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ABSTRACT This paper evaluates the performance of anisotropic yield functions based on math-
ematical methods which consider the prediction accuracy of yield stresses and R-values. The
anisotropic yield functions being evaluated include one quadratic yield function and six non-
quadratic ones. These yield functions are applied to describe the anisotropy of steel sheets and
aluminum alloy sheets to evaluate their predictability. The root-mean-square errors (RMSEs) are
computed to quantitatively assess their performance. The computation results of RMSEs demon-
strate that the Yld2004-18p yield function exhibits the highest accuracy but requires extensive
tests to calculate anisotropic parameters. The Yld2000-2d and BBC2000 yield functions are the
same and thus have the same prediction accuracy. The application to cylindrical cup drawing
shows that, associated with the Yld2004-18p and Yld2000-2d yield functions, the finite element
(FE) simulations of cup drawing process can predict cups with six or eight ears. Considering both
efficiency and accuracy, the Yld2000-2d and BBC2000 yield functions, which have less anisotropic
parameters to be calculated, are recommended for metals with intermediate anisotropy.
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1. Introduction
Anisotropy is an inherent characteristic of cold-rolled sheet metals. For accurate simulations of sheet

metal forming processes, it is critical to sufficiently describe the anisotropy of sheet metals. Enormous
efforts have been contributed to develop yield functions to accurately describe the anisotropy of various
sheet metals. Hill [1] made a pioneering effort and proposed the first anisotropic yield function based
on the quadratic isotropic von Mises yield function. The Hill48 yield function has been extensively
applied in both analytical and numerical analyses of metal forming processes owing to its simplicity,
capability for full stress states and involvement of the shear stress. The Hill48 yield function was proved
to reasonably describe the anisotropic plastic behavior of carbon steel sheets with R > 1. However,
Pearce and Woodthorpe [2, 3] found that the Hill48 yield function predicted a lower yield stress in
the balanced biaxial tension than that in the uniaxial tension for metals with R < 1, such as the
dual phase, TRIP and TWIP steel sheets and aluminum alloys, which was named as the anomalous
behavior. Hosford and Logan [4, 5] extended the non-quadratic Hershey yield function for orthotropic
metals. The Hosford79 yield function, however, did not couple the effect of shear stress on yielding.
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Thus, it cannot be employed to describe the anisotropy between orthotropic axes, which blocks its
application in finite element analysis. To involve the shear stress in the non-quadratic yield function,
Barlat and Lian [6] modified the Hosford79 yield function for sheet metals, which is referred as the
Yld89 yield function. The Yld89 yield function is only applicable to plane stress problems and cannot
encompass the anomalous behavior for aluminum alloys. Barlat et al. [7] applied a fourth-order linear
transformation tensor to introduce anisotropic parameters into the Hershey yield function for the
description of anisotropic plasticity in full stress spaces. Barlat et al. [8] developed another yield
function based on the Hosford79 anisotropic yield function and the fourth-order linear transformation
tensor used in the Yld91 yield function [7]. The Yld96 yield function [8], however, is too complicated
for full stress states. Barlat et al. [9] developed a simple yield function for plane stress conditions
to describe the anisotropic behavior of both the yield stresses and the R-values. In addition, the
Yld89 yield function was extended to enhance its flexibility for sheet metals [10–13]. Barlat et al. [14]
applied two specific convex functions for full stress problems of anisotropic metals. These anisotropic
yield functions reviewed above provide different flexibilities for the description of anisotropy, not only
for simple plane stress, but also for full stress states. The quantitative evaluation of yield functions,
however, has not been carried out based on the anisotropy of sheet metals, although the selection of
a yield function is essential for accurate simulations of sheet metal forming processes. Huh et al. [15]
compared the most popular yield functions mathematically, but there were no simulated results with
various yield functions.

This paper compares the performances of anisotropic yield functions based on the root-mean-square
error (RMSE). The anisotropic yield functions were briefly reviewed first. The anisotropic parameters
for the yield functions were calculated using the downhill simplex method with experimental data. The
anisotropic parameters calculated were used to construct the yield surfaces of two steel sheets and two
aluminum alloys. The yield surfaces constructed were compared with experimental data to evaluate
their accuracy. In addition, directionalities of the yield stress and the R-value were also described by
the anisotropic yield functions. Accuracy of the anisotropic yield functions was evaluated from the
yield surfaces, the yield stresses and the R-values based on the experimental data of sheet metals. The
RMSE was finally calculated for the yield stresses and the R-values in order to evaluate the accuracy of
the anisotropic yield functions quantitatively. Finally, the effects of anisotropic parameter evaluation
methods on predictability were investigated for the Hill48, Yld89 and Yld91 yield functions.

