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ABSTRACT A theoretical model is established to investigate the effect of martensitic transfor-
mation particle on the dislocation emission from a crack tip in ceramic-matrix nanocomposites.
Using the model of dislocation-based strain nucleus and the Green’s function method, the expres-
sions of complex potentials and stress fields are derived in closed form. The critical stress intensity
factors for the first-lattice dislocation emission and the maximum number of emitted dislocations
are well calculated. The effects of important parameters such as the size of transformation par-
ticle, the dislocation emission angle and the distance from the crack tip to the transformation
particle on dislocation emission are discussed in detail. The results reveal that the transformation
particle shows a significant shielding effect on the dislocation emission from the crack tip, and
the shielding effect enhances with an increase in the size of transformation particle. On the other
hand, the results also imply that the emission of edge dislocations is closely related with the
dislocation emission angle, and there exists a probable angle |θ| ≈ 74◦ making the dislocation
emission easiest. Besides, the remarkable crack blunting induced by the dislocation emission is
quite difficult for small grain size but easy for the growth of crack.

KEY WORDS Shielding effect, Martensitic transformation, Dislocation emission,
Stress intensity factor, Nanocomposite

1. Introduction
Nanocrystalline ceramics display excellent physical properties such as high electrical resistivity, good

biocompatibility, superior strength and low density [1] and are widely employed in biomedical fields
such as dental implants and total joint prostheses, where highly reliable biomaterials are required [2].
Nevertheless, apart from these advantageous properties, some drawbacks such as low tensile ductility
and low fracture toughness at room temperature severely limit their practical applications. Therefore,
in order to solve this problem, a large number of methods have been proposed to improve the fracture
toughness of nanocrystalline ceramics [1, 3–5]. In recent years, rapidly growing attention has been con-
centrated on the dispersion toughness of nano-particles (< 100 nm) (Mo, Co, Ti, Ni, Cu) in a ceramic
matrix (Al2O3, ZrO2), which can notably enhance the mechanical properties of ceramic materials [6].
The method of particle dispersion toughening originates from the concept of mixing brittle ceramics
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with ductile metals, and the toughening can be increased through bridging ligaments or crack deflection
by the ductile phase [7].

During the past two decades, the incorporation of ZrO2 into Al2O3 to form ZrO2/Al2O3 compos-
ite has been prevailing, and evoked great interest from many scholars and practitioners [8–12]. The
toughness of alumina-based ceramics containing zirconia (ZrO2) as a second phase is substantially
enhanced. This is mainly attributed to the martensitic transformation of zirconia from the tetragonal
to the monoclinic phase when subjected to the applied stress [13, 14]. Phase transformation toughening
is one of the effective methods in enhancing the fracture toughness of brittle materials and has been
demonstrated by extensive experimental observations and theoretical results [5, 15–17]. The transfor-
mation that generally occurs in the vicinity of the crack tip can give rise to the generation of residual
strain which, in part, can release the high local stress and absorb fracture energy [7]. Earlier models of
transformation toughening were on the basic of energy changes combined with phase transformation
[18]. Due to the difficulties of these earlier models in predicting the experimental results, McMeeking
and Evans [19] proposed an alternative approach to characterize the transformation toughening of
ceramic materials by considering the reduction in stress intensity factors (SIFs) in crack tip. Later, Cai
and Faber [20] extended the model to investigate the effect of elastic mismatch between the particle
and matrix phases on transformation toughening. Recently, Li et al. [21] established a methodology
associated with J-integral over the transformation areas to examine the influence of the dilatant trans-
formation of particles/fibers on fracture toughness in composite materials.

