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ABSTRACT A macroscopic phenomenological constitutive model considering the martensite
transformation and its reverse is constructed in this work to describe the thermo-magneto-
mechanically coupled deformation of polycrystalline magnetic shape memory alloys (MSMAs) by
referring to the existing experimental results. The proposed model is established in the frame-
work of thermodynamics by introducing internal state variables. The driving force of martensite
transformation, the internal heat production and the thermodynamic constraints on constitutive
equations are obtained by Clausius dissipative inequality and constructed Gibbs free energy. The
spatiotemporal evolution equation of temperature is deduced from the first law of thermodynam-
ics. The demagnetization effect occurring in the process of magnetization is also addressed. The
proposed model is verified by comparing the predictions with the corresponding experiments. It is
concluded that the thermo-magneto-mechanically coupled deformation of MSMAs including the
magnetostrictive and magnetocaloric effects at various temperatures can be reasonably described
by the proposed model, and the magnetocaloric effect can be significantly improved over a wide
range of temperature by introducing an additional applied stress.

KEY WORDS Magnetic shape memory alloys, Constitutive model, Martensite transforma-
tion, Thermo-magneto-mechanically coupled deformation, Magnetostrictive and magnetocaloric
effects

1. Introduction
Magnetic shape memory alloys (MSMAs) are a new kind of smart materials and have attracted

increasing interest due to their large recoverable magnetic field-induced strain (MFIS). Besides the
well-known shape memory effect and super-elasticity observed in conventional shape memory alloys
(SMAs), MSMAs can work in a very high frequency up to an order of kHz, because their martensite
transformation and/or reorientation can also be driven by the magnetic field. Recently, MSMAs have
been successfully used in many engineering fields, for instance, actuator and sensor applications, solid-
state refrigeration, biomedical engineering [1–4].

There are two possible mechanisms to obtain a large reversible strain in MSMAs: one is the reori-
entation of martensite variants as a result of twin boundary motion; the other is the transformation
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occurring between the austenite and martensite phases. Since different martensite variants have differ-
ent eigenstrains and preferred magnetization directions, an applied stress or magnetic field can be used
to activate the production of certain variants from the others through the movement of twin boundary,
which is called the magnetic field-induced martensite reorientation (MFIR), resulting in a macroscopic
strain as reported in NiMnGa [5–10] and further in other MSMAs such as FePd [11], NiMnAl [12], FePt
[13], NiCoGa [14] and NiCoAl [15]. As discussed by Karaca et al. [16], two key requirements for the
occurrence of MFIR are low twinning stress and high magnetocrystalline anisotropy energy. The low
twinning stress leads to a low actuation stress (only several MPa s) in the actuator made by MSMAs,
while the high magnetocrystalline anisotropy energy makes the MFIR occur only in the MSMA single
crystals or the polycrystalline aggregates with very strong initial textures [17–19].

The second mechanism can also be denoted as the magnetic field-induced transformation (MFIT).
Since the differences of the eigenstrain and entropy between the austenite and martensite phases are
significant in MSMAs, the martensite transformation can also be induced by the applied stress and/or
temperature. However, the driving force of MFIT is the difference of Zeeman energies between the
austenite and martensite phases. Thus, an effective approach to promote the occurrence of magnetic
field-induced martensite transformation is to enhance the magnetization difference between the two
phases. Sutou et al. [20] and Kainuma et al. [21] reported that in NiMnIn, NiMnSb and NiMnSn single
crystals, the compressive pre-strain caused by the stress-induced martensite transformation could be
fully recovered when a magnetic field was applied in parallel to the compressive axis of specimen.
Such phenomenon was explained as the magnetic field-induced reverse transformation (i.e., from the
martensite to austenite phase). From a view point of energy, the reverse transformation can reduce the
total Zeeman energy when a magnetic field is applied, since the magnetization of martensite phase is
much lower than that of austenite phase in the alloys. Thus, the reverse transformation will be triggered
when the magnetic field reaches a critical value. Comparing to the MFIR, the MFIT can provide high
actuation stress and work output. Kainuma et al. [21] predicted that the actuation stress caused by
MFIT in NiMnCoIn should be the order of tens of MPas according to the Clausius–Clapeyron relation.
The high actuation stress and work output of NiMnCoIn MSMA single crystal were systematically and
experimentally investigated by Karaca [16]. It was found that the single crystal with an orientation
of [111] demonstrated a very high magnetostress (e.g., 140 MPa/T), but the work output is almost
independent of the crystallographic orientation. Although the actuation stress has been significantly
improved by the mechanism of MFIT, the high cost of single crystal restricts the wide application of
MSMAs. Fortunately, unlike the magnetocrystalline anisotropy energy, the Zeeman energy does not
strongly depend on the crystallographic orientation. So, the mechanism of MFIT can also be triggered
in the polycrystalline aggregates without strong initial textures, as reported by [22].

The thermal effects caused by the applied stress and magnetic fields in the materials are called the
elastocaloric and magnetocaloric effects, respectively. Since the stress/magnetic field-induced marten-
site transformation is accompanied by the release/absorption of a large amount of latent heat, another
important application of MSMAs is found in the solid-state refrigeration [4, 23–28]. Recently, many
polycrystalline MSMAs, e.g., NiMnIn, NiMnInCo, NiMnCoSn and CoNiAl, are considered as very
promising candidates for the solid-state refrigerators due to their partially reversible magnetocaloric
effect during the repeated application and removal of magnetic field, excellent mechanical stability and
low cost.

To reasonably design the actuators, sensors and refrigerators made from MSMAs, a constitutive
model is urgently necessary. In the last two decades, many constitutive models have been constructed.
For example, by introducing the chemical, mechanical, magnetic and thermal energies, Hirsinger and
Lexcellent [29, 30] established a 2D constitutive model of NiMnGa MSMAs based on irreversible ther-
modynamics, which could be simply denoted as the H-L model. In the H-L model, two types of internal
variables, i.e., the volume fractions of martensite variants and magnetic domains, were introduced to
characterize the microstructures of the alloy, and the magnetization vector in each variant was assumed
to be always aligned with the magnetic easy axis and not rotate away in the process of magnetiza-
tion. Kiefer and Lagoudas [31] extended the H-L model [29, 30] by considering three mechanisms, i.e.,
martensite reorientation, magnetic domain wall motion and magnetization vector rotation, simultane-
ously. Wang and Li [32] proposed a kinetic model by introducing a tensorial description of kinetics and
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developed an explicit kinetic evolution formulation to describe the martensite reorientation under mag-
netic and mechanical loading. Couch and Chopra [33] proposed a simplified phenomenological model
for NiMnGa MSMAs, where the stress was assumed to be a linear combination of strains, volume frac-
tions of martensite variants and magnetic field. Zhu and Dui [34–36] constructed a micromechanical
constitutive model based on the Eshelby’s equivalent inclusion method and Mori-Tanaka homogeniza-
tion scheme. Wang et al. [37] extended the model proposed by Zhu and Dui [34–36] and studied the
influence of material anisotropy and inclusion morphology on the reorientation. By introducing three
martensite variants and considering the compatibility of constitutive equations with thermodynamics,
Chen et al. [38], Auricchio et al. [39] and Mousavi and Arghavani [40] proposed some 3D constitutive
models, which well described the strain magnetization responses of MSMAs under arbitrary complex
magneto-mechanical loading conditions. Pei and Fang [41] proposed a simple model by extending the
transformation kinetics of conventional SMAs and introduced the magnetic field-induced stress and
an equivalence principle to describe the mechanical and magnetoelastic deformation. LaMaster et al.
[42, 43] proposed 2D and 3D constitutive models of MSMAs by addressing the demagnetization effect
during the magnetization. It should be noted that the constitutive models mentioned above focus on
the stress and magnetic field-induced martensite reorientation in MSMA single crystals only. Recently,
a thermodynamics-based constitutive model considering the MFIT of NiMnCoIn MSMA single crystals
was proposed by Haldar et al. [44]. The elastic and magnetic properties of austenite and martensite
phases were analyzed by the group theory in [44], and then the influences of temperature and stress
on the MFIS could be reasonably predicted.

