes at the crack tip
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Fig. 3. Comparison of SIFs between theoretical and simulated results under uniaxial tensile load: a mode I SIF; b mode
II SIF. The parameters are a/l = 1/40, α = 0◦ and d/l = 0.2

(b) Considering the case of a half-plane containing only a macro-crack under uniaxial tensile load, the
von Mises stress field is used to measure the validity of the theoretical solution.

The other purpose of FE simulation is to analyze the macro-crack propagation path. The calculation
procedures are as follows:

1. The FE model is established. The SIFs are calculated by the interaction integral method.
2. The macro-crack propagation direction β is calculated by Eq. (21).
3. The macro-crack propagates 0.05 mm along the direction β, and the element re-meshing is carried

out.
4. Go to Step 1.

When the effect of the micro-crack is very small or the micro-crack and the macro-crack join, the
calculation stops.

4. Results and Discussion
4.1. Verification and Comparison of Results

4.1.1. Comparison of SIFs
The variation of normalized SIFs versus the micro-crack orientation is depicted. The comparison

between theoretical and simulated results is shown in Fig. 3. The results show that the theoretical
results are very close to the FEM results, which verifies the theoretical solution.
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Fig. 4. Comparison of normalized von Mises stress field σvon/σ∞ between theoretical and simulated results under uniaxial
tensile load: a FEM; b conventional fracture mechanics; c theoretical solution in the paper

The number of discrete integration points N has a relatively large effect on mode I SIF, but has
little effect on mode II SIF in this case. The difference between the theoretical and simulated results
is very small when the number of discrete integration points is larger than 40 (N > 40). In this paper,
N is taken as 80, so the theoretical results are sufficiently accurate.

4.1.2. Comparison of Stress Field
The contour of normalized von Mises stress is depicted. The comparison between the results of

FEM, conventional fracture mechanics and theoretical analysis is shown in Fig. 4. It shows that the
theoretical stress field is highly consistent with the FEM results. The results in Figs. 3 and 4 illustrate
the validity of theoretical and simulated methods in this paper.

In the conventional fracture mechanics, the higher-order terms of crack tip stress field are neglected,
and the opening-mode crack tip stress field can be given by

σxx =
KI√
2πρ

cos
ϕ

2

(
1 − sin

ϕ

2
sin

3ϕ

2

)

σyy =
KI√
2πρ

cos
ϕ

2

(
1 + sin

ϕ

2
sin

3ϕ

2

)

σxy =
KI√
2πρ

cos
ϕ

2
sin

ϕ

2
cos

3ϕ

2
(23)

where ρ =
√

(x − l)2 + y2, ϕ = arctan [y/(x − l)] (x ≥ l), ϕ = arctan [y/(x − l)] + π (x < l). By
substituting Eq. (23) into Eq. (20), the von Mises stress field near the crack tip can be obtained.

Recent studies [46–51] showed that the T -stress and higher-order terms had significant effects on
crack propagation. The stress field in this paper is the complete stress field, which is more accurate than
the conventional fracture mechanics and the stress field considering T -stress. For small-scale yielding,
the elastic stress field can be applied to predict the shape of plastic zone based on some yield criteria.
The complete stress field is more accurate for the prediction of plastic zone.

4.2. Theoretical Results

4.2.1. Influence of Micro-crack Length on ESIF
The variation of normalized ESIF versus micro-crack length for different micro-crack orientations

is shown in Fig. 5. The results show that the effect of the micro-crack on the macro-crack propagation
rate increases with the increase in micro-crack length. The micro-crack has the shielding effect on the
macro-crack propagation at θ = 75◦, but the amplifying effect at θ = 15◦, 30◦ and 45◦. The micro-crack
has little effect on the macro-crack at θ = 60◦.