In general, the researchers mentioned above have been discussing the effect of phase transforma-
tion on fracture toughness in ceramic materials without considering the effect of lattice dislocations
emitted from the crack tip. In fact, lattice dislocations play an important role in mediating the plas-
tic deformation, especially when the grain size is beyond 15 nm. The emission of lattice dislocations
along a slip plane can result in blunting of the crack tip, which may further hamper the crack growth
and enhance the fracture toughness of ceramic materials [2, 22, 23]. Recently, the phenomenon of
several dislocations adjacent to the micro-crack piling up near a ZrO2 particle [13] was observed by
the transmission electron microscope (TEM), as shown in Fig. 1. Besides, researchers found that the
mechanical properties of ZrO2/Al2O3 composite can be considerably increased by reducing the cor-
responding grain size [24]. At the same time, the ZrO2/Al2O3 nanocomposite was prepared by using
the method of versatile CO2 laser co-vaporization [25], and the average grain sizes of ZrO2 and Al2O3

were 216 ± 2 nm and 270 ± 3 nm, respectively [26], which met the conditions that the spontaneous
transformation of ZrO2 grains occurs more readily if the grain size is below a critical value (500 nm)
[27]. Based on these experimental evidences, the goal of the paper is to study the effect of martensitic
transformation particle on the dislocation emission from a crack tip by developing a theoretical model
of the ZrO2/Al2O3 nanocomposite.

2. Problem Description and Modeling
The physical problem to be considered is schematically depicted in Fig. 2a. The nanocomposite

specimen of alumina-based ceramics subjected to mode-I loadings from the infinite contains a semi-
infinite crack and nanoscale ZrO2 particles embedded in the intragrain or grain boundaries of Al2O3

grains. The sample is supposed to be elastic and isotropic with shear modulus μ and Poisson’s ratio
v. The emission of lattice dislocations from the crack tip is stimulated under the high stress intensity
near the crack tip. In this case, it is not very easy to explore the fundamentals of mechanical behavior
in ZrO2/Al2O3 nanocomposite with complicated microstructures. For simplicity, we consider a typical
structure in a two-dimensional section composed of a semi-infinite crack and a cylindrical ZrO2 particle,
as shown in Fig. 2b. Furthermore, we assume that the ZrO2 particle located at the triple junction
has experienced a complete martensitic transformation from the tetragonal to the monoclinic phase,
and is no longer influenced by the applied stress. In addition, the ZrO2 particles are isolated from
one another, and the effect produced by the interaction between the same neighboring structures is
negligible. Subjected to an applied uniaxial tension σ0, the dislocations are induced to emit from the
crack tip along the same slip plane with the dislocation lines parallel to the z-axis.

On the basis of the above descriptions, the current problem is simplified and illustrated in Fig. 2b.
For convenience of analysis, the Cartesian coordinate system is established with its origin located at
the tip of the crack. The radius of the ZrO2 particle is denoted by R, and the distance between the
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Fig. 1. TEM image of the micro-nano ZrO2/Al2O3 composite showing that the dislocations adjacent to the micro-crack
piled up near a ZrO2 particle [13]

ZrO2 particle and the crack tip is taken as d. Finally, since the amount of the ZrO2 particle is relatively
less than that of the alumina-based ceramics, the ceramic matrix can be regarded as an infinite plane
for the plane strain problem.

For the plane strain problem, all components of the stress fields and displacement fields can be
described in terms of two Muskhelishvili’s complex potentials Φ(z) and Ω(z) as [28]

σxx + σyy = 2
[
Φ(z) + Φ(z)

]
(2.1)

σyy + iσxy =
[
Φ(z) + Ω(z) + (z̄ − z)Φ′(z)

]
(2.2)

2μ (ux,x + iuy,x) = kΦ(z) − Ω(z) − (z − z̄)Φ′(z) (2.3)

where Φ′(z) = d [Φ(z)] /dz, k = 3−4v for plane strain, the over-bar indicates a complex conjugate and
the prime represents the derivation with respect to argument z.