2. Phenomenological Yield Functions
A yield function describes the yielding stress state and is generally expressed in an implicit form:

f (σij) − σ̄ = 0 (1)

where f is the yield function and σ̄ is the equivalent stress obtained from experiments, preferably
the uniaxial tension in the rolling direction. Most yield functions have been developed under the
assumption of plane stress condition, which is the critical feature of sheet metal forming problems.
The most commonly used yield functions such as Hill48, Yld89, Yld91, Yld96, Yld2000-2d, BBC2000
and Yld2004-18p have been briefly reviewed in [15].

3. Predicted Yield Stresses and R-values
3.1. Predicted Uniaxial Tensile Yield Stresses

The yield stress in uniaxial tension at an angle of θ away from the rolling direction (RD) is denoted
as σθ. Then, the stress components in the orthotropic coordinates of x (the rolling direction) and y
(the transverse direction or TD) are computed as follows:

σxx = σθ cos2 θ, σyy = σθ sin2 θ, σxy = σθ sin θ cos θ (2)

Then, the substitution of these stress components in Eq. (2) into Eq. (1) provides the expression
for uniaxial yield stress of σθ as below:

σ̄ = f (σxx, σyy, σxy) = f
(
σθ cos2 θ, σθ sin2 θ, σθ sin θ cos θ

)
(3)
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For the Hill48 yield function, the predicted uniaxial tensile yield stress σθ is calculated in a form of

σθ =
[

2
(F + H) sin4 θ + (G + H) cos4 θ − 2H sin2 θ cos2 θ + 2N sin2 θ cos2 θ

] 1
2

σ̄ (4)

3.2. Predicted Yield Stress in Balanced Biaxial Tension

In balanced biaxial tension, the stress state is characterized by two equal stresses in orthotropic
directions. Assuming that the yield stress in balanced biaxial tension is σb, the stress components at
this state are obtained as:

σxx = σyy = σb, σxy = 0 (5)

The predicted balanced biaxial yield stress of σb is obtained by substituting the stress components
in Eq. (5) into Eq. (1) as below:

σ̄ = f (σxx, σyy, σxy) = f (σb, σb, 0) (6)

The uniaxial tensile yield stress σθ predicted by the Hill48 yield function has a form as below:

σb =
(

2
F + G

) 1
2

σ̄ (7)

3.3. Associated Flow Rules

According to the associated flow rules, the plastic potential function is identical to the equivalent
stress function of Eq. (1). The associated flow rules also assume that the direction of plastic strain
increment is perpendicular to the yield surface. Based on the associated flow rules, the plastic strain
increments are computed as below:

dεp
ij =

∂f (σij)
∂σij

dλ (8)

where dεp
ij denotes the plastic strain increments and dλ is the plastic strain multiplier. For the Hill48

yield function, the plastic strain increments are computed according to the associated flow rules as
follows:

dεp
xx =

dλ

2σ̄
[H (σxx − σyy) − Gσxx] (9)

dεp
yy =

dλ

2σ̄
[Fσyy − H (σxx − σyy)] (10)

dεp
xy = dεp

yx = 2
dλ

2σ̄p
Npσxy (11)

The plastic strain increments for other yield functions are calculated straightforward based on the
associated flow rules by applying Eq. (8) to other yield functions, the plastic strain increments of which,
however, are not provided in this paper due to their complicated and extremely lengthy expressions.

3.4. Predicted R-values in Uniaxial Tension

The R-value in uniaxial tension at an angle of θ away from the RD is calculated as below:

Rθ = −dεp
xx sin2 θ + dεp

yy cos2 θ − dεp
xy sin θ cos θ

dεp
xx + dεp

yy
(12)

The R-values in uniaxial tension in any directions are obtained by substituting the plastic strain
increments of Eq. (8) into Eq. (12). For example, the R-values in uniaxial tension predicted by the
Hill48 yield function are computed by substituting Eqs. (9), (10) and (11) into Eq. (12) as below:

Rθ =
H + H tan2 θ sin2 θ + 2N sin2 θ − (F + G + 3H) sin2 θ

G + F tan2 θ
(13)



Vol. 32, No. 1 B. Tang, Y. Lou: Effect of Anisotropic Yield Functions on the Accuracy 53

3.5. Predicted R-values in Balanced Biaxial Tension

The R-value in the balanced biaxial tension is formulated as the ratio of the plastic strain increment
in the TD expressed as dεp

yy to that in the RD dεp
xx as below:

Rb =
dεp

yy

dεp
xx

(14)

Rb can be easily computed with the associated flow rules in Eq. (8) by setting the stress state
(σxx, σyy, σxy) as (σb, σb, 0).

