
Acta Mechanica Solida Sinica, Vol. 32, No. 1, February, 2019, 120–132 ISSN 1860-2134
https://doi.org/10.1007/s10338-018-0062-2

Bifurcation and Chaos of Piezoelectric Shell Reinforced
with BNNTs Under Electro-Thermo-Mechanical Loadings

Jinhua Yang1� Tao Zhou1

(1School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China)

Received 10 June 2018; revision received 14 September 2018; Accepted 17 September 2018;
published online 5 October 2018

c© The Chinese Society of Theoretical and Applied Mechanics 2018

ABSTRACT By employing the nonlinear von Kármán shell theory and the theory of piezoelec-
tricity including thermal effects, the constitutive relations of the BNNT-reinforced piezoelectric
shell are built. Recurring to the ‘XY’ rectangle model, the material constants are reckoned. Then,
the nonlinear governing equations of the structure are derived through the Reissner variational
principle and solved by the fourth-order Runge–Kutta method. In numerical calculations, the
effects of temperature, voltage, volume fraction, etc., on the bifurcation and chaos of piezoelectric
shell reinforced with BNNTs are discussed in detail.

KEY WORDS Bifurcation and chaos, Piezoelectric shell, BNNTs, Reissner variational principle,
Runge–Kutta method

1. Introduction
Boron Nitride Nanotubes (BNNTs) are similar to carbon nanotubes (CNTs) in structure and

excellent mechanical properties, but own higher temperature resistance to oxidation and stronger piezo-
electric characteristics. In addition, BNNTs also possess stable semiconductive properties. Therefore,
BNNTs are considered as one of the most promising reinforcement materials. With the development
of science and technology, a new sort of smart nanocomposite, consisting of BNNTs as the reinforce-
ment and piezoelectric material as the matrix, has attracted increasing interest from the scientific
community. It is noted that the investigations on piezoelectric structure reinforced with BNNTs are
limited in number and mostly discuss the static problem only. Therefore, it is necessary to conduct
more extensive research on the dynamic behavior of this structure.

For the moment, most studies are restricted to discussing the dynamic behavior of piezoelectric
structure without the reinforcement of BNNTs. An et al. [1] provided a Melnikov method to study
the subharmonic bifurcations and chaotic motions of the nonlinear viscoelastic plates subjected to
external loads and subsonic flow. Employing the physical neutral surface concept and Euler–Bernoulli
beam theory, Fu et al. [2] studied the thermo-piezoelectric buckling, nonlinear free vibration and
dynamic stability of the functionally graded piezoelectric beams. In view of elastic piezoelectric theory
and higher-order shear plate theory, Mao et al. [3] studied the active vibration control and nonlin-
ear dynamic response of the functionally graded piezoelectric plate. By using a novel element-free
IMLS-Ritz model based on Reddy’s higher-order shear deformation theory, Selim et al. [4] studied the
active vibration control of composite plates with piezoelectric layers reinforced with carbon nanotube.
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Applying the higher-order shear deformation plate theory, Fakhari et al. [5] developed the finite element
(FE) formulation to discuss nonlinear natural frequencies, time and frequency responses of function-
ally graded plate with surface-bonded piezoelectric layers under electrical, thermal and mechanical
loadings. Detroux et al. [6] exploited the harmonic balance for detecting and tracking bifurcations of
nonlinear systems. Based on the finite element method under different sets of electrical and mechan-
ical loadings, Behjat and Khoshravan [7] analyzed the nonlinear static behavior and free vibration of
functionally graded piezoelectric plates. Using the thin plate theory with nonlocal viscoelasticity, Li
et al. [8] dealt with the transverse vibrations and steady-state responses of axially moving viscoelastic
piezoelectric two-dimensional nanostructures. Larbi et al. [9] presented the theoretical formulation and
the finite element implementation of vibroacoustic problems with piezoelectric composite structures
connected to electric shunt circuits. By means of the random Melnikov method, Liu et al. [10] inves-
tigated the chaos of the piezoelectric system with fractional order physical properties subjected to
periodic excitations. Dash et al. [11] addressed the nonlinear free vibration characteristic of laminated
composite plate with embedded and surface-bonded piezoelectric layer. Based on Reddy’s higher-order
shear deformation theory, Song et al. [12] discussed the active vibration control of CNT-reinforced
composite cylindrical shells via piezoelectric patches. Using Reddy’s higher-order shear deformation
theory, Selim et al. [13] studied the active vibration control of the FGM plates with piezoelectric lay-
ers. Zhang and Shen [14] presented an analytical formulation for the structural vibration control of
laminated plates consisting of composite layers reinforced with 1–3 piezoelectric fiber. Zhang et al.
[15] addressed the impact response of functionally graded composite cylindrical shell reinforced with
carbon nanotube. Using the Euler Bernoulli kinematic model as well as von Kármán geometric nonlin-
earity, Krysko et al. [16] discussed the chaos of flexible beams considering temperature and piezoelectric
effects. Based on the first-order shear deformation theory (FSDT), von Kármán geometric nonlinearity
along with the Hamilton’s principle, Mohammadzadeh-Keleshteri et al. [17] studied the nonlinear free
vibration of composite annular plates bonded with piezoelectric layers. Saviz and Mohammadpourfard
[18] addressed the dynamic analysis for simply-supported piezoelectric cylindrical shell under local
ring/pinch loads. Using the Euler–Bernoulli beam theory, von Kármán geometric nonlinearity and the
physical neutral surface concept, Rafiee et al. [19] illustrated the large amplitude vibration of carbon
nanotube reinforced functionally graded composite beams with piezoelectric layers. Under boundary
random excitations, Ying and Zhu [20] analyzed the random response of a piezoelectric thick shell in
the plane strain state. Rezaee et al. [21] addressed the nonlinear chaotic vibrations and stability of a
simply-supported functionally graded Piezoelectric (FGP) rectangular plate bonded with piezoelectric
layer.