To be more specific, the stress components in the Cartesian coordinate system can be rewritten as

σxx = Re[3Φ(z) − Ω(z) + (z − z̄)Φ′(z)] (2.4)

σxy = Im
[
Φ(z) + Ω(z) + (z̄ − z)Φ′(z)

]
(2.5)

σyy = Re
[
Φ(z) + Ω(z) + (z̄ − z)Φ′(z)

]
(2.6)

Besides, for the current problem, the stress components at the crack surfaces should satisfy the following
boundary condition

σyy(t) + iσxy(t) = 0 (t ∈ crack) (2.7)

3. Solutions of the Stress Functions
3.1. Dislocation-Based Strain Nucleus Located in an Infinite Matrix

According to the work of Suo [29], it is known that the elastic stress fields produced by an edge
dislocation with Burgers vector b and located at point s in an infinite homogeneous medium can be
expressed as

Φ(z) =
Mη

z − s
(3.1)

Ω(z) =
Mη(s̄ − s)
(z − s)2

− Mη̄

z − s
(3.2)
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Fig. 3. A concentrated transformed strain located in an infinite matrix

where M = μ/ [iπ(1 + k)], η = beiψ, and ψ denotes the orientation angle of the x0-axis (associated with
the principal strain εx0) with respect to the global x-coordinate axis.

A differential element shown in Fig. 3 with an area dA = dx0dy0 is taken into account, which
undergoes an unconstrained irreversible transformation with two principal strains εx0 and εy0 expressed
in local principal coordinates x0 and y0. At the same time, the infinitesimal element with transformation
strain can be modeled by an assembly of four dislocations; the potentials for which in the global
coordinate system can be written as [30]

Φj(z) = Mηj

z−sj

Ωj(z) = Mηj(s̄j−sj)
(z−sj)2

− Mη̄j

z−sj

(j = 1, 2, 3, 4) (3.3)

where

η1 = eiψ(εx0dx0), s1 = s − eiψei
π
2

(
dy0
2

)

η2 = e−iπ
2 eiψ(εy0dy0), s2 = s − eiψ

(
dx0

2

)

η3 = eiπeiψ(εx0dx0), s3 = s + eiψei
π
2

(
dy0
2

)

η4 = ei
π
2 eiψ(εy0dy0), s4 = s + eiψ

(
dx0

2

)
(3.4)

The subscripts refer to the numbered dislocations depicted in Fig. 3, and the Burgers vector ηj (j =
1, 2, 3, 4) represents the residual deformation of the differential element resulting from the martensitic
transformation.

The potentials with principal values εx0 and εy0 can be reached by superposing the four potentials
as

Φ(z) =
4∑

j=1

Φj(z)

Ω(z) =
4∑

j=1

Ωj(z) (3.5)
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After a straightforward manipulation, we can obtain

Φ(z) = iMe2iψ
εy0 − εx0

(z − s)2
dx0dy0

= iMe2iψ
εy0 − εx0

(z − s)2
dA (3.6)

Ω(z) = iM
[
2(εx0 + εy0) − e2iψ(εy0 − εx0)

(z − s)2
+

2e2iψ(εy0 − εx0)(s̄ − s)
(z − s)3

]
dx0dy0

= iM
[
2(εx0 + εy0) − e2iψ(εy0 − εx0)

(z − s)2
+

2e2iψ(εy0 − εx0)(s̄ − s)
(z − s)3

]
dA (3.7)

For convenience, Eqs. (3.6) and (3.7) can be expressed in a compact form as

Φ(z) = Φ0(z)dA

Ω(z) = Ω0(z)dA (3.8)

where Φ0(z) = C1
(z−s)2 , Ω0(z) = C2

(z−s)2 +C3(s̄−s)
(z−s)3 , dA = dx0dy0, C1 = iMe2iψ(εy0−εx0), C2 = iM [2(εx0+

εy0) − e2iψ(εy0 − εx0)] and C3 = iM [2e2iψ(εy0 − εx0)]. It is worth mentioning that when εx0 = εy0,
the current solutions will reduce to the case of a purely dilatational transformation. Conversely, if
εx0 = −εy0, the solution for a pure shear transformation will be achieved.