4.2.2. Shielding and Amplifying Effects of the Micro-crack
The variation of normalized ESIF versus the normalized micro-crack location (xmicro/l, ymicro/l)

for different micro-crack angles under uniaxial tensile load is shown in Fig. 6. The results show that
the shielding effect regions are like two ‘petals.’ As the micro-crack angle changes, the shielding effect
regions rotate. In order to summarize the law handily, a parameter γ is defined as the intersection
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Fig. 6. Contour of normalized ESIF Keff/K∞
eff under uniaxial tensile load: a α = − 60◦; b α = − 30◦; c α = 0◦; d

α = 30◦; e α = 60◦. The parameter a/l is taken as 0.01. The macro-crack is located in [0, l], and the micro-crack center
is located at (xmicro, ymicro)

angle between the micro-crack face and the line composed by the micro-crack center and macro-crack
tip, as shown in Fig. 1. In fact, the results in Fig. 6 can be summarized that the micro-crack has the
shielding effect at about γ = 90◦. Firstly, considering α = 0◦ (Fig. 6c), the shielding effect regions are
symmetric. The micro-crack has the shielding effect when it is located at the top or bottom of the
macro-crack tip, and γ is about 90◦ in this case. Considering α = 30◦ (Fig. 6d), the shielding effect
regions rotate about 30◦ counterclockwise in comparison with Fig. 6c. In this case, the angle γ is also
about 90◦. Considering Fig. 6a–e, the same law applies, i.e., the micro-crack has the shielding effect
at about γ = 90◦ under uniaxial tensile load. This is because the micro-crack face has the shielding
effect.
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Fig. 7. Contour of normalized ESIF Keff/K∞
eff under mixed loads: a τ∞ = 0; b τ∞/σ∞ = 0.2; c τ∞/σ∞ = 0.5; d
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a/l = 1/100. The macro-crack is located in [0, l], and the micro-crack center is located at (xmicro, ymicro)

The effect of the micro-crack on the ESIF becomes weaker as the inclination of micro-crack (the
absolute value of α) increases. This means the parallel micro-crack has a greater contribution to the
ESIF than the inclined micro-crack.

The variation of normalized ESIF versus the normalized micro-crack location (xmicro/l, ymicro/l)
for different τ∞/σ∞ under mixed loads is shown in Fig. 7. The results show that the shielding effect
regions rotate clockwise with the increase in ratio τ∞/σ∞. The shielding effect regions are like two
‘petals’ when τ∞/σ∞ ≤ 2, and split into two parts from the macro-crack tip when τ∞/σ∞ ≥ 5. The
effect of the micro-crack on the ESIF increases with the decrease in distance d. The closer is the micro-
crack location, the greater is the effect on the macro-crack. The effect of the micro-crack on the ESIF
becomes weaker as the ratio τ∞/σ∞ increases. This means the tensile load has a greater contribution
to the interaction between micro-crack and macro-crack than the shear load.

4.2.3. The von Mises Stress Field Affected by a Micro-crack
The variation of normalized von Mises stress field near the macro-crack tip versus the micro-crack

location under uniaxial tensile load is depicted in Fig. 8. The results in Fig. 8a, d show that the
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Fig. 8. Influence of the micro-crack on the normalized von Mises stress field σvon/σ∞ under uniaxial tensile load: a
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red regions in the stress field enlarge when the micro-crack is located in front of the macro-crack tip;
namely, the micro-crack aggravates the stress concentration in this case. The results in Fig. 6c show the
amplifying effect of micro-crack on the ESIF when it is located in front of the macro-crack tip, which
is consistent with Fig. 8. The results of Fig. 8b show that the red regions split into two parts when
the micro-crack is located in the red regions. In fact, in this case, the stress field near the macro-crack
tip is released and the stress concentration is partially relaxed. The results in Fig. 6c also show the
shielding effect of micro-crack on the ESIF when it is located at the top of the macro-crack tip. The
results in Fig. 8c show that the micro-crack has little effect on the stress field when it is located behind
the macro-crack tip.