Recently, some studies of piezoelectric structure reinforced with BNNTs have emerged. Barzoki
et al. [22] studied the torsional linear buckling of a PVDF cylindrical shell reinforced with BNNTs,
and found that the buckling strength increased substantially as harder foam cores were employed.
Based on the harmonic differential quadrature method (HDQM), Barzoki et al. [23] also illustrated
the nonlinear buckling of BNNT-reinforced piezoelectric shell. Using the virtual displacement method
based on nonlocal cylindrical shell theory, Arani et al. [24] discussed the axial buckling of double-walled
BNNTs embedded in an elastic medium under combined electro-thermo-mechanical loadings. Applying
the technique of differential scanning calorimetry (DSC), Kadir et al. [25] presented a simple mechanical
model for the buckling behavior of BNNT surrounded by an elastic matrix. Under electro-thermal
loadings, Arani et al. [26] investigated the nonlinear vibration and stability of a smart composite
micro-tube made of PVDF reinforced with BNNTs embedded in an elastic medium. Based on the
Euler–Bernoulli beam model with von-Kármán geometric nonlinearity and nonlocal elasticity theory,
Arani et al. [27] discussed the stability and the nonlinear dynamic behavior of an embedded smart
composite micro-tube subjected to thermal loadings and imposed electric potential. Arani et al. [28]
developed an analytical method of the small-scale parameter on the vibration of single-walled Boron
Nitride nanotube (SWBNNT) under a moving nanoparticle. Considering the effects of transverse shear
deformation and rotary inertia, Ansari et al. [29] presented the instability and nonlinear free vibration
of fluid-conveying SWBNNTs in the thermal environment. Yang et al. [30] discussed the nonlinear
dynamic response of electro-thermo- mechanically loaded piezoelectric cylindrical shell reinforced with
BNNTs. So far as we know, the research on bifurcation and chaos of piezoelectric structure reinforced
with BNNTs has not been reported in the open literature.
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Motivated by this consideration, we aim to study the bifurcation and chaos of piezoelectric shell
reinforced with BNNTs under combined electro-thermo-mechanical loadings. By employing the Reiss-
ner variational principle, the nonlinear governing equations of the shell are obtained. By introducing
the Galerkin method and additional state variables, the nonlinear equations are turned into first-order
nonlinear ordinary differential equations and then solved by the fourth-order Runge–Kutta method.
Numerical results are presented in graphical forms, showing the influences of voltage, temperature and
volume fraction on the bifurcation and chaos of BNNT-reinforced piezoelectric shell.

2. Basic Equations
Figure 1 shows a BNNT-reinforced piezoelectric shell with the coordinate system (x, y, z). The

origin of the coordinates is at the end of the shell. The radius of the middle surface of the shell is R,
the thickness is h, the length is L and mass density isρ0. In addition, the shell is subjected to transverse
dynamic load q(x, y, t), applied voltage V and a uniform temperature rise ΔT .