Although the constitutive models of MSMAs have been greatly developed, most of them only focus
on the stress and magnetic field-induced martensite reorientation in single crystals. Thus, they are
not suitable to describe the martensite transformation of polycrystalline MSMAs occurring under the
multi-field-coupled loading conditions (e.g., the coupling of stress, temperature and magnetic fields).
Moreover, since the internal heat produced during the deformation and magnetization was not consid-
ered, the existing models [29–44] could not reasonably describe the elastocaloric and magnetocaloric
effects existed in MSMAs.

The aim of this work is to construct a macroscopic phenomenological constitutive model to describe
the thermo-magneto-mechanically coupled deformation of polycrystalline MSMAs and provide a the-
oretical guidance for the design of device made by MSMAs. The proposed model focuses on the
multi-field-induced martensite transformation and the internal heat production during the deforma-
tion and magnetization, and is established in a framework of thermodynamics. The demagnetization
effect is also addressed in the proposed model. The comparison between the simulated results and the
experimental ones shows that the thermo-magneto-mechanically coupled deformation of polycrystalline
MSMAs, including the magnetostrictive and magnetocaloric effects at various temperatures, can be
reasonably described by the proposed model. Also, the influence of applied stress on the magnetocaloric
effect is discussed.

2. Outline of Experimental Phenomena
To keep the integrity of the content, in this section, typical experimental phenomena for the mag-

netostrictive and magnetocaloric effects of polycrystalline MSMAs obtained by Lázpita et al. [45] and
Liu et al. [23] are outlined. The details can be referred to the original literature.

2.1. Magnetostrictive Effect of MnNiFeSn MSMA

In the experiments of Lázpita et al. [45], the materials were polycrystalline Mn49Ni42−xFexSn9 alloys
with x = 0, 2, 3, 4, 5 and 6 (where x is the atom percentage). The geometric dimension of the sample
is 3.0 mm × 2.0 mm × 1.5 mm. The effect of Fe doping on the magnetic field- and temperature-
induced martensite transformations of MnNiFeSn MSMAs was systematically investigated. It was
found that when x = 4, the alloy could present the largest magnetostrictive strain. Therefore, the
experimental results of Mn49Ni38Fe4Sn9 MSMA (x = 4) are outlined here and will be simulated by the
proposed model in this work. In the absence of magnetic field, the finish temperature of austenite (A0

f ),
start temperature of austenite (A0

s ), start temperature of martensite (M0
s ) and finish temperature of

martensite (M0
f ) of Mn49Ni38Fe4Sn9 MSMA were detected as 230 K, 206 K, 221.5 K and 195.5 K,



538 ACTA MECHANICA SOLIDA SINICA 2018

Fig. 1. Curves of applied magnetic field versus magnetization for MnNiFeSn MSMA at 160 K and 230 K (the experimental
results are cited from Lázpita et al. [45])

respectively. The superscript “0” represents that the critical temperatures are under zero magnetic
field.

Figure 1 shows the curves of applied magnetic field versus magnetization for the Mn49Ni38Fe4Sn9

MSMA at various temperatures, i.e., 160 K (at which the alloy consists of the martensite phase) and
230 K (at which the alloy consists of the austenite phase), respectively. The loading rate of magnetic
field is very small and can be regarded as the isothermal case. From Fig. 1, it is seen that once a
magnetic field is applied, the magnetization of austenite and martensite phases increases rapidly, but
is not fully saturated even at 12 T. Under a given magnetic field, the magnetization of austenite phase
is much larger than that of martensite one.

Figure 2a–e shows the curves of temperature versus strain obtained for the Mn49Ni38Fe4Sn9 MSMA
during a cooling–heating cycle (that is, the specimen is cooled to 150 K and then heated to the test
temperature) under the applied magnetic fields of 0 T, 1 T, 3 T, 7 T and 12 T, respectively. From
Fig. 2a, it is seen that at the beginning of cooling (segment o-a), a linear reduction of the length is
observed, which is caused by the thermal expansion. When the temperature decreases to a critical
value (point a), martensite transformation occurs, accompanied by a large amount of inelastic strain
(about 0.4%). The inelastic strain is originated from the volume difference between the austenite and
martensite phases, as discussed by Lázpita et al. [45]. After the martensite transformation is completed
(point b), only the thermal expansion can be observed in the subsequent cooling process (segments
b–c). During the heating, the reverse transformation (from the martensite to austenite phase) starts
and completes at points d and e, respectively. The curves of temperature versus strain present a large
hysteresis loop since the martensite transformation is a typical first-order transformation. Comparing
Fig. 2b–e with Fig. 2a, it is seen that four critical temperatures shift down with the increase of applied
magnetic field, which implies that the magnetic field can stabilize the austenite phase and enhance the
transformation resistance.

Figure 3 shows the temperature magnetization response during a cooling–heating cycle under an
applied magnetic field of 9 T. It is seen that there is a large drop of magnetization in the process of
martensite transformation, which is related to the weak magnetism of martensite phase. Moreover, the
magnetizations of austenite and martensite phases depend strongly on the temperature.

Figure 4a, b shows the curves of magnetic field versus strain (magnetostrictive effect) for the
Mn49Ni38Fe4Sn9 MSMA at various temperatures (e.g., 150 K, 200 K, 210 K, 220 K, 250 K and
310 K). Each sample was initially cooled to 150 K and then heated to the prescribed temperatures. It
is seen that at the temperature far from As, the magnetostrictive strain almost keeps as zero even if the
applied magnetic field is increased to 12 T. At the temperature close to As, a nonlinear magnetic field
strain hysteretic behavior occurs, and a large strain is produced during the loading of magnetic field
and fully recovered after the unloading of magnetic field. In fact, when the temperature is close to As,
the reverse transformation (from the martensite to austenite phase) can be induced by the magnetic
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(a)

(c) (d)

(e)

(b)

Fig. 2. Temperature-induced martensite transformation of MnNiFeSn MSMA under different magnetic fields: a 0 T; b
1 T; c 3 T; d 7 T; e 12 T (the experimental results are cited from Lázpita et al. [45])

field since the Zeeman energy of austenite phase is much lower than that of martensite phase. Then,
a large transformation strain occurs, as shown in Fig. 4a, b.