3.2. Stress Field Arising from Martensitic Transformation Particle

In the previous section, the solutions of complex potentials Φ0(z) and Ω0(z) for a transformation
strain nucleus located in an infinite matrix have been obtained without a crack. Next, we consider
the current problem with a semi-infinite crack near a ZrO2 transformation particle in the ZrO2/Al2O3

nanocomposites. Referring to the work of Muskhelishvili [28], the complex potentials for a transforma-
tion strain nucleus with a crack can be written as

Φp0(z) =
C1

(z − s)2
+ Φ∗

p0(z) (3.9)

Ωp0(z) =
C2

(z − s)2
+

C3(s̄ − s)
(z − s)3

+ Ω∗
p0(z) (3.10)

where Φ∗
p0(z) and Ω∗

p0(z) are holomorphic and determined by the stress boundary condition in Eq. (2.7).
Together with Eq. (2.2), the boundary condition in Eq. (2.7) can be rewritten as

[
Ω(t) − Φ̄(t)

]+ − [
Ω(t) − Φ̄(t)

]− = 0 (t ∈ crack) (3.11)
[
Ω(t) + Φ̄(t)

]+ +
[
Ω(t) + Φ̄(t)

]− = 0 (t ∈ crack) (3.12)

where the superscripts “+” and “−” represent the boundary values of the physical quantities as
approached from the upper half-plane and the lower half-plane of the semi-infinite crack, respectively.

The substitution of Eqs. (3.9) and (3.10) into Eq. (3.11) yields

Ω∗
p0(z) = Φ̄∗

p0(z) (3.13)

Then, inserting Eqs. (3.9) and (3.10) into Eq. (3.12), the following Riemann–Hilbert boundary problem
is reached as

[
Ω∗

p0(t)
]+ +

[
Ω∗

p0(t)
]− = h(t) (t ∈ (−∞, 0)) (3.14)

where

h(t) = − C̄1

(t − s̄)2
− C2

(t − s)2
− C3(s̄ − s)

(t − s)3

With reference to the work of Muskhelishvili [28], the above boundary value problem can be solved by
utilizing the Cauchy-type integral as

Ω∗
p0(z) =

X0(z)
2πi

∫ 0

−∞

h(t)
X+

0 (t)
dt

t − z
+ X0(z)Pn(z) (3.15)
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where X0(z) = 1/
√

z and Pn(z) = Dnzn + Dn−1z
n−1 + · · · + D0. Here, Pn(z) = 0 due to Ω∗

p0(z) =
o(1/z2).

The solution of Eq. (3.15) is given as

Ω∗
p0(z) =

1
2
√

z

[
C̄1

2
√

s̄(
√

z +
√

s̄)2
+

C2

2
√

s(
√

s +
√

z)2
− C3(s̄ − s)(3

√
s +

√
z)

8s3/2(
√

s +
√

z)3

]
(3.16)

Inserting Eq. (3.16) into Eq. (3.13), we have

Φ∗
p0(z) =

1
2
√

z

[
C1

2
√

s(
√

z +
√

s)2
+

C̄2

2
√

s̄(
√

s̄ +
√

z)2
− C̄3(s − s̄)(3

√
s̄ +

√
z)

8s̄3/2(
√

s̄ +
√

z)3

]
(3.17)

Substituting Eqs. (3.16) and (3.17) into Eqs. (3.10) and (3.9), respectively, leads to the solutions of a
transformation strain nucleus with a crack. Finally, the complex potentials created by the transforma-
tion strain of ZrO2 particle can be achieved by an integral of transformation area as

Φp(z) =
∫ R

0

∫ 2π

0

Φp0(z)ρdϕdρ (3.18)

Ωp(z) =
∫ R

0

∫ 2π

0

Ωp0(z)ρdϕdρ (3.19)

4. Force on the First Dislocation Emission
For the first dislocation emission from a semi-infinite crack tip with the martensitic transformation

particle, we consider a typical situation where the dislocations are of edge character and their Burgers
vectors lie along the same slip plane making an angle θ with the x-axis shown in Fig. 2b. The force acting
on the edge dislocation is composed of three parts: (1) the force due to the martensitic transformation
of ZrO2 particle; (2) the image force caused by the crack-free surface; (3) the external load.