4. Calibration of Anisotropic Parameters
4.1. Calculation for the Hill48 Yield Function

For simplicity, the anisotropic parameters in the Hill48 yield function can be explicitly expressed
by experimental data. Generally, four anisotropic parameters of F,G,H and N are calculated by the
uniaxial yield stress in the RD, σ0, and three uniaxial tensile R-values, R0, R45 and R90. Setting the
tensile direction angle θ in Eq. (13) as 0◦, 45◦ and 90◦ gives the expressions for R0, R45 and R90 as
follows:

R0 =
H

G
(15)

R45 =
2N − (F + G)

2 (F + G)
(16)

R90 =
H

F
(17)

The uniaxial tensile yield stresses of σ0, σ45 and σ90 are obtained by setting θ in Eq. (4) as 0◦, 45◦

and 90◦ as follows:

σ0 =
(

2
G + H

) 1
2

σ̄ (18)

σ45 =
(

4
F + G + 2N

) 1
2

σ̄ (19)

σ90 =
(

2
F + H

) 1
2

σ̄ (20)

Normally, the strain hardening behavior is characterized by uniaxial tensile tests in the RD, which
indicates that σ0 = σ̄. Thus, Eq. (18) reduces to a form as below:

G + H = 2 (21)

By solving Eqs. (15–17) and (21), the anisotropic parameters of F,G,H and N are obtained as

F =
2R0

R90 (1 + R0)
(22)

G =
2

1 + R0
(23)

H =
2R0

1 + R0
(24)

N =
(R0 + R90) (1 + 2R45)

2R90 (1 + R0)
(25)
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In addition, the anisotropic parameters of F,G,H and N can also be evaluated using four yield
stresses, i.e., σ0, σ45, σ90 and σb, by solving Eqs. (7) and (19–21) as below:

F =
σ̄2
0

σ2
90

+
σ̄2
0

σ2
b

− 1 (26)

G = 1 +
σ̄2
0

σ2
b

− σ̄2
0

σ2
90

(27)

H = 1 +
σ̄2
0

σ2
90

− σ̄2
0

σ2
b

(28)

N =
4σ̄2

0

σ2
45

− σ̄2
0

σ2
b

(29)

The anisotropic parameters of F,G,H and N obtained from Eqs. (22–25) are for the purpose of
comparison with other yield functions. The difference between these two approaches for the calculation
of anisotropic parameters is discussed later in Sect. 7.

4.2. Calculation for the Yld89 Yield Function

The anisotropic parameters of a, c, h and p are calculated either by σ0, R0, R45 and R90 or by
σ0, σ45, σ90 and σb. For simplicity purpose, only one method is introduced in this study, i.e., calculation
of these four anisotropic parameters by σ0, R0, R45 and R90. The uniaxial tensile yield stress in the
RD denoted by σ0 is expressed as below:

(a + c) σm
0 = 2σ̄m (30)

Since the strain hardening behavior is generally obtained from uniaxial tensile tests in the RD, it can
be concluded that σ0 = σ̄. Thus, Eq. (30) reduces to

a + c = 2 (31)

Moreover, based on the associated flow rule and R-value calculation in Eq. (12), R0, R45 and R90 are
expressed by a function of a, c, h and p. Hence, the anisotropic parameters are shown to be functions
of R0, R45 and R90 as follows:

c = 2 − a =
√

R0

1 + R0

R90

1 + R90
(32)

h =
√

R0

1 + R0

1 + R90

R90
(33)

The anisotropic parameter p cannot be computed explicitly, but can be evaluated by a function of
R45 as below:

R45

[

a (K ′
1 + K ′

2)
m−1

(

2K ′
2 (1 + h) +

(1 − h)2

2

)

+ a (K ′
1 − K ′

2)
m−1

(

2K ′
2 (1 + h) − (1 − h)2

2

)

+ c |2K ′
2|m−1 (1 − h)2

]

+ a (K ′
1 + K ′

2)
m−1

(

K ′
2 (1 + h) +

(1 − h)2

4
− p2

)

+ a (K ′
1 − K ′

2)
m−1

(

K ′
2 (1 + h) − (1 − h)2

4
+ p2

)

+ 2c (2K ′
2)

m−1

[
(1 − h)2

4
− p2

]

= 0 (34)

with

K ′
1 =

1 + h

4
, K ′

2 =

√
(1 − h)2 + 4p2

4
(35)
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4.3. Calculation for the Yld91 Yield Function

The anisotropic parameters of c1, c2, c3 and c6 in the Yld91 yield function are calibrated by
σ0, σ45, σ90 and σb, which are predicted by substituting the Yld91 equivalent stress into Eqs. (3)
and (6). The predicted yield stresses are compared with the experimental results to construct an error
function as below:

err (c1, c2, c3, c6) =

(
σpred.
0

σexp .
0

− 1

)2

+

(
σpred.
45

σexp .
45

− 1

)2

+

(
σpred.
90

σexp .
90

− 1

)2

+

(
σpred.

b

σexp .
b

− 1

)2

(36)

Solving this error function provides the values of four anisotropic parameters.