2.2. Magnetocaloric Effect of NiMnInCo MSMA

In the experiments of Liu et al. [23], the materials were polycrystalline Ni45.2Mn36.7In13Co5.1,
Ni49.8Mn35In15.2and Ni50.4Mn34.8In15.8 MSMAs. The geometric dimension of the sample was
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Fig. 3. Temperature magnetization response of MnNiFeSn MSMA under an applied magnetic field of 9 T (the experi-
mental results are cited from Lázpita et al. [45])

(a) (b)

Fig. 4. Magnetic field-induced martensite transformation (magnetostrictive effect) of MnNiFeSn MSMA under an applied
magnetic field of 9 T (the experimental results are cited from Lázpita et al. [45])

4.0 mm × 2.0 mm × 1.0 mm. Experimental results showed that the Ni45.2Mn36.7In13Co5.1 MSMA
could exhibit the most remarkable magnetocaloric effect. Therefore, the experimental results of
Ni45.2Mn36.7In13Co5.1 MSMA are outlined here and will be simulated by the model proposed
in this work. Under a very small magnetic field (e.g., 0.01 T), four critical temperatures of
Ni45.2Mn36.7In13Co5.1 MSMA, i.e., A0.01

f , A0.01
s , M0.01

s and M0.01
f , were measured as 327 K, 317 K,

319 K and 311 K, respectively. The superscript “0.01” represents that the critical temperatures are
obtained under an applied magnetic field of 0.01 T.

Figure 5 shows the temperature magnetization response of Ni45.2Mn36.7In13Co5.1 MSMA obtained
during a quasi-static cooling–heating cycle under an applied magnetic field of 2 T. Four critical tem-
peratures are denoted as A2

f , A2
s , M2

s and M2
f , respectively. It is seen that the austenite and martensite

phases exhibit ferromagnetism and nonmagnetism, respectively. Comparing to A0.01
f , A0.01

s , M0.01
s and

M0.01
f , four critical temperatures under an applied magnetic field of 2 T (i.e., A2

f , A2
s , M2

s and M2
f )

shift down, which means that the magnetic field can hinder the forward martensite transformation but
promote the reverse one.

Figure 6 shows the temperature changes obtained under an applied magnetic field of 2 T and at
various temperatures (i.e., the magnetocaloric effect). Since the loading rate of magnetic field is very
high, the magnetocaloric effect can be regarded as an adiabatic process. In Liu et al. study [23], to avoid
the influence of thermal history on the magnetocaloric effect, each sample was initially heated above a
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Fig. 5. Temperature magnetization response of NiMnInCo MSMA under an applied magnetic field of 2 T (the experi-
mental results are cited from Liu et al. [23])

Fig. 6. Adiabatic temperature changes under an applied magnetic field of 2 T at various temperatures (magnetocaloric
effect) (the experimental results are cited from Liu et al. [23])

fully austenitic state and then cooled down to a completely martensitic state. Afterward, the sample was
heated to the prescribed temperature. Then, a magnetic field was applied under adiabatic conditions.
From Fig. 6, it is seen that the MSMA exhibits a good refrigerating capacity, i.e., the maximum
temperature change (about − 6.2 K) occurs at 317 K, which is mainly caused by the absorption of
transformation latent heat during the magnetic field-induced reverse transformation. However, the
refrigerating capacity decreases rapidly when the test temperature deviates a little bit from 317 K. In
other words, such an alloy can only be used within a very narrow temperature range.

Figure 7 shows the evolution of temperature change at 317 K during a cyclic loading of magnetic
field, i.e., first loading (0 T → 2 T), unloading (2 T → 0 T), reverse loading (0 T → − 2 T) and
reverse unloading (− 2 T → 0 T). It is seen that the first loading of magnetic field up to 2 T causes
a cooling effect of − 6.2 K. During the unloading of magnetic field, the sample heats only by 1.3 K
and the temperature cannot fully recover to its initial value. After the sample is reversely loaded
up to a magnetic field of − 2 T and then unloaded to 0 T, a small temperature change of 1.3 K is
obtained. It means that in the cycle refrigeration, only a temperature change of 1.3 K can be achieved
in each cycle. As discussed by Liu et al. [23], the unrecoverable temperature change is originated from
the large hysteresis loops of applied magnetic field and magnetization in NiMnInCo MSMA, i.e., the
austenite phase cannot fully transform into the martensite one even if the applied magnetic field is
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Fig. 7. Evolution of adiabatic temperature change at 317 K during a cyclic loading of magnetic field, i.e., first loading
(0 T → 2 T), unloading (2 T → 0 T), reverse loading (0 T → − 2 T) and reverse unloading (− 2T → 0 T) (the
experimental results are cited from Liu et al. [23])

unloaded. Therefore, to improve the refrigerating efficiency of MSMAs, an effective way is to reduce
their hysteresis loops of applied magnetic field and magnetization.

The magnetocaloric effect of MSMAs is a typical thermo-magnetically coupled process. On the one
hand, during a loading of magnetic field, transformation latent heat, intrinsic dissipation, thermoelastic
deformation and magnetization will lead to an internal heat production and then cause a temperature
variation. On the other hand, the experimental results shown in Figs. 3 and 5 demonstrate that the
martensite transformation and magnetization depend strongly on the temperature. The internal heat
production and temperature-dependent material deformation influence each other, which leads to a
complex thermo-magnetic response of MSMAs. Recently, the experimental results [46, 47] showed that
the hysteresis loops of applied magnetic field and magnetization in MSMAs could be manipulated by
applying an additional stress (such as hydrostatic pressure), which suggested a candidate to improve
the refrigerating efficiency of MSMAs. So, a thermo-magnetic-mechanically coupled problem must be
faced up in this aspect.

As commented in Sect. 1, the existing constitutive models addressed the magneto-mechanically cou-
pled deformation of MSMA single crystals only, and did not describe the experimental results outlined
in this section reasonably. Thus, a macroscopic thermo-magneto-mechanically coupled constitutive
model is necessary to describe the outlined experimental observations here, which will be constructed
in Sect. 3.

3. Constitutive Model
3.1. Inelastic Strain and Magnetization Vector

The proposed model is constructed based on the hypothesis of small deformation, since the maxi-
mum transformation strain of MSMAs does not exceed 10%. Considering the contributions of elastic
deformation, thermal expansion and martensite transformation, the total strain tensor ε is decomposed
into three parts, i.e.,

ε = εe + εT + εtr (1)

where εe, εT and εtr are the elastic, thermal expansion and transformation strain tensors, respectively.
The relationship between the thermal expansion strain εT and temperature T is written as:

εT = α (T − T0) (2)

where α is the second-order thermal expansion tensor, T is temperature, and T0 is the balance tem-
perature. In this work, α is regarded as an isotropic tensor for simplicity, i.e., α = α1, where 1 is the
second-order unit tensor.
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(a)

(b)

(c)

Fig. 8. Evolution of adiabatic temperature change under the cyclic loading of magnetic field (with 10 cycles) at various
ambient temperatures: a predicted results without stress manipulation; b magneto-mechanically coupled loading paths
in each cycle at various temperatures; c predicted results with stress manipulation

It is assumed that there is a linear relationship between the rates of transformation strain ε̇tr and
martensite volume fraction ξ̇, i.e.,

ε̇tr = ξ̇Λtr (3)
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where Λtr is the direction tensor of martensite transformation. Referring to Qidwai [48] and Lagoudas
et al. [49], Λtr can be written as:

Λtr =

⎧
⎨

⎩

√
3
2Hmax (σ, T,H ) dev(σ)

‖dev(σ)‖ + γ (σ, T,H ) 1 when ξ̇ > 0
εtr
r

ξr
when ξ̇ < 0

(4)

where Hmax is the maximum shear strain, and γ is the volumetric strain caused by martensite trans-
formation, and they are generally the functions of stress σ, temperature T and internal magnetic field
H . It should be noted that in the conventional SMAs such as the NiTi alloys, the volumetric change
during the martensite transformation is very small and is often neglected [50, 51]. However, in many
MSMAs, the volumetric strain caused by the martensite transformation can be about 1% [45, 52] and
should be considered in the constitutive model. dev (σ) is the deviatoric stress tensor. εtr

r and ξr are the
transformation strain and the volume fraction of martensite at the beginning of reverse transformation,
respectively.