2.1. The Strain Displacement Relationships

The displacements along the coordinates of x, y, z are denoted as ū, v̄, w̄ respectively, and the
corresponding displacements of mid-plane are denoted as u, v, w. Then, the displacement field for the
piezoelectric shell can be expressed as

ū(x, y, z, t) = u(x, y, t) − zw,x(x, y, t)
v̄(x, y, z, t) = v(x, y, t) − zw,y(x, y, t)
w̄(x, y, z, t) = w(x, y, t)

(1)

where the symbol “,”represents the partial derivative of the coordinate variable.
Based on the von Kármán-Donnell-type kinematic relations of classical shell theory, the nonlinear

strain–displacement relations can be written as:

ε̄x = εx + zκx, ε̄y = εy + zκy, ε̄xy = εxy + zκxy (2)

where εx, εy, εxy are the strain components of mid-plane and κx, κy, κxy are the curvatures of mid-plane
[33], and

εx = u,x + 1
2w2

,x, εy = v,y − w
R + 1

2w2
,y, εxy = u,y + v,x + w,xw,y

κx = −w,xx, κy = −w,yy, κxy = −2w,xy
(3)
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Fig. 1. a Geometry of the piezoelectric cylindrical shell reinforced with BNNTs, and b section of the cylindrical shell



Vol. 32, No. 1 J. Yang, T. Zhou: Bifurcation and Chaos of Piezoelectric Shell 123

2.2. Constitutive Equations

The constitutive equations for a piezoelectric shell under combined thermal, mechanical and elec-
trical loadings can be written as [24]

σi = Cik(ε̄k − αkΔT ) − eT
ijEj (i, k = 1, 2, . . . 6)

Dl = elk(ε̄k − αkΔT ) − ε∗
ljEj (l, j = 1, 2, 3) (4)

where ΔT , ακ and Eκ(κ = x, y, z) represent temperature rise, thermal expansion coefficient and electric
field, respectively. ε∗

ii, Cij , eij(i, j = 1, . . . , 6) are dielectric constants, elastic constants and piezoelectric
constants, respectively.

The smart composite shell is composed of PVDF and BNNTs, which are used as the matrix and
reinforced materials, respectively. The material constants of the structure can be calculated recurring
to the ’XY (orYX) rectangle model′ [31, 32], as those in [30].

2.3. Governing Equations

For the BNNT-reinforced piezoelectric shell, the total potential energy Π can be expressed as:

Π = K − U + Γ (5)

where U indicates the strain energy, K indicates the kinetic energy and Γ indicates the work done by
the transverse dynamic load.

The expression of the strain energy is

U =
1
2

∫ ∫ ∫
V

σiε̄idV − 1
2

∫ ∫ ∫
V

EiDidV (6)

Because of the zigzag structure for BNNTs employed here, and the longitudinal arrangement of strips
in the matrix, Ey = Ez = 0. Denoting V as the voltage applied on both ends of the shell, the electric
field component is

Ex = V/L (7)

The kinetic energy is given in the following form

K =
1
2

∫ h/2

−h/2

∫ ∫
A

ρ0[( ˙̄u)2 + ( ˙̄v)2 + ( ˙̄w)2]dxdy (8)

The work done by the transverse dynamic load q(x, y, t) is

Γ =
∫ ∫

A

q(x, y, t)wdxdy (9)

Using the variational principle (δΠ = 0), the dynamic governing equations of the BNNTs-reinforced
piezoelectric shell can be reduced as:

Nx,x + Nxy,y = ρ0hu,tt

Nxy,x + Ny,y = ρ0hv,tt

Mx,xx + 2Mxy,xy + My,yy + Ny/R + Nxw,xx + 2Nxyw,xy + Nyw,yy + q = ρ0hw,tt

(10)

where

{N } = [A] {ε} −
{
N T

}
− {N p} , {M } = [D ] {κ} −

{
M T

}
− {M p} (11)

in which
{
N T,M T

}
=

∫ h/2

−h/2

[Cij ] {αk} (1, z)ΔTdz, {N p,M p} =
∫ h/2

−h/2

[eij ] {Ek} (1, z)dz (12)

In the above equations, the Aij ,Dij are the tensile and bending rigidity and that can be defined as

(Aij ,Dij) =
∫ h/2

−h/2

Cij(1, z2)dz (i, j = 1, 2, 6) (13)
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In axisymmetric circumstances, the circumferential displacement v = 0 and u,w is only the function
of coordinate x. Hence, the second equation of Eq. (10) is automatically balanced and can be omitted.
In accordance with Eqs. (3), (11) and (12), and introducing the following dimensionless parameters,