Firstly, we calculate the force exerted on the edge dislocation arising from the transformation strain
of ZrO2 particle, which can be expressed by using the Peach–Koehler formula as [31]

fp = fpx − ifpy =
[
σp

xy(z0)bx + σp
yy(z0)by

]
+ i

[
σp

xx(z0)bx + σp
xy(z0)by

]

=
μb2

4πM(1 − v)

{
Φp(z0) + Φp(z0)

η
−

[
(z̄0 − z0)Φ′

p(z0) + Ωp(z0) − Φp(z0)
]

η̄

}
(4.1)

in which σp
xx, σp

xy and σp
yy are the stress components of the elastic fields due to the martensitic

transformation strain of ZrO2 particle.
Secondly, we assess the image force produced by the crack-free surface. Supposing that the first

edge dislocation emitted from the crack tip is located at point z0 = r0eiθ in the xoy coordinate system
depicted in Fig. 2b, and then using the same approach as the above-mentioned, the elastic fields of an
edge dislocation in an infinite matrix can be obtained as

Φd(z) =
Mη

2

[
1

z − z0

(√
z0
z

+ 1
)

+
1

z − z̄0

(√
z̄0
z

− 1

)]
− Mη̄(z0 − z̄0)

4(z − z̄0)2

(√
z̄0
z

+
√

z

z̄0
− 2

)

(4.2)

Ωd(z) =
Mη(z̄0 − z0)
4(z − z0)2

(√
z0
z

+
√

z

z0
+ 2

)
− Mη̄

2

[
1

z − z̄0

(√
z̄0
z

− 1

)
+

1
z − z0

(√
z0
z

+ 1
)]

(4.3)

The above results are completely in line with those obtained by Zhang and Li [32], and the image force
can be examined by means of the Peach–Koehler formula as [31]

fd = fdx − ifdy =
[
σd

xy(z0)bx + σd
yy(z0)by

]
+ i

[
σd

xx(z0)bx + σd
xy(z0)by

]

=
μb2

4πM(1 − v)

[
Φd(z0) + Φd(z0)

η
− (z̄0 − z0) Φ′

d(z0) + Ωd(z0) − Φd(z0)
η̄

]
(4.4)
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where σd
xx, σd

xy and σd
yy are the components of the perturbation stress resulting from the interaction

between the edge dislocation and the crack surface.
Thirdly, the external load imposed on the edge dislocation can be written as [23]

f∞ = bσrθ =
b(Θ1K

app
I + Θ2K

app
II )√

2πr
(4.5)

where Θ1 = 1
2 sin θ cos θ

2 , Θ2 = sin2 θ
2 cos θ

2 + cos 3θ
2 , Kapp

I and Kapp
II denote the generalized SIFs for

mode I and mode II due to the applied load, respectively, and b(= bx + iby) is the Burgers vector of
the first edge dislocation.

Lastly, the force exerted on the first dislocation emitted from the crack tip is derived by using the
superposition principle as

femit = Re[fd + fp] cos θ − Im[fd + fp] sin θ + f∞ (4.6)

It is a general criterion that if a new dislocation can be spontaneously emitted from a crack tip, the
force acting on it must be greater than zero, and the distance between the dislocation and the crack
surface is no smaller than the dislocation core radius r0 [33]. In view of Eqs. (3.18)–(4.6) and the
critical condition femit = 0, the critical SIFs for the first dislocation emission from the crack tip are
obtained as

Kapp
I = 0, Kapp

II =
√

2πr

bΘ2
(Im[fd + fp] sin θ − Re[fd + fp] cos θ) (4.7)

for mode-II crack, and

Kapp
II = 0, Kapp

I =
√

2πr

bΘ1
(Im[fd + fp] sin θ − Re[fd + fp] cos θ) (4.8)

for mode-I crack.