For MSMAs, under a magnetic field, the magnetization vectors in austenite and martensite phases
tend to be aligned with the external magnetic field by two magnetization mechanisms, i.e., the motion
of magnetic domain wall and the rotation of magnetization vector. Here, the microscopic magnetiza-
tion mechanisms are not considered, since the proposed model is a macroscopic phenomenological one.
Owing to the random orientations of grains, the magnetization property of polycrystalline MSMAs can
be regarded as isotropic. Therefore, the direction of the magnetization vectors in austenite and marten-
site phases (MA and MM) is assumed to be aligned with the external magnetic field, respectively, i.e.,

MA = f (H , T,σ)
H

|H | (5a)

MM = g (H , T,σ)
H

|H | (5b)

where f (H , T,σ) and g (H , T,σ) are the magnetization intensities of austenite and martensite phases,
respectively. Generally, they are the functions of stress σ, temperature T and internal magnetic field
H .

Adopting the mixture rule, the total magnetization vector of a material point can be written as:

M = (1 − ξ)MA + ξMM = F (H , T,σ, ξ)
H

|H | (6)

where F (H , T,σ, ξ) = (1 − ξ) f (H , T,σ) + ξg (H , T,σ).
The magnetic field caused by the body’s own magnetization is called the demagnetizing field. If a

uniform external magnetic field H app is applied, the internal magnetic field of a material point x can
be written as:

H (x ) = H app + H d (x ) (7)

where H d (x ) is the demagnetizing field, which depends on the boundary condition and the geomet-
ric shape and size of the sample, and is uniform in a uniformly magnetized ellipsoidal sample, but
nonuniform in a rectangular body.

Referring to Bertram [53] and Schlömann [54], for uniformly magnetized bodies, the relationship
between the demagnetizing field at the material point x and magnetization vector can be written as:

Hd (x ) = D (x ) · M (8)

where D (x ) is the demagnetization factor, i.e.,

D (x ) = − 1
4π

∫ ∫

∂Ω

x − x ′

|x − x ′|3 ⊗ n ′dA′ (9)

where ∂Ω is the surface of the region occupied by the magnetized body, x ′ is a material point on the
surface, and n ′ is the unit outward normal.
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To accurately simulate the demagnetization effect, a magneto-mechanically coupled boundary prob-
lem should be solved after the constitutive model has been implemented into a finite element code [55].
However, in this work, only the construction of constitutive model is focused on. Thus, the hetero-
geneity of demagnetizing field is neglected and the demagnetization effect is considered by an average
demagnetization factor D̄ , i.e.,

D̄ = − 1
4πV

∫ ∫ ∫

V

(∫ ∫

∂Ω

x − x ′

|x − x ′|3 ⊗ n ′dA′
)

dV (10)

where V is the volume of the region occupied by the magnetized body. From Eq. (10), it is seen that
D̄ can be determined once the geometric shape of the sample is known.

So, the relationship among the internal magnetic field, external magnetic field and magnetization
vector can be written as:

ϕ (H ,H app,σ, T, ξ) = H −H app+D̄ ·M (H ,σ, T, ξ) = H −H app+F (H ,σ, T, ξ) D̄ ·N = 0 (11)

where N = H /|H | is the direction of magnetic field. Equation (11) can be regarded as an additional
constraint on the constitutive equations.

Taking the time derivative of Eq. (11), Ḣ can be represented by Ḣ
app

, Ṫ and ξ̇, i.e.,

Ḣ = −ϕ−1
,H · ϕ,H app · Ḣ app − ϕ−1

,H · ϕ,T Ṫ − ϕ−1

,H · ϕ,σ : σ̇ − ϕ−1

,H · ϕ,ξ ξ̇ (12)

where

ϕ,H = 1 + F ,H ⊗ D̄ · N + FD̄ · N ,H (13a)

N ,H =
∂

∂H

(
H

|H |
)

=
(

1 − N ⊗ N

|H |
)

(13b)

ϕ,H app = −1 (13c)

ϕ,T = F,T D̄ · n (13d)

ϕ,ξ = F,ξD̄ · n (13e)

3.2. Framework of Irreversible Thermodynamics

The thermodynamic state of the material can be defined by the observable external variables and
introduced internal variables. The total Gibbs free energy is decomposed into five parts, i.e.,

G = Gmech + Gthermal + Gchemical + GZeeman + Ghardening (14)

The mechanical energy Gmech consists of two parts, i.e., the energy stored by the elastic deformation
and the one caused by the interaction between the stress and inelastic strain, i.e.,

Gmech

(
σ, T, εtr

)
= − 1

2ρ
σ : S : σ − 1

ρ
σ : α (T − T0) − 1

ρ
σ : εtr (15)

where ρ is the density, and S is the elastic compliance tensor. In this work, the differences of the
elastic compliance tensors between austenite and martensite phases are neglected for simplicity. In this
case, S is a constant tensor. For the polycrystalline aggregates, S can be regarded as a fourth-order
isotropic tensor, i.e., S = Eν

(1−2ν)(1+ν)1 ⊗ 1 + E
1+ν I , where E and ν are elastic modulus and Poisson’s

ratio, respectively, and I is the fourth-order unit tensor.
The thermal energy is given as follows by referring to Lagoudas et al. [49]

Gthermal (T ) = c

[

(T − T0) − T ln
(

T

T0

)]

(16)

where c is the specific heat at a constant volume.
Referring to Yu et al. [56], the chemical energy can be written as:

Gchemical (T, ξ) = β (T − T0) ξ (17)

where β is the coefficient of entropy difference between the austenite and martensite phases.
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The Zeeman energy is directly proportional to the negative value of the product of magnetization
and magnetic field intensities, which can be written as

GZeeman (H , T,σ, ξ) = −μ0

ρ
H · M = −μ0

ρ
H ·

[
(1 − ξ)MA + ξMM

]

= −μ0

ρ

[
(1 − ξ) LA (H , T,σ) + ξLM (H , T,σ)

]
(18)

where LA and LM are two functions of H , T and σ, i.e., ∂LA

∂H = f (H , T,σ) H
|H | ,

∂LM

∂H = g (H , T,σ) H
|H | ,

and μ0 is the vacuum permeability.
The hardening energy reflects the transformation resistance caused by the defects (for instance,

dislocation and grain boundary) in material and is a function of the volume fraction of martensite, i.e.,

Ghardening (ξ) =
1
ρ
h (ξ) (19)

Taking the time derivative of Gibbs free energy, we obtain:

Ġ =
∂G

∂σ
: σ̇ +

∂G

∂H
· Ḣ +

∂G

∂T
Ṫ +

∂G

∂εtr
: ε̇tr+

∂G

∂ξ
ξ̇ (20)

Substituting Eq. (12) into Eq. (20), we obtain:

Ġ = ∂G
∂σ : σ̇ + ∂G

∂H ·
(
−ϕ−1

,H · ϕ,H app · Ḣ app − ϕ−1
,H · ϕ,T Ṫ − ϕ−1

,H · ϕ,σ : σ̇ − ϕ−1
,H · ϕ,ξ ξ̇

)

+ ∂G
∂T Ṫ + ∂G

∂εtr : ε̇tr+∂G
∂ξ ξ̇

(21)

For a magnetic solid, the first law of thermodynamics (i.e., conservation of energy) can be written as:

ρu̇ = σ : ε̇ + H · Ḃ − ∇ · q (22)

where u is the internal energy, B is the magnetic induction, and q is the heat flux. The first and second
terms on the right side of Eq. (22) represent the mechanical and magnetic powers, respectively.