ξ =
x

L
,W =

w

h
,U =

u

L
,Q =

qL4

A22h3
,Mξ =

L2Mx

A22h3
,H =

L

h
,K =

L2

Rh
, τ =

t

L2

√
Ah

22/ρ0 (14)

the nonlinear dynamic governing equations of axisymmetric piezoelectric shell reinforced with BNNTs
under electro-thermo-mechanical loadings can be reduced as

S11AU,ξξ − S12A
K

H2
W,ξ + S11A

1
H2

W,ξW,ξξ =
S22A

H2
U,ττ

− 1
12

S11DW,ξξξξ + (S11AH2U,ξ

+
S11A

2
W 2

,ξ − S12AKW − H2(S11Aαx + S12Aαy)ΔT − H2e11Ex)W,ξξ

+S12AKH2U,ξ +
S12AK

2
W 2

,ξ

−S22AK2W−H2K(S12Aαx + S22Aαy)ΔT − H2Ke12Ex + S22AQ = S22AW,ττ (15)

where SijA = Aij/h,SijD = Dij/(h3/12).
Both ends of the shell are supposed to be simply-supported, then the dimensionless boundary

conditions are as follows:

Nξ(0) = 0,W (0) = 0, W,ξξ (0) = 0
Nξ(1) = 0,W (1) = 0, W,ξξ (1) = 0 (16)

where

Nξ =
[
S11A

(
U,ξ +

1
2H2

W 2
,ξ

)
− S12A

K

H2
W − (S11Aαx + S12Aαy) ΔT

]
− e11Ex

3. Solution Methodology
In order to satisfy the boundary conditions of Eq. (16), the formal solutions of Eq. (15) are assumed

as [34]

W =
∞∑

m=1,3,
w̃m(τ) sin(mπξ)

U = − 1
2π g(η) sin(2πξ) +

∞∑
m=1,3,

ũm(τ) cos(mπξ)
(17)
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Fig. 2. Nonlinear dynamic response of BNNT-reinforced piezoelectric cylindrical shells
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Table 1. The mechanical, electrical and thermal properties of PVDF and BNNT

PVDF BNNT

C11 = 238.24 GPa E = 1.8 TPa
C22 = 23.6 GPa ν = 0.34

C12 = 3.98 GPa e11 = 0.95 C/m2

C66 = 6.43 GPa αx = 1.2 × 10−6 K−1

e11 = −0.135 C/m2 αy = 0.6 × 10−6 K−1

e12 = −0.145 C/m2

ε∗
11 = 1.68 × 10−8 F/m

αx = 7.1 × 10−5 K−1

αy = 7.1 × 10−5 K−1
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Fig. 3. Effect of volume ratio on the bifurcation diagram of piezoelectric shell reinforced with BNNTs (V = 0, ΔT = 0).
a Bifurcation diagram Vf = 0.2, and b bifurcation diagram Vf = 0.6

where g(η) are defined as

g(η) =
1

2H2
W 2

,ξ − ϕ1, on ξ = 0 and ξ = 1

and

ϕ1 =
[
e11Ex

S11D
+

(
S11A

S11D
αx +

S12A

S11D
αy

)
ΔT

]
+

S12AK

S11DH2
W

The transverse dynamic load is taken as follows:

Q = F sin(πξ), F = F0 sin(ωτ)

In the formula, F0 and ω are, respectively, the dimensionless amplitude and frequency of the transverse
dynamic load.

Substituting Eq. (17) into Eq. (15), multiplying the first resulting equation by cos iπξ and the
second by sin iπξ, integrating the functions from 0 to 1 and taking the first-order Galerkin truncation
at the same time, the nonlinear constant differential equations expressed in terms of time functions ũ
and w̃ are derived as follows:

L11ũ + L12w̃ + L13w̃
2 + L14 = 0

L31w̃ + L32w̃
3 + L33ũw̃ + L34w̃

2 + L35ũ + L36 + pF = p ¨̃w
(18)

where

L11 =
∫ 1

0

S11AΛ1,ξξΛ1dξ

L12 =
∫ 1

0

(−S12A
K

H2
)Λ3,ξΛ1dξ
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Fig. 4. Comparison of the nonlinear dynamic characteristics of piezoelectric shell reinforced with BNNTs under different
volume ratios (F0 = 530.22). a Phase-plane trajectory Vf = 0.2, b phase-plane trajectoryVf = 0.6, c Poincaré map
Vf = 0.2, d Poincaré map Vf = 0.6, e time course curve Vf = 0.2, and f time course curve Vf = 0.6