The variation of normalized von Mises stress field near the macro-crack tip versus the micro-crack
location under mixed loads is depicted in Fig. 9, which shows similar results as in Fig. 8. Figure 9d,
g shows that the micro-crack aggravates the stress concentration when it is located in front of the
macro-crack tip. The results in Fig. 9a, b, e show that the red regions split into two parts when the
micro-crack is located in the red regions. In this case, the stress field near the macro-crack tip is released
and the stress concentration is partially relaxed. The results in Fig. 9c, f show that the micro-crack
has little effect on the stress field near the macro-crack tip when it is located behind the macro-crack
tip. The conclusions from the results in Fig. 9 are consistent with those from Fig. 7c. The ESIF is a
parameter to represent the stress concentration, so similar conclusions can be drawn from the analyses
of ESIF and stress field.

4.3. Simulation Results

4.3.1. The Macro-crack Propagation Path Affected by a Micro-crack
The variation of macro-crack propagation path with micro-crack under uniaxial tensile load is shown

in Fig. 10. The macro-crack propagates along the original direction without the micro-crack. The
results show an increasing effect of the micro-crack on the macro-crack propagation with the decrease
in vertical distance. In all cases of Fig. 10, the micro-crack has an attraction effect on the macro-
crack propagation path. This is similar to the attraction effect of soft inclusion on crack propagation
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[29, 52, 53]. For the cases of α = 0◦ and α = − 45◦, the macro-crack and micro-crack join when the
vertical distance decreases to a certain extent. When α = 45◦, however, the micro-crack deflects the
macro-crack propagation greatly. In this case, the micro-crack tip and macro-crack tip are very close,
so the effect on macro-crack is great. When the macro-crack propagates through the micro-crack, the
macro-crack propagation direction is close to the horizontal direction.

4.3.2. The Macro-crack Propagation Rate Affected by a Micro-crack
The variation of ESIF with micro-crack under uniaxial tensile load is depicted in Fig. 11. The results

show that, during the process of macro-crack propagation, the macro-crack propagation rate increases
first, then decreases, and then increases again. Initially, the micro-crack is located in front of the macro-
crack. Based on the analysis of Sect. 4.2, the micro-crack has an amplifying effect on the macro-crack
propagation. After that, with the propagation of macro-crack, the macro-crack tip is located at the
bottom of the micro-crack face and has a shielding effect on the macro-crack propagation. Finally,
the macro-crack propagation rate is close to the curve of ‘no micro-crack’ because the micro-crack has
little effect when it is located behind the macro-crack tip, so the micro-crack has little effect on the
macro-crack propagation direction and rate when the macro-crack propagates through it.
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5. Conclusions
In this study, the complete stress field and SIFs are obtained via theoretical derivation. The stress

field is more accurate than the conventional fracture mechanics. The macro-crack propagation path is
simulated. The effect of a micro-crack on the edge macro-crack propagation rate and path under mixed
loads is analyzed in detail based on the theoretical and FEM results. Some important conclusions are
drawn as follows.

(1) The shielding effect region is like two ‘petals’ under uniaxial tensile load and rotates with the change
in micro-crack angle.

(2) The shielding effect region rotates clockwise with the increase in ratio τ∞/σ∞. It is like two ‘petals’
when τ∞/σ∞ ≤ 2 and splits into two parts from the macro-crack tip when τ∞/σ∞ ≥ 5.

(3) The micro-crack aggravates the stress concentration when it is located in front of the macro-crack
tip. The stress concentration is partially relaxed when the micro-crack is located at the top or
bottom of the macro-crack tip. The micro-crack has little effect on the stress field when it is
located behind the macro-crack tip.

(4) The effect of the micro-crack on the macro-crack increases with the increase in micro-crack length.
With the decrease in distance d, the micro-crack inclination decreases and the ratio τ∞/σ∞

decreases.
(5) The micro-crack has the attraction effect on the macro-crack propagation. The micro-crack has

little effect on the macro-crack propagation direction and rate when the macro-crack propagates
through it.

The investigation of the effect of a micro-crack on the macro-crack propagation is important for pre-
dicting the fracture behaviors of structures containing micro-cracks. The macro-crack propagation rate
can be lowered down by prefabricating micro-cracks in the shielding regions, so the analysis of shielding
and amplifying effects can be useful for material design.
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