The relationship among magnetic field, magnetization vector and magnetic induction can be written
as:

B = μ0 (H + M ) (23)

The well-known second law of thermodynamics (i.e., entropy imbalance) is:

ρη̇ ≥ −∇ ·
( q

T

)
= −∇ · q

T
+

∇T · q
T 2

(24)

where η is the entropy.
Considering the following Legendre transformations from the internal energy u to Helmholtz free

energy ψ, and from the Helmholtz free energy ψ to Gibbs free energy G, i.e.,

ψ = u − ηT − μ0

2ρ
H · H (25a)

G = ψ − μ0

ρ
H · M − 1

ρ
σ : ε (25b)

By Eqs. (25a) and (25b), the relationship between η̇ and Ġ can be obtained as

T η̇ = − Ġ + u̇ − ηṪ − μ0

ρ
H · Ḣ − μ0

ρ
M · Ḣ − μ0

ρ
H · Ṁ − 1

ρ
ε : σ̇ − 1

ρ
σ : ε̇ (26)

Substituting Eqs. (22) and (23) into Eq. (26), the conservation of energy can be written in an
equivalent form:

ρT η̇ = − ε : σ̇ − ρĠ − ρηṪ − μ0M · Ḣ − ∇ · q (27)

Substituting Eq. (27) into Eq. (24), the entropy imbalance can be rewritten in the following equiv-
alent form:

− ε : σ̇ − μ0M · Ḣ − ρĠ − ρηṪ − ∇T · q
T

≥ 0 (28)
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In the following subsections, Eq. (28) will be used to derive the driving force of martensite transfor-
mation and the thermodynamic constraints on constitutive equations, while Eq. (27) will be used to
obtain the internal heat production caused by the intrinsic dissipation, thermal–elastic deformation,
magnetization, latent heat of phase transition and spatiotemporal evolution of temperature field.

3.3. Driving Force of Martensite Transformation and Thermodynamic Constraint

Substituting Eqs. (12) and (21) into Eq. (28), we obtain:

−
(
ε + ρ∂G

∂σ − (
μ0M + ρ ∂G

∂H

) · ϕ−1
,H · ϕ,σ

)
: σ̇ +

(
μ0M · ϕ−1

,H · ϕ,H app + ρ ∂G
∂H · ϕ−1

,H · ϕ,H app

)
· Ḣ app

−
[
ρη − (

μ0M + ρ ∂G
∂H

) · ϕ−1
,H · ϕ,T +ρ∂G

∂T

]
Ṫ

+
[
−ρ ∂G

∂εtr : ε̇tr +
(
μ0M + ρ ∂G

∂H

) · ϕ−1
,H · ϕ,ξ ξ̇ − ρ∂G

∂ξ ξ̇
]

− ∇T ·q
T ≥ 0

(29)
Since Eq. (29) should always be satisfied with arbitrary value of Ḣapp, it requires:

μ0M = −ρ
∂G

∂H
= μ0

[

(1 − ξ)
∂LA

∂H
+ξ

∂LM

∂H

]

= μ0F (H , T,σ, ξ)
H

|H | (30)

It should be noted that the relationship between M and H derived by thermodynamics is consistent
with the previous definition [Eq. (6)].
Meanwhile, Eq. (29) should always be satisfied with arbitrary values of σ̇ and Ṫ . We obtain

ε = −ρ
∂G

∂σ
+

(

μ0M + ρ
∂G

∂H

)

· ϕ−1
,H · ϕ,σ = −ρ

∂G

∂σ
= S : σ + α (T − T0) + εtr (31a)

ρη =
(

μ0M + ρ
∂G

∂H

)

· ϕ−1
,H · ϕ,T − ρ

∂G

∂T
= −ρ

∂G

∂T

= σ : α + ρc ln
(

T

T0

)

− ρβξ + μ0

[

(1 − ξ)
∂LA

∂T
+ ξ

∂LM

∂T

]

(31b)

Comparing Eq. (31a) with the decomposition of the total strain [Eq. (1)], it is seen that the elastic
strain can be given as εe = S : σ, which is the well-known generalized Hooke’s law.

Considering the Fourier’s law of heat flux, i.e.,

q = −k · ∇T (32)

where k is the heat conductivity coefficient, a second-order positive definite tensor, and the dissipation
of heat flux in Eq. (29) is nonnegative, i.e.,

− ∇T · q
T

=
k : (∇T ⊗ ∇T )

T
(33)

Then, the intrinsic dissipation in Eq. (29) can be obtained as

Γint = −ρ ∂G
∂εtr : ε̇tr +

(
μ0M + ρ ∂G

∂H

) · ϕ−1
,H · ϕ,ξ ξ̇ − ρ∂G

∂ξ ξ̇

= −ρ ∂G
∂εtr : ε̇tr − ρ∂G

∂ξ ξ̇ ≥ 0
(34)

Substituting Eqs. (3), (14–19) into Eq. (34), the intrinsic dissipation can be written as

Γint =
[

σ : Λtr − ρβ (T − T0) + μ0

(
LM − LA

) − ∂h

∂ξ

]

ξ̇ ≥ 0 (35)

By Eq. (35), the thermodynamic driving force of martensite transformation is defined as

π = σ : Λtr − ρβ (T − T0) + μ0

(
LM − LA

) − ∂h

∂ξ
(36)

From Eq. (36), it is seen that the driving force consists of four parts, i.e., the mechanical, thermal,
magnetic and transformation resistance ones.



548 ACTA MECHANICA SOLIDA SINICA 2018

By Eq. (35), it is seen that if no martensite transformation occurs, i.e., ξ̇ = 0, the dissipative
inequality can be satisfied automatically and there is no constraint for the thermodynamic force π. If
the forward transformation (from the austenite to martensite phase) occurs, i.e., ξ̇ > 0, the dissipative
inequality can be satisfied when π is positive. Similarly, if the reverse transformation (from the induced
martensite to austenite phase) occurs, i.e., ξ̇ < 0, the dissipative inequality can be satisfied when π is
negative, i.e.,

ξ̇ = 0 no constraint (37a)
ξ̇ > 0 π = Y (37b)
ξ̇ < 0 π = −Y (37c)

where Y is a positive constant reflecting the transformation dissipation.
By Eqs. (37b) and (37c), the forward and reverse transformation surfaces are defined as

Φfor (σ, T,H , ξ) = π (σ, T,H , ξ) − Y ≤ 0 (38a)
Φrev (σ, T,H , ξ) = −π (σ, T,H , ξ) − Y ≤ 0 (38b)

Then, the kinetic equations of martensite transformation can be given by the Kuhn–Tucker condition:

Forward transformation: if Φfor = 0, ξ < 1 then ξ̇Φ̇for = 0 (39a)
Reverse transformation: if Φrev = 0, ξ > 0 then ξ̇Φ̇rev = 0 (39b)