5. Number of Dislocations Emitted from the Semi-infinite Crack Tip
In this section, we will estimate the maximum number Nmax of emitted dislocations from the

crack tip along a slip plane. It assumes that the first emitted dislocation stops in the vicinity of the
transformation particle with a distance of d from the crack tip, and then the equilibrium positions of
other dislocations are calculated according to the force balance equation of effective stress as

σe
rθ(ri, θ) = σKI

rθ (ri, θ) + σim
rθ (ri, θ) + σp

rθ(ri, θ) +
N∑

j=0,
j �=1

σd
rθ(ri, rj , θ) (5.1)

where the stresses σKI
rθ (ri, θ), σim

rθ (ri, θ) and σp
rθ(ri, θ) are created by the applied tension σ0, the crack-

free surface and the transformation strain particle, respectively. Besides, σd
rθ(ri, rj , θ) represents the

stress exerted by the jth dislocation (that is already emitted and stays along the slip direction) at the
position of (rj , θ) on the newly emitted dislocation at the position of (ri, θ).

Following the Rice–Thompson criterion [33], we assume that the emission of the first dislocation
can occur if this dislocation is repelled from the crack tip when the distance from the dislocation to
the crack tip exceeds the dislocation core radius r0. Therefore, the first dislocation emission should
satisfy the following critical condition

σKI
rθ (r, θ) + σim

rθ (r, θ) + σp
rθ(r, θ)

∣∣∣
r=r0

> 0 (5.2)

To be specific, we will only take the necessary, but not the sufficient condition into account due to
the fact that the real conditions for the dislocation emission are stricter than those presented in the
following formula. At the same time, it is assumed that dislocation emission can be possible even
if the width of attraction zone for the crack tip exceeds the dislocation core radius. In this case, it
is supposed that the (N + 1)th dislocation (N = 1, 2, . . .) can emit within the interval 0 < r < d
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where this dislocation is repelled from the crack tip. In this region, the following inequality should be
valid

σKI
rθ (rN+1, θ) + σim

rθ (rN+1, θ) + σp
rθ(rN+1, θ) +

N∑
j=0

σd
rθ(rN+1, rj , θ) > 0 (N = 1, 2, . . .) (5.3)

The stress σKI
rθ (r, θ) and σim

rθ (r, θ) are given by Lin and Thomson [33] as

σKI
rθ (r, θ) =

KI sin θ cos(θ/2)
2
√

2πr
(5.4)

σim
rθ (r, θ) = − μb

4π(1 − v)r
(5.5)

In addition, the stresses σp
rθ(r, θ) created by the transformation strain particle and σd

rθ(r, θ) due to the
emitted dislocations can be reached by inserting Eqs. (3.18), (3.19) and Eqs. (4.2), (4.3) into Eq. (2.2),
respectively, before using the following equation

σrθ = (σyy − σxx) sin θ cos θ + σxy cos(2θ) (5.6)

6. Results and Discussion
In this section, we mainly discuss the influences of vital parameters such as the size of ZrO2 particle,

dislocation emission angle and the distance from the crack tip to the transformation particle on the
emission of the first dislocation. Furthermore, the critical SIFs for the first dislocation emission and the
maximum number of emitted dislocations along a slip plane are also examined in detail. For simplicity,
it is assumed that the Burgers vector of the edge dislocation is b=0.25 nm, and the core radius of
dislocation is r0 = b/2. Here, we mainly focus on the effect of purely dilatational transformation (i.e.,
εx0 = εy0) on dislocation emission with neglecting the shear component of the transformation. For
the system of ZrO2/Al2O3 nanocomposite, the appropriate values of elastic constants are given as
μ = 150 GPa, v = 0.27 for Al2O3 and μ1 = 80 GPa, v1 = 0.3 for ZrO2 [34], and the equivalent
eigenstrains εx0, εy0 from the transformation strains of ZrO2 particle can be calculated by [35]

εx0 = εy0 = ε0 =
(

1 − 2v

1 − 2v1

) (
μ1

μ

)[
1 −

(
S11 + S12

h

)]
εT (6.1)

where S11 +S12 = 1
2(1−v) and h = (1−2v1)μ

(1−2v1)μ−(1−2v)μ1
with the experimental value of the transformation

strain εT ≈0.024.