4.4. Calculation for the Yld96 Yield Function

There are seven anisotropic parameters related to the in-plane properties in the Yld96 yield func-
tion: c1, c2, c3, c6, αx, αy and αz1. These anisotropic parameters are evaluated by four yield stresses,
σ0, σ45, σ90 and σb, as well as three R-values, R0, R45 and R90. These yield stresses and R-values are
predicted by Eqs. (3), (6) and (12). Comparison of these predicted yield stresses and R-values with
experimental data generates an error function in a form of

err (c1, c2, c3, c6, αx, αy, αz1) =

(
σpred.
0

σexp .
0

− 1

)2

+

(
σpred.
45

σexp .
45

− 1

)2

+

(
σpred.
90

σexp .
90

− 1

)2

+

(
σpred.

b

σexp .
b

− 1

)2

+

(
Rpred.

0

Rexp .
0

− 1

)2

+

(
Rpred.

45

Rexp .
45

− 1

)2

+

(
Rpred.

90

Rexp .
90

− 1

)2

(37)

This error function is solved to calculate the seven anisotropic parameters in the Yld96 yield function.

4.5. Calculation for the Yld2000-2d and BBC2000 Yield Functions

Eight anisotropic parameters are incorporated into the Yld2000-2d and BBC2000 yield functions to
characterize the anisotropic behavior of sheet metals. These anisotropic parameters are calibrated by
four yield stresses, σ0, σ45, σ90 and σb, as well as four R-values, R0, R45, R90 and Rb. These eight values
of yield stresses and R-values are calculated by substituting the Yld2000-2d and BBC2000 equivalent
stresses into Eqs. (3), (6), (12) and (14). Error functions are set up by computing the difference between
the predicted yield stresses and R-values and the experimental results as below:

err =

(
σpred.
0

σexp .
0

− 1

)2

+

(
σpred.
45

σexp .
45

− 1

)2

+

(
σpred.
90

σexp .
90

− 1

)2

+

(
σpred.

b

σexp .
b

− 1

)2

+

(
Rpred.

0

Rexp .
0

− 1

)2

+

(
Rpred.

45

Rexp .
45

− 1

)2

+

(
Rpred.

90

Rexp .
90

− 1

)2

+

(
Rpred.

b

Rexp .
b

− 1

)2

(38)

Eight anisotropic parameters are computed after the optimization of this error function.

4.6. Calculation for the Yld2004-18p Yield Function

The Yld2004-18p yield function has 18 anisotropic parameters which substantially enhance its
flexibility. Among these 18 anisotropic parameters, 14 are related to the in-plane anisotropic properties.
These anisotropic parameters are recommended to be calibrated using the 16 experimental results in
Tables 1 and 2: eight yield stresses and eight R-values. An error function is formulated by comparing
the predicted yield stresses and R-values with the experimental results as below:

err = ws

⎡

⎢
⎢
⎣

(
σpred.
0

σexp .
0

− 1
)2

+
(

σpred.
15

σexp .
15

− 1
)2

+
(

σpred.
30

σexp .
30

− 1
)2

+
(

σpred.
45

σexp .
45

− 1
)2

+
(

σpred.
60

σexp .
60

− 1
)2

+
(

σpred.
75

σexp .
75

− 1
)2

+
(

σpred.
90

σexp .
90

− 1
)2

+
(

σpred.
b

σexp .
b

− 1
)2

⎤

⎥
⎥
⎦
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Table 1. Yield stresses of steel sheets and aluminum alloys according to the loading conditions [MPa]

Material σ0 σ15 σ30 σ45 σ60 σ75 σ90 σb

718AT 210.88 212.99 213.19 219.40 224.74 222.11 216.49 227.75
719B 210.88 210.50 214.40 222.56 221.47 213.91 211.60 259.58
AA5182-O 115.77 114.11 112.87 111.63 110.83 112.15 114.28 125.02
AA6022-T4E32 133.86 132.79 133.49 133.10 130.42 127.97 127.28 140.68

Table 2. R-values of steel sheets and aluminum alloys according to the loading conditions

Material R0 R15 R30 R45 R60 R75 R90 Rb

718AT 1.830 1.763 1.834 2.294 2.708 2.562 2.517 0.803
719B 2.165 1.900 1.570 1.591 1.979 2.745 2.930 0.860
AA5182-O 0.957 0.903 0.916 0.934 0.947 0.981 1.058 0.948
AA6022-T4E32 0.823 0.732 0.529 0.4111 0.483 0.550 0.678 1.244

+wR

⎡

⎢
⎢
⎣

(
Rpred.