Elastic loading–unloading: other conditions then ξ̇ = 0 (39c)

By Eqs. (39a) and (39b), the explicit expression for the kinetic equation of forward and reverse
transformation can be obtained as

ξ̇ =
1

h,ξξ

⎧
⎨

⎩

[
Λtr + σ : Λtr

,σ + μ0

(
LM − LA

)

,σ

]
: σ̇ −

[
ρβ − σ : Λtr

,T − μ0

(
LM − LA

)

,T

]
Ṫ

+
[
σ : Λtr

,H + μ0

(
LM − LA

)

,H

]
· Ḣ

⎫
⎬

⎭
(40)

3.4. Spatiotemporal Evolution Equation of Temperature Field

Taking the time derivative of Eq. (31b), and considering the relationship between internal and
external magnetic fields [Eq. (13)], we obtain

ρη̇ = σ̇ : α + ρcṪ
T − ρβξ̇ + μ0

(
∂LM

∂T − ∂LA

∂T + Q1

)
ξ̇

+μ0

[
(1 − ξ) ∂2LA

∂T 2 + ξ ∂2LM

∂T 2 + Q2

]
Ṫ + μ0

[
(1 − ξ) ∂2LA

∂T∂σ + ξ ∂2LM

∂T∂σ + Q3

]
: σ̇+Q4 · Ḣ app (41)

where

Q1 = −
[

(1 − ξ)
∂2LA

∂T∂H
+ ξ

∂2LM

∂T∂H

]

· ϕ−1
,H · ϕ,ξ (42a)

Q2 = −
[

(1 − ξ)
∂2LA

∂T∂H
+ ξ

∂2LM

∂T∂H

]

· ϕ−1
,H · ϕ,T (42b)

Q3 = −
[

(1 − ξ)
∂2LA

∂T∂σ
+ ξ

∂2LM

∂T∂σ

]

· ϕ−1
,H · ϕ,σ (42c)

Q4 = −
[

(1 − ξ)
∂2LA

∂T∂H
+ ξ

∂2LM

∂T∂H

]

· ϕ−1
,H · ϕ,H app (42d)

Substituting Eq. (41) into Eq. (27), the conservation of energy can be rewritten as

ρceff Ṫ + ∇ · q = Γint − σ̇ : αT + T

[

ρβ − μ0T

(
∂LM

∂T
− ∂LA

∂T
+ Q1

)]

ξ̇

−μ0TQ4 · Ḣ app − μ0

[

(1 − ξ)
∂2LA

∂T∂σ
+ ξ

∂2LM

∂T∂σ
+ Q3

]

: σ̇ (43)
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where ceff is the effective specific heat at a constant volume, i.e.,

ρceff = ρc + μ0T

[

(1 − ξ)
∂2LA

∂T 2
+ ξ

∂2LM

∂T 2
+ Q2

]

(44)

Equation (43) is the spatiotemporal evolution equation of temperature field. The first and second terms
on the left side represent the variations of temperature and heat conduction, respectively, while the
first, second, third and fourth terms on the right side represent the internal heat production caused
by intrinsic dissipation, thermal–elastic deformation, transformation latent heat and magnetization,
respectively. The fifth term is an additional heat source originated from the dependence of magnetiza-
tion on the temperature and stress.

Under the adiabatic condition, the heat conduction in the material can be neglected. Then, Eq. (43)
can be simplified as:

ρceff Ṫ = Γint − σ̇ : αT + ρβT ξ̇ − μ0T

(
∂LM

∂T
− ∂LA

∂T
+ Q1

)

ξ̇

−μ0

[

(1 − ξ)
∂2LA

∂T∂σ
+ ξ

∂2LM

∂T∂σ
+ Q3

]

: σ̇ − μ0TQ4 · Ḣ app
(45)

So far, a general constitutive framework has been established to describe the thermo-magneto-
mechanically coupled deformation of MSMAs. It should be noted that the proposed constitutive
equations are not limited to a specific MSMA.

4. Verification and Discussion
In this section, the proposed model is used to simulate the magnetostrictive effect of MnNiFeSn

MSMA (Lázpita et al. [45]) and magnetocaloric effect of NiMnIn MSMA (Liu et al. [23]) at various
temperatures, and the capability of the proposed model is verified.

4.1. Magnetostrictive Effect of MnNiFeSn MSMA

Before the prediction by the proposed model, the material parameters should be determined first.
Referring to Yu et al. [56], the balance temperature T0 can be chosen as:

T0 = M0
s +

Y

β
(46)

Other material parameters in the proposed model can be determined by the experimental data. The
coefficient of thermal expansion can be determined from the temperature strain response, i.e., Δε/ΔT ,
as shown in Fig. 2a. It should be noted that no mechanical load was applied in Lázpita et al. [45].

So, the term
√

3
2Hmax (σ, T,H ) dev(σ)

‖dev(σ)‖ in Eq. (4) keeps as zero and can be neglected. Meanwhile,

γ (σ, T,H ), f (H , T,σ) and g (H , T,σ) are reduced as γ (T,H ), f (H , T ) and g (H , T ), respectively.
Moreover, the material parameters E and ν are not necessary any more.

For simplicity, the dependence of γ (T,H ) on temperature is neglected. Based on the experimental
observation, γ (H ) is proposed as

γ (H ) = γ∞ + (γ0 − γ∞) exp (−aγ |μ0H |) (47)

where γ∞ and γ0 are the volumetric strains caused by the martensite transformation under zero and
a large magnetic field, respectively, and can be obtained from Fig. 2a, e.

As mentioned above, once a magnetic field is applied, the magnetizations of austenite and martensite
phases in MnNiFeSn SMSA increase rapidly, but are not saturated even under a very large magnetic
field. To describe this phenomenon, f (H , T ) and g (H , T ) are proposed as

f (H , T ) = MA (T ) [1 − exp (−aA |μ0H |)] + cA |μ0H | (48a)
g (H , T ) = MM (T ) [1 − exp (−aM |μ0H |)] + cM |μ0H | (48b)

where aA, cA, aM and cM are four material parameters; MA (T ) and MM (T ) reflect the dependence of
magnetizations of austenite and martensite phases on temperature, respectively. From Fig. 3, it is seen
that the temperature magnetization response is approximately linear when the alloy consists of pure
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austenite or pure martensite phase (segments a-b and c-d). Thus, MA (T ) and MM (T ) are proposed
as two linear functions, i.e.,

MA (T ) = MA
0 + bA (T − T0) (49a)

MM (T ) = MM
0 + bM (T − T0) (49b)

where MA
0 , bA, MM

0 and bM are four material parameters.
bA and bM can be obtained by fitting the experimental data of ΔMA/ΔT and ΔMM/ΔT from the

temperature magnetization response, as shown in Fig. 3. Then, the parameters MA
0 , aA and cA can be

determined by fitting the magnetic field magnetization response of the alloy at 230 K. Similarly, the
parameters MM

0 , aM and cM can be determined by fitting the magnetic field magnetization response
at 160 K.