L13 =
∫ 1

0

S11A

H2
(Λ4,ξξ + Λ3,ξΛ3,ξξ)Λ1dξ

L14 =
∫ 1

0

S11AΛ6,ξξΛ1dξ

L31 =
∫ 1

0

[
−S11D

12
Λ3,ξξξξ +

(
−S11AH2 2

π2
ϕ2Λ4,ξ + ϕ2

)
Λ3,ξξ − S22AK2Λ3

]
Λ3dξ

L32 =
∫ 1

0

S11A

(
Λ4,ξ +

1
2
Λ2
3,ξ

)
Λ3,ξξ]Λ3dξ

L33 =
∫ 1

0

S11AH2Λ1,ξΛ3,ξξΛ3dξ
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Fig. 5. The nonlinear dynamic characteristics of piezoelectric shell reinforced with BNNTs (V = −80). a Bifurcation
diagram, b time course curve, c phase-plane trajectory, and d Poincaré map

L34 =
∫ 1

0

S12AK(−Λ3Λ3,ξξ + Λ4,ξ +
1
2
Λ2
3,ξ)Λ3dξ

L35 =
∫ 1

0

S12AKH2Λ1,ξΛ3dξ

L36 =
∫ 1

0

ϕ3Λ3dξ

p =
∫ 1

0

S22AΛ2
3dξ

Λ1 = cos(πξ), Λ3 = sin(πξ), Λ4 = −π

4
sin(2πξ), Λ6 =

ϕ2

2π
sin(2πξ)

ϕ2 = −H2(S11Aαx + S12Aαy)ΔT − H2e11Ex

ϕ3 = −H2K(S12Aαx + S22Aαy)ΔT − H2Ke12Ex

The ũ in the first formula of Eqs. (18) can be solved as

ũ = − 1
L11

(L12w̃ + L13w̃
2 + L14) (19)

which is denoted as

ũ = Γ0 + Γ1w̃ + Γ2w̃
2 (20)

When substituting Eq. (20) into the second formula of Eq. (18) and introducing the linear damping
term μ ˙̃w at the same time, the nonlinear governing equation expressed by w̃ for the piezoelectric plate
reinforced with BNNTs can be written as:

φ1w̃ + φ2w̃
2 + φ3w̃

3 + φ4 + pF − μ ˙̃w = p ¨̃w (21)
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Fig. 6. The nonlinear dynamic characteristics of piezoelectric shell reinforced with BNNTs (V = 0). a Bifurcation
diagram, b time course curve, c phase-plane trajectory, and d Poincaré map

where

φ1 = L31 + L33Γ0 + L35Γ1

φ2 = L34 + L33Γ1 + L35Γ2

φ3 = L32 + L33Γ2

φ4 = L36 + L35Γ0

By introducing the state variables y1(τ) = w̃(τ), y2(τ) = ˙̃w(τ), Eq. (21) can be changed into the
following first-order nonlinear ordinary differential equations

ẏ1 = y2
ẏ2 = p−1(φ1y1 + φ2y

2
1 + φ3y

3
1 + φ4 − μy2 + pF ) (22)

The fourth-order Runge–Kutta method is adopted to obtain a numerical solution of Eq. (22). The
initial value is set as {y1, y2} = {0, 1} and the first 800 cycles are removed to eliminate transient
response. Then, the bifurcation diagram, the Poincaré map, the phase-plane trajectory and the time
course curve can be obtained by combining with the numerical analysis method for nonlinear dynamics.

4. Numerical Results and Discussion
To validate the present analysis, the nonlinear dynamic response of the piezoelectric shell reinforced

with BNNTs under electro-thermo-mechanical loadings is considered first. The geometric and material
parameters of the shell are the same as those used in [30]. The present results for the time history of
the dimensionless central deflection W0 are compared in Fig. 2 with those given by Yang et al. [30]. It
can be seen that good agreement is achieved with a relative error of 9.1%.

The bifurcation and chaos of the piezoelectric shell reinforced with BNNTs under electro-thermo-
mechanical loadings are then studied in the following calculation. Both ends of the shell are simply-
supported. The geometric parameters of the piezoelectric shell are L/R = 5/3, and R/h = 10. The
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external excitation frequency ω is equal to 5. The reinforced material is BNNT, and the matrix material
is PVDF. The material constants are listed in Table 1.