0

Rexp .
0

− 1
)2

+
(

Rpred.
15

Rexp .
15

− 1
)2

+
(

Rpred.
30

Rexp .
30

− 1
)2

+
(

Rpred.
45

Rexp .
45

− 1
)2

+
(

Rpred.
60

Rexp .
60

− 1
)2

+
(

Rpred.
75

Rexp .
75

− 1
)2

+
(

Rpred.
90

Rexp .
90

− 1
)2

+
(

Rpred.
b

Rexp .
b

− 1
)2

⎤

⎥
⎥
⎦ (39)

Since the number of experimental data points is larger than that of the calibrated anisotropic param-
eters, the error function of Eq. (39) cannot be optimized to be zero. Therefore, different weight values
of ws and wR are added to the yield stress terms and the R-value terms, respectively. In addition, the
error in yield stresses is more significant than that in R values. Thus, the weight of ws for yield stress
terms is set to be 10 times of the weight of wR for R-value terms.

4.7. Downhill Simplex Method

The error functions in Eqs. (36–39) are solved to calibrate the anisotropic parameters in the yield
functions. Normally, these error functions are minimized by the Newton–Raphson algorithm. The
Newton–Raphson algorithm, however, requires the derivatives of error functions with respect to the
anisotropic parameters, which are extremely complicated for non-quadratic anisotropic yield functions.
This requirement increases the complexity during minimization of the error functions.

A simple and computationally compact approach, i.e., the downhill simplex method [16], is intro-
duced herein to minimize the error functions for calibrating the anisotropic parameters of yield
functions. The downhill simplex method was also used to calibrate the anisotropic-asymmetric param-
eters in a modified Yld2000-2d yield function for correct modeling of the anisotropic and asymmetric
yielding of sheet metals [17]. The simplicity and compactness of the downhill simplex method is due to
the fact that this method does not require derivatives of error functions but only needs function eval-
uations. The downhill simplex method constructs a simplex consisting of n + 1 points, where n is the
number of variables. The worst point is iteratively updated by four operations: reflection, expansion,
one-dimensional contraction and multiple contractions. The flowchart of the downhill simplex method
is shown in Fig. 1. Details of the downhill simplex method are described by Nelder and Mead [16].

4.8. Anisotropic Parameters

Two steel sheets, 718AT and 719B, and two aluminum alloy sheets, AA5182-O and AA6022-T4E32,
were selected to evaluate the accuracy of the anisotropic yield functions summarized in Sect. 2. The
material data are referred from Stoughton and Yoon [18]. The experimental data of yield stresses
and R-values of these metals are listed in Tables 1 and 2 according to various loading conditions.
These experimental results are utilized to calculate the anisotropic parameters of the anisotropic yield
functions using the methods introduced in Sects. 3 and 4. The anisotropic parameters are summarized
in Table 3 for the Hill48 yield function, Table 4 for the Yld89 yield function, Table 5 for the Yld91
yield function, Table 6 for Yld96 yield function, Table 7 for Yld2000-2d yield function, Table 8 for the
BBC2000 yield function and Table 9 for the Yld2004-18p yield function, respectively.
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Fig. 1. Flowchart of the downhill simplex method

Table 3. Anisotropic parameters in the Hill48 yield function computed by σ0, R0, R45 and R90

Material F G H N

718AT 0.5138 0.7067 1.2933 3.4102
719B 0.4669 0.6319 1.3681 2.2977
AA5182-O 0.9244 1.0220 0.9780 2.7911
AA6022-T4E32 1.3317 1.0971 0.9029 2.2129

Table 4. Anisotropic parameters in the Yld89 yield function evaluated by σ0, R0, R45 and R90

Material a c h p m

718AT 0.6394 1.3606 0.9506 0.9963 6
719B 0.5717 1.4283 0.9579 0.8717 6
AA5182-O 0.9972 1.0028 0.9753 0.9734 8
AA6022-T4E32 1.1458 0.8542 1.0570 0.9266 8

Table 5. Anisotropic parameters in the Yld91 yield function calibrated by σ0, σ45, σ90 and σb

Material c1 c2 c3 c6 m

718AT 0.8989 0.9526 1.0462 0.9725 6
719B 0.8086 0.8162 1.1669 0.9860 6
AA5182-O 0.9398 0.9120 1.0824 1.0685 8
AA6022-T4E32 1.0051 0.8955 1.0967 1.0225 8