By Eqs. (48a) and (48b), LA (H , T ) and LM (H , T ) can be obtained as

LA (H , T ) = MA (T )
[

|H | +
1

μ0aA
exp (−aA |μ0H |)

]

+
cA

2
μ0 |H |2 (50a)

LM (H , T ) = MM (T )
[

|H | +
1

μ0aM
exp (−aM |μ0H |)

]

+
cM

2
μ0 |H |2 (50b)

The transformation hardening function h (ξ) is proposed as

h (ξ) =
1
2
C1ξ

2 +
1

n + 1
C2ξ

n+1 (51)

where C1, C1 and n are three material parameters. The second term in Eq. (51) is introduced here to
describe the nonlinear transformation hardening occurring at the end of forward transformation and the
beginning of reverse transformation. C1, C1 and n can be obtained by fitting the linear and nonlinear
hardening parts of martensite transformation in the temperature strain response, respectively, as shown
in Fig. 2a.

In Fig. 2e, M12
s denotes the start temperature of martensite transformation under an applied

magnetic field of 12 T. However, owing to the demagnetization effect, the internal magnetic field is not
always equal to the applied magnetic field. Recalling Eqs. (6) and (11), the relationship between HM12

s

(the internal magnetic field at M12
s ) and H app can be written as (noted that at this point, ξ=0):

HM12
s

= H app − f
(
HM12

s
,M 12

s

)
D̄ · HM12

s∣
∣HM12

s

∣
∣

at M12
s (52)

Then, HM12
s

can be solved by Eq. (52). Considering Eqs. (36), (38a) and the relationship between T0

and M0
s , the following transformation condition should be satisfied at M12

s , i.e.,

Φfor
(
0,M12

s ,HM12
s

, 0
)

= −ρβ
(
M12

s − M0
s

)
+ μ0

[
LM

(
HM12

s
,M12

s

) − LA
(
HM12

s
,M12

s

)]
= 0 (53)

Then, the parameter β can be obtained by Eq. (53).
Without an applied magnetic field, the following transformation conditions should be satisfied at

M0
f and A0

s (noted that at these two points, ξ=1)

Φfor
(
0,M0

f , 0, 1
)

= −ρβ
(
M0

f − M0
s

) − C1 − C2 = 0 (54a)

Φrev
(
0, A0

s , 0, 1
)

= −ρβ
(
A0

s − M0
s

) − C1 − C2 + 2Y = 0 (54b)

By Eqs. (54a) and (54b), the material parameter Y can be obtained.
It should be noted that in Lázpita et al. [45], the loading rate is very small, which can be regarded

as a quasi-static one. So, the effect of internal heat production on deformation and magnetization can
be neglected. Thus, in this subsection, the temperature of the sample is assumed to be identical to the
ambient temperature.

Using the material parameters listed in Table 1, the proposed model is used to simulate the above-
mentioned experimental results, as shown in Figs. 1, 2, 3 and 4. It should be noted that the agreements
between the experimental and simulated results shown in Figs. 1, 2a, e and 3 are expected, because the
material parameters used in the proposed model are calibrated from the experimental data shown in
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Table 1. Material parameters used in the proposed model for simulating the temperature-induced martensite transformation
and magnetostrictive effect in MnNiFeSn MSMA

ρ = 8000 kg/m3; α = 12 × 10−6/K;
aA = 10/T ; cA = 1.26 × 104 A/(Tm); MA

0 = 3.7 × 105 A/m; bA = −2.5 × 103 A/(Km);
aM = 10/T ; cM = 6.67 × 103 A/(Tm); MM

0 = 8.0 × 104 A/m; bM = −3.0 × 102 A/(Km);
ρβ = 0.2 MPa/K; Y = 0.85 MPa; C1 = 2MPa; C2 = 0.55 MPa; n = 10;
γ0 = 4.3 × 10−3; γ∞ = 3.6 × 10−3; aγ = 10/T.

these figures. However, comparing the predicted results (Figs. 2b–d, 4a, b) with the experimental ones
(which are not used in the calibration of material parameters), it is concluded that the temperature-
induced martensite transformation with various applied magnetic fields and the magnetostrictive effect
at different temperatures for the MnNiFeSn MSMA can be quantitatively described by the proposed
model. Surely, there are some discrepancies between the experimental and simulated hysteresis loops in
the magnetic field strain responses, as shown in Fig. 4. In fact, the material parameters related to the
transformation hardening are fitted from the temperature strain response (as shown in Fig. 2a). Maybe
the transformation hardening induced by temperature is different from that induced by magnetic field.
Thus, in order to describe it more accurately, a new hardening rule which can distinguish these two
processes is needed, which will be done in our future work.

It should be noted that the specific forms of the functions γ (σ, T,H ), f (H , T,σ), g (H , T,σ) and
h (ξ) provided in this subsection only apply to the MnNiFeSn MSMA since they are determined from
the experimental data of such an MSMA.

4.2. Magnetocaloric Effect of NiMnInCo MSMA

It should be noted that the deviatoric stress was not applied in Liu et al. [23]. Thus, the term√
3
2H

max (σ, T,H ) dev(σ)

‖dev(σ)‖ in Eq. (4) is also neglected in this subsection. Moreover, due to the lack

of experimental data, the dependences of γ, f and g on stress are not considered here.
The elastic modulus E and Poisson’s ratio ν of the alloy are required since the influence of hydro-

static pressure on the magnetocaloric effect will be predicted and discussed by the proposed model,
and are set as 12 GPa and 0.3, respectively, by referring to Haldar et al. [44] and Lagoudas et al. [49].
As reported by Liu et al. [23], the martensite phase of NiMnInCo MSMA is a nonmagnetic phase.
Thus, in this subsection, g (H , T ) is set as zero. Because the magnetic field magnetization response of
austenite phase was not provided in Liu et al. [23], f (H , T ) cannot be obtained directly. As discussed
by Haldar et al. [44], the magnetization of austenite phase in NiMnInCo MSMA can be saturated
even at a very low magnetic field. Then, they proposed a magnetization rule for the austenite phase in
NiMnInCo MSMA as MA = MA

sat
H

|H | , where MA
sat is the saturated magnetization of austenite phase.

Referring to Haldar et al. [44] and considering the dependence of MA
sat on temperature, f (H , T ) can

be given as:
f (H , T ) = MA

sat + bA (T − T0) (55)

where bA is a material parameter and MA
sat is the saturated magnetization of austenite phase at T0.

The two parameters can be easily obtained from the temperature magnetization response. By Eq. (55),
LA (H , T ) can be obtained as

LA (H , T ) =
[
MA

sat + bA (T − T0)
] |H | (56)

From Fig. 5, it is seen that the nonlinearity of temperature magnetization response is not strong
during the martensite transformation. Thus, for simplicity, the nonlinear transformation hardening is
neglected here, so that h (ξ) = 1

2C1ξ
2. Similar to that discussed in Section 4.1, the specific forms of

functions γ (σ, T,H ), f (H , T,σ), g (H , T,σ) and h (ξ) proposed here only apply to the NiMnInCo
MSMA since they are determined from the experimental data of such an MSMA.