6.1. Influences of Particle Size and Location on the Critical SIFs for the First Dislocation Emission

For the current semi-infinite crack, Eq. (4.8) is considered with the normalized mode-I critical
SIF defined as Kapp

IC = Kapp
I /(μ

√
b). The variations of the normalized mode-I critical SIF Kapp

IC with
respect to the distance from the tip of the crack to the transformation particle are shown in Fig. 4. It
is observed that with the increase in the distance, the normalized critical SIF decreases and gradually
tends toward a constant. At the same time, at a certain distance, the larger is the transformation
particle, the relatively larger is the value of the normalized critical SIF. The results imply that the
transformation of ZrO2 particle shows a shielding effect on the dislocation emission from the crack tip,
and the shielding effect enhances with an increase in the size of transformation particle. Figure 5 plots
the normalized mode-I critical SIF versus the size of transformation particle at different distances d.
From the graph, it can be seen that as the radius of ZrO2 particle rises, the normalized mode-I critical
SIF increases. On the other hand, for a certain size of transformation particle, a decrease in the distance
will raise the normalized modes I critical SIF. The normalized mode-I critical SIF as a function of the
dislocation emission angle θ is illustrated in Fig. 6. It is obvious that the absolute values of normalized
mode-I critical SIF first decrease, and then increase with the increase in the dislocation emission angle.
According to Huang and Li [36], the sign of the SIFs depends on the direction of the Burgers vector
of the emerging dislocations, indicating that the normalized mode-I critical SIFs may be positive or
negative. In this case, there exists a probable angle |θ| ≈ 74◦ making the dislocation emission easiest.
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Fig. 4. Dependence of the dimensionless critical mode-I SIFs on dislocation emission with different sizes of ZrO2 particle
for θ = π/3
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Fig. 7. The maximum number Nmax of edge dislocations emitted from the semi-infinite crack tip as a function of the
distance d with l = 200 nm, R = 50 nm, θ = π/3

6.2. Influence of Distance from the Crack Tip to the Transformation Particle on the Maximum
Number of Dislocation Emissions from the Semi-infinite Crack Tip

With the calculation procedure described in Sect. 5, the maximum number of edge dislocations
emitted along the same slip plane as a function of the distance d is illustrated in Fig. 7. Specifically,
we choose the material parameters as: crack length l = 200 nm, the size of transformation particle
R = 50 nm, dislocation emission angle θ = π/3, the Burgers vector magnitude b = 0.25 nm and
KI =

√
4μγ/(1 − v) (γ = 1.69 J/m2 for Al2O3 representing the specific surface energy). We can see

from Fig. 7 that the number Nmax of emitted dislocations increases with an increase in distance d. At
the same time, it should be noted that the value of Nmax is relatively small, which suggests that the
significant crack blunting induced by dislocation emission is not easy for small grain size (the distance
d is approximate to the size of Al2O3 grain) but prone to the growth of crack.

7. Conclusions
The problem of martensitic transformation particle interacting with a semi-infinite crack is

addressed by building up a theoretical model in ceramic-matrix nanocomposites. On the basis of
the model of dislocation strain nucleus and the Green’s function method, the solutions of complex
potentials arising from the martensitic transformation are obtained analytically. The critical SIFs for
the first-lattice dislocation emission and the maximum number of emitted dislocations are evaluated.
The influences of typical parameters such as the size and location of transformation particle as well as
the distance from the crack tip to the transformation particle on dislocation emission are examined in
detail. Some main conclusions are summarized below:

(1) The transformation of ZrO2 particle shows a shielding effect on the dislocation emission from the
crack tip, and the shielding effect enhances with an increase in the size of transformation particle.

(2) As the radius of ZrO2 particle rises, the normalized mode-I critical SIF increases. On the other
hand, for a certain size of transformation particle, the decrease in distance will raise the normalized
mode-I critical SIF.

(3) The normalized mode-I SIF is closely related with the dislocation emission angle, and there exists
a probable angle |θ| ≈ 74◦ making the dislocation emission easiest.

(4) The significant crack blunting induced by the dislocation emission is not easy for small grain size,
but prone to the growth of crack.
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