Table 6. Anisotropic parameters in the YLD96 yield function

Material c1 c2 c3 c6 αx αy αz1 m

718AT 1.0454 1.0856 1.0270 0.9527 0.3908 0.4672 1.5024 6
719B 0.8430 0.7794 1.1679 1.0351 0.7347 1.3242 0.6596 6
AA5182-O 0.8636 0.7934 1.0767 1.0627 2.0127 2.9359 0.6740 8
AA6022-T4E32 0.8552 0.7536 1.0753 0.9975 3.5783 4.0744 0.4406 8
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Table 7. Anisotropic parameters in the YLD2000-2d yield function

Material α1 α2 α3 α4 α5 α6 α7 α8 m

718AT 1.0560 1.0237 0.9416 0.8998 0.9394 0.9333 1.0196 0.8272 6
719B 0.9948 1.1021 0.7427 0.8514 0.8867 0.6553 0.9653 1.0429 6
AA5182-O 0.9547 1.0333 0.8260 0.9706 0.9732 0.8423 1.0112 1.1921 8
AA6022-T4E32 0.9425 1.0270 0.8220 1.0235 0.9854 0.8687 0.9003 1.1795 8

Table 8. Anisotropic parameters in the BBC2000 yield function

Material a γ2 ψ1 ψ2 ψ3 λ1 λ2 λ3 m

718AT 0.8295 0.9097 0.9425 0.9181 0.8534 1.0181 1.0076 0.9932 6
719B 0.5011 0.8230 1.1629 1.1692 1.1702 0.9634 0.9968 0.9024 6
AA5182-O 0.5153 1.0120 1.2094 1.2016 1.2951 0.9336 0.9586 0.9625 8
AA6022-T4E32 0.3936 1.1381 1.3019 1.3129 1.3253 0.9148 0.9414 0.8485 8

Table 9. Anisotropic parameters in the YLD2004-18p yield function

Material Anisotropic parameter m

718AT c′
12 c′

13 c′
21 c′

23 c′
31 c′

32 c′
66 6

0.2369 − 1.5598 1.8764 − 0.9603 3.3404 2.3380 1.0329
c′′
12 c′′

13 c′′
21 c′′

23 c′′
31 c′′

32 c′′
66

− 0.1710 − 1.3308 1.7282 − 0.9489 2.2428 0.4517 0.9767
719B c′

12 c′
13 c′

21 c′
23 c′

31 c′
32 c′

66 6
0.4917 0.8145 1.2809 1.4338 0.2058 − 1.0887 0.8726
c′′
12 c′′

13 c′′
21 c′′

23 c′′
31 c′′

32 c′′
66

0.7761 0.8976 0.7534 2.0181 1.0233 0.0496 1.0361
AA5182-O c′

12 c′
13 c′

21 c′
23 c′

31 c′
32 c′

66 8
0.8626 1.0959 0.2129 0.2060 0.0742 − 0.0189 0.6340
c′′
12 c′′

13 c′′
21 c′′

23 c′′
31 c′′

32 c′′
66

1.4791 1.5802 1.0355 1.8704 0.7736 1.0119 1.2502
AA6022-T4E32 c′

12 c′
13 c′

21 c′
23 c′

31 c′
32 c′

66 8
1.0186 0.6673 1.2392 0.8628 − 0.3285 0.2633 1.2560
c′′
12 c′′

13 c′′
21 c′′

23 c′′
31 c′′

32 c′′
66

0.6322 1.1352 0.8165 1.2513 1.3492 1.2829 0.4368

5. Results
5.1. Comparison of Yield Surfaces

The yield surfaces were constructed by using the anisotropic parameters calculated by the downhill
simplex method in Sect. 3 and compared with the experimental data points in Fig. 2. The difference
between different anisotropic yield functions can be clearly observed in the equibiaxial tension region,
as illustrated in Fig. 2. In the equibiaxial tension region, the Hill48 yield function overestimates the
yield stress for two steel sheets and underestimates the yield stress for two aluminum alloy sheets. The
underestimation of equibiaxial yield stress with the Hill48 yield function takes place for the metals with
R < 1, such as the aluminum alloys, due to the anomalous behavior [2]. The Yld89 yield function tends
to underestimate the yield stress in the equibiaxial tension region. Other advanced anisotropic yield
functions provide accurate yield stresses in the uniaxial and equibiaxial tension regions because the
yield stresses at three loading conditions are utilized to calculate the anisotropic parameters. Based
on the comparison between the yield surfaces constructed and the experimental yield stresses, the
Yld91, Yld96, Yld2000-2d, BBC2000 and Yld2004-18p yield functions are acceptable for simulating
sheet metal forming processes when the dominant loading condition is equibiaxial tension.