As mentioned above, the internal magnetic field is not always equal to the applied magnetic field
due to the demagnetization effect. Recalling Eqs. (6) and (11), the relationship between H and H app

at M0.01
s , M2

s (noted that at these two points, ξ=0), M2
f and A2

s (noted that at these two points, ξ=1)



552 ACTA MECHANICA SOLIDA SINICA 2018

Table 2. Material parameters used in the proposed model for simulating the magnetocaloric effect in NiMnInCo MSMA

ρ = 8020 kg/m3; α=12×10−6/K; ρc=3.2 MJ/(m3K)
MA

0 = 3.38 × 105 A/m; bA=-2.6×103 A/Km;
ρβ = 0.14 MPa/K; Y =0.53 MPa; C1=1.2 MPa;
E = 12 GPa; v=0.3; γ0=4.3×10−3; γ∞=3.6×10−3; aγ=10/T.

can be written as:

HM0.01
s

= H app − f
(
HM0.01

s
,M0.01

s

)
D̄ · HM0.01

s∣
∣HM0.01

s

∣
∣

at M0.01
s (57a)

HM2
s

= H app − f
(
HM2

s
,M2

s

)
D̄ · HM2

s∣
∣HM2

s

∣
∣

at M2
s (57b)

HM2
f

= HA2
s

= H app at M2
f and A2

s (57c)

Then, HM0.01
s

, HM2
s
, HM2

f
and HA2

s
can be solved by Eqs. (57a), (57b) and (57c).

Considering Eqs. (36), (38a) and the relationship between T0 and M0
s , the following transformation

conditions should be satisfied at M0.01
s , M2

s , M2
f and A2

s , i.e.,

Φfor
(
0,M0.01

s ,HM0.01
s

, 0
)

= −ρβ
(
M0.01

s − M0
s

) − μ0L
A

(
H ,

M0.01
s

M0.01
s

)
= 0 (58a)
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(
H ,

M2
s
M2

s

)
= 0 (58b)
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(
0,M2

f ,HM2
f
, 1

)
= −ρβ

(
M2

f − M0
s

) − μ0L
A

(
H ,

M2
f
M2

f

)
− C1 = 0 (58c)

Φrev
(
0, A2

s ,HA2
s
, 1

)
= −ρβ

(
A2

s − M0
s

) − μ0L
A

(
H ,

A2
s
A2

s

)
− C1 + 2Y = 0 (58d)

By Eqs. (54a), (54b) and (55), M0
s , β, Y and C1 can be obtained.

However, γ and α cannot be determined since the volumetric strain caused by the martensite
transformation and the thermal expansion strain were not measured in Liu et al. [23]. Thus, in this
subsection, γ and α are kept the same as those in Section 3.1.

Using the material parameters listed in Table 2, the proposed model is used to simulate the exper-
imental results shown in Figs. 5, 6 and 7. It should be noted that all the material parameters are
calibrated only from the experimental data shown in Fig. 5, and the magnetocaloric effect (as shown
in Figs. 6 and 7) is predicted by the proposed model. Comparing the predicted results with the experi-
mental ones, it is seen that the magnetocaloric effect of NiMnInCo MSMA can be reasonably described,
since the internal heat production caused by the intrinsic dissipation, thermo-elastic deformation, mag-
netization and the latent heat of phase transition have been considered in the proposed model. It should
be pointed out that four material parameters E, ν, γ and α are not determined by the experimental
results from Liu et al. [23] but by referring to [44, 49]. However, the simulated results shown in Figs. 5,
6 and 7 do not depend on these four material parameters.

As mentioned above, the main drawbacks of magnetic refrigeration are the narrow range of working
temperature and the unrecoverable temperature change after the applied magnetic field is removed. To
better illustrate these problems, the temperature evolutions under a cyclic loading of magnetic field with
10 cycles and at various ambient temperatures are predicted by the proposed model. In each cycle, the
loading path is kept the same as that in Liu et al. [23], i.e., 0 T → 2 T → 0 T → −2 T → 0 T. Figure 8a
shows the predicted results. It is seen from Fig. 8a that at 302 K, no temperature oscillation can be
observed since the martensite phase is a nonmagnetic phase. At 310 K and 317 K, obvious temperature
oscillation is observed and the amplitudes are 2.2 K and 1.8 K, respectively. The temperature oscillation
at these two temperatures is mainly originated from the release/absorption of latent heat during the
MFIT and its reverse. Meanwhile, it can be seen that the average temperature (the mean value of the
maximum and minimum temperatures in each loading cycle) increases with the increasing number of
cycles, which is caused by the accumulated intrinsic dissipation [57, 58]. However, at 325 K and 334 K,
the temperature oscillation becomes very small again. In fact, at these two temperatures, the alloy
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consists of pure austenite phase, and the reverse transformation cannot be induced by the magnetic
field. Thus, the temperature oscillation is only originated from the internal heat production caused by
the magnetization [i.e., the fourth term on the right side of Eq. (43)].

The narrow range of working temperature and the unrecoverable temperature change hinders the
wide application of MSMAs. Fortunately, a large inelastic strain produced by the martensite trans-
formation provides an effective pathway to improve the magnetocaloric effect of MSMAs by stress
manipulation (i.e., by applying an additional and suitable stress). In this subsection, as per the pre-
diction by the proposed model, some magneto-mechanically coupled loading paths are designed to
improve the magnetocaloric effect of NiMnInCo MSMA.

The magneto-mechanically coupled loading paths in each cycle are given in Fig. 8b at the ambient
temperatures of 302 K, 310 K, 317 K, 325 K and 334 K. The loading path of magnetic field is kept
unchanged, but an additional hydrostatic pressure is applied, simultaneously. Then, the temperature
evolutions of the alloy at various ambient temperatures are predicted by the proposed model, and
the results are shown in Fig. 8c. Comparing Fig. 8c with Fig. 8a, it is seen that a large temperature
oscillation (> 6K) occurs in the cases with an additional hydrostatic pressure and at each ambient
temperature. In fact, since the driving force of martensite transformation contains a mechanical part
[as shown in Eq. (36)], the applied stress can change the evolution rate of the volume fraction of
martensite phase during the MFIT and further the amount of internal heat production. Therefore, the
magnetocaloric effect can be significantly improved by an additional applied stress.

It should be noted that other forms of stresses, for instance, the axial stress, biaxial stress and
shear stress, can also be adopted to manipulate the magnetocaloric effect of MSMAs. In these cases,

the term
√

3
2Hmax (σ, T,H ) dev(σ)

‖dev(σ)‖ in Eq. (4) cannot be neglected any more. However, due to the

lack of experimental data, the function Hmax (σ, T,H ) cannot be determined in this work. Thus, only
the hydrostatic pressure is discussed here.

5. Conclusion
1. A macroscopic phenomenological constitutive model is established for modeling the thermo-

magneto-mechanically coupled deformation of polycrystalline MSMAs. The thermodynamic driving
force of martensite transformation, internal heat production during the deformation and magneti-
zation and the constraints on the constitutive equations are deduced by the dissipative inequality
and introduced Gibbs free energy. The spatiotemporal evolution equation of temperature field is
deduced by the first law of thermodynamics. Meanwhile, the demagnetization effect in the magne-
tization process is addressed.

2. Comparing the predicted results with the corresponding experimental ones, it is seen that the
thermo-magneto-mechanically coupled deformation of polycrystalline MSMAs, including the mag-
netostrictive and magnetocaloric effects, can be reasonably described by the proposed model.

3. Some magneto-mechanically coupled loading paths are designed and proved to manipulate the
magnetocaloric effect of MSMAs so that the main drawbacks of magnetic refrigeration, i.e., the
narrow range of working temperature and the unrecoverable temperature change after the applied
magnetic field is removed, can be improved. The predicted results given by the proposed model
show that the magnetocaloric effect can be significantly improved by introducing an additional
applied stress, which provides an effective pathway for designing the magnetic refrigerator made
by MSMAs.
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