Figure 3 shows the effect of volume ratio (Vf ) on the bifurcation diagram of deflection versus load
for the piezoelectric shell reinforced with BNNTs. In this case, the voltage V = 0 and the temperature
ΔT = 0. It can be seen from the figure that with the increase in load, the system undergoes the one
period motion, the multiple period bifurcation motion, the one period motion, the multiple period
bifurcation motion, and finally enters a complex state consisting of multiple periodic motions, quasi-
periodic motions or chaotic motions. However, due to the difference between the volume ratios of
BNNT, the critical loads of the system entering the chaotic motion are different for the two kinds of
situations. And the critical load increases with the increase in volume ratioVf .

Figure 4 shows the nonlinear dynamic characteristics of piezoelectric shell reinforced with BNNTs
under different volume ratios when the load F0 = 530.22. It can be seen that the piezoelectric shell
with Vf = 0.2 exhibits the chaotic motion, but the piezoelectric shell with Vf = 0.6 is in double period
motion. Therefore, the piezoelectric shell will delay the multiply periodic motion or chaotic motion as
the volume ratio of BNNT increases. That is to say, increasing the volume ratio of BNNT can make
the dynamic characteristics of the piezoelectric structure more stable, which will be beneficial to the
dynamic stability of the structure.

The effect of voltage on the nonlinear dynamic characteristics of piezoelectric shell reinforced with
BNNTs is discussed in Figs. 5, 6 and 7. The volume ratio of BNNTs Vf is equal to 0.6, the temperature
rise ΔT is zero, and the given load is F = 580. Figures. 5, 6 and 7 give the bifurcation diagram,
time course curve, phase-plane trajectory and poincaré map with respect to different voltages. When
applying negative voltage to the piezoelectric shell, the system exhibits one periodic motion and the
poincaré map has one isolated fixed point (See Fig. 5). When the voltage applied to the piezoelectric
shell is zero, the system exhibits double periodic bifurcation motion and the poincaré map has two
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Fig. 7. The nonlinear dynamic characteristics of piezoelectric shell reinforced with BNNTs (V = +80). a Bifurcation
diagram, b time course curve, c phase-plane trajectory, and d Poincaré map
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Fig. 8. The effect of temperature on the bifurcation diagram of the piezoelectric shell reinforced with BNNTs. a T = 0,
b T = 200
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Fig. 9. The phase-plane trajectories of the piezoelectric shell reinforced with BNNTs at different temperatures. a T = 0,

b T = 200

isolated fixed points (See Fig. 6). When applying positive voltage to the piezoelectric shell, the system
exhibits chaotic motion and the poincaré map has the fractal features similar to clouds (See Fig. 7).
Therefore, the positive voltage weakens the dynamic stability of the piezoelectric shell reinforced with
BNNTs, and the negative voltage plays a role in enhancing the stability of the system.

The effect of temperature on the bifurcation diagram of the piezoelectric shell reinforced with
BNNTs is presented in Fig. 8. The applied voltage V is zero, and the volume ratio of BNNTs Vf is
equal to 0.6. From the figure, it can be seen that with the increase in the load, the system undergoes the
one periodic motion, the multiple periodic bifurcation motion, the one periodic motion, the multiple
periodic bifurcation motion, and finally enters a complex state of the chaotic motion. However, because
of the different temperatures, the critical loads of the system entering the chaotic motion are different.
Figures 9 and 10 are, respectively, the phase-plane trajectories and the Poincaré map when the system
first enters the chaotic state under two different temperatures. From the two figures, it can be seen
that the critical load of the system first entering the chaotic motion is F0 = 603 when the temperature
T=0, and the critical load is F0 = 547 when the temperature T=200. Therefore, the increase in
temperature will make the multiple periodic motion or chaotic motion of the piezoelectric shell appear
in advance. This indicates that the increase in temperature is not favorable for the dynamic stability
of the structure.

5. Conclusions
The bifurcation and chaos of piezoelectric shell reinforced with BNNTs under combined electro-

thermo-mechanical loadings are studied. The variational principle is adopted to derive the governing
equations, and the Runge–Kutta method is adopted to study the bifurcation and chaos of the BNNT-
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Fig. 10. The poincaré map of the piezoelectric shell reinforced with BNNTs at different temperatures. a T = 0, and b
T = 200

reinforced piezoelectric shell. The numerical results indicate that the decrease in temperature or voltage
and the increase in volume ratio can delay the multiple periodic motion or chaotic motion of the
piezoelectric shell, which is useful for the dynamic stability of the structure.
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