5.2. Comparison of Yield Stress Directionality

The predicted yield stress directionality is compared with the experimental results with respect to
the loading direction for various anisotropic yield functions, as illustrated in Fig. 3. The comparison
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Fig. 2. Comparison of yield surfaces: a 718AT; b 719B; c AA5182-O; d AA6022-T4E32

indicates that the Hill48 and Yld89 yield functions cannot predict the yield stress directionality for
all materials. The Yld91, Yld96, Yld2000-2d and BBC2000 yield functions utilize the yield stresses at
45 degree and 90 degree to improve their flexibility. These yield functions can sufficiently describe the
yield stress directionality for metals with intermediate anisotropy, such as the two aluminum alloys,
i.e., AA5182-O and AA6022-T4E32. For steel sheets, the yield functions with more flexibility such as
Yld2004-18p are required to accurately describe the yield stress directionality.
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Fig. 3. Comparison of yield stress directionality: a 718AT; b 719B; c AA5182-O; d AA6022-T4E32

5.3. Comparison of R-value Directionality

The anisotropy in R-values was predicted with various anisotropic yield functions, as compared
with the experimental data points in Fig. 4. The Hill48, Yld89, Yld96, Yld2000-2d and BBC2000
yield functions are observed to be of great capability in correctly modeling the anisotropy in R-values
for all sheet metals. The comparison also suggests that the Yld000-18p yield function is superior
in approximating the R-values with respect to the loading direction for severe textured metals with
strong directionality in R-values. However, the Yld91 yield function should be avoided when describing
the R-value directionality, due to its poorest performance among the anisotropic yield functions being
studied, as proved in Fig. 4 for 718AT and 719B. The Yld2004-18p yield function is still the best choice
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Fig. 4. Comparison of R-value directionality: a 718AT; b 719B; c AA5182-O; d AA6022-T4E32

for sheet metal forming simulations to guarantee the highest accuracy owing to its good approximation
for anisotropic R-values. If fewer experimental data are available, the Hill48, Yld89, Yld96, Yld2000-2d
and BBC2000 yield functions can also be used with acceptable accuracy to describe the anisotropy in
R-values of sheet metals.

5.4. RMSEs of Yield Stresses and R-values

To evaluate accuracy of the anisotropic yield functions quantitatively, the RMSEs of the yield
stresses and R-values are calculated as follows:

RMSEσ =

√∑n
i=1 (σexp .

i − σpred.
i )

n
, RMSER =

√∑n
i=1 (Rexp .

i − Rpred.
i )

n
(40)
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Table 10. Comparison of the RMSEs with respect to yield stresses [%]

Metals Hill48 Yld89 Yld91 Yld96 Yld2000-2d BBC2000 Yld2004-18p

718AT 7.553 2.348 1.295 1.351 1.293 1.311 0.253
719B 8.617 6.134 1.024 0.960 0.964 0.965 0.286
AA5182-O 5.235 4.956 0.609 0.573 0.611 0.611 0.316
AA6022-T4E32 6.851 4.415 0.408 0.385 0.490 0.490 0.314

Table 11. Comparison of the RMSEs with respect to R-values [%]

Metals Hill48 Yld89 Yld91 Yld96 Yld2000-2d BBC2000 Yld2004-18p

718AT 14.215 13.946 89.676 12.96 13.183 13.183 0.939
719B 8.655 8.872 37.224 11.518 6.910 6.912 2.606
AA5182-O 3.035 5.258 79.407 3.911 2.393 2.393 1.482
AA6022-T4E32 2.447 11.35 91.15 5.808 2.809 2.809 1.664

where σexp .
i and Rexp .

i are the yield stresses and R-values from experiments, respectively; σpred.
i and

Rpred.
i are the yield stresses and R-values predicted by the anisotropic yield functions, respectively;

and the subscript i represents the loading conditions set in Tables 1 and 2.
The RMSEs of the yield stresses and R-values were calculated for various yield functions to compare

their performances in describing the anisotropy of sheet metals. The calculated RMSEs are presented
in Table 10 for yield stresses and Table 11 for R-values. For the Hill48 and Yld89 yield functions, the
RMSEs of yield stresses are high, but the RMSEs of R-values are moderate. The RMSE of R-values for
the Yld91 yield function reaches the highest, which indicates its poor accuracy in modeling anisotropic
R-values. The poor accuracy of these three yield functions is due to the smaller numbers of anisotropic
parameters used in describing the anisotropy of metals explained in Sect. 2. The performance of
anisotropic yield functions is remarkably improved by the Yld96, Yld2000-2d and BBC2000 yield
functions for sheet metals, since the anisotropic parameters are almost doubled in these anisotropic
yield functions. It is also noticed in Tables 10 and 11 that the RMSEs of uniaxial tensile yield stresses
and R-values for the Yld2000-2d yield function are identical to those for the BBC2000 yield function.
Moreover, the yield surfaces and anisotropies in the uniaxial tensile yield stresses and R-values predicted
for the Yld2000-2d and BBC2000 yield functions are observed to be overlapped. These observations
validate the conclusion of Barlat et al. [19] from the quantity point of view. The lowest RMSE is
obtained by the Yld2004-18p yield function because 14 anisotropic parameters in the Yld2004-18p yield
function are calibrated based on the experimental data of yield stresses and R-values at every 15◦ from
the rolling direction. Although the Yld2004-18p yield function provides the best predictability for all
sheet metals, the calibration of 14 anisotropic parameters requires tremendous experimental work and
limits its application to metals with intermediate anisotropy. Alternatively, the Yld96, Yld2000-2d and
BBC2000 yield functions provide a great balance between the accuracy and the experimental efforts
required for the calculation of anisotropic parameters for materials with intermediate anisotropy, such
as AA5182-O and AA6022-T4E32. The RMSEs calculated can offer useful information in evaluating
the performance of yield functions quantitatively. It serves as a guide to the selection of an anisotropic
yield function for reliable simulations of sheet metal forming processes.

6. Application
In order to investigate the computational efficiency and accuracy of the proposed anisotropic func-

tions, user subroutines are written in ABAQUS/Explicit for Yld96, Yld2000-2d and Yld2004-18p
anisotropic functions under AFR. The Euler’s backward integration and return mapping technique
are utilized to compute the plastic strain increment.

The numerical simulation of the drawing of a circular cup is performed in order to analyze the
influence of anisotropic yield functions on the final cup’s geometry. The test is based on the work of
Yoon et al. [20], which involves both the tensile and compressive stress states. In fact, as long as the
stress component in the thickness direction is small, the outer flange is under a compressive stress
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Fig. 5. Schematic of the cup drawing and main dimensions

state, and the earing profile is mainly dependent on the in-plane distributions of the yield stress and
R-value (Yoon et al. [21]).

6.1. Problem Description

The schematic of the cup drawing process, together with the main dimensions, is shown in Fig. 5.
Considering geometric and material symmetries, only a quarter of the global structure is modeled. The
contact under frictional condition is described by Coulomb’s law, with a constant coefficient of friction,
µ, of 0.1. The blank sheet is circular in shape with a radius of 158.76 mm and thickness of 1.6 mm.
The blank-holder force is 22.2 kN, corresponding to the minimum predicted value to avoid wrinkling.
Although not shown here, for this blank-holder force, it is observed that the stress state component in
the thickness direction is small, up to a punch displacement of approximately 25 mm, thus not altering
the compressive stress state in the circumferential direction for the material points located at the outer
flange (Barros et al. [22]).

6.2. Mechanical Behavior of Material

The yield criterion parameters are identified in accordance with the experimental data for the
2090-T3 aluminum alloy presented in Table 1, which consider the experimental uniaxial tensile and
compressive yield stresses, as well as the anisotropy coefficients for different orientations with the
rolling direction. The experimental data of yield stress and R-value obtained from the balance biaxial
test and disk compression test are also presented [23].

6.3. Modeling and Simulation

The sheet is discretized with 8-node hexahedral finite elements, combined with a selective reduced
integration technique [24]. 5890 8-node linear brick elements C3D8R were employed in the earing
simulations to show the generality of Yld2004-18p yield function which accommodates the full 3D stress
components, with two elements used in the thickness direction. The axisymmetric boundary condition
is imposed. In addition, the compatible simulation is conducted with the plane stress components in
YL96 and Yld2000-2d yield functions, where 10,437 S4R shell elements are used.

The experimental results in Table 12 are utilized to calculate the anisotropic parameters of Yld96,
Yld2000-2d and Yld2004-18p anisotropic yield functions using the methods introduced in Sects. 3 and
4. The anisotropic parameters are summarized in Table 13 for the Yld96 yield function, Table 14 for
the Yld2000-2d yield function and Table 15 for the Yld2004-18p yield function, respectively.
Figure 6 shows the deformed configurations of the completely drawn cups by using the Yld96, Yld2000-
2d and Yld2004-18p yield functions, respectively. In Fig. 7, the predicted cup height profiles are
compared with the experimental results of AA2090-T3. For an orthotropic material, the cup height
profile between 0 and 90 should be a mirror image of the cup height profile between 90 and 180 with
respect to the 90 axis [25]. However, the measured earing profile slightly deviates from this condition.
This deviation might have occurred because the center of the blank was not aligned properly with the
centers of the die and the punch during the drawing experiment. Generally, this plot shows that the
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Table 12. Experimental uniaxial tensile and compressive yield stresses and R-values for the 2090-T3 aluminum alloy [23]

Test direction R-value σT
θ (MPa) σC

θ (MPa) Stress ratio

0◦ 0.210 279.62 248.02 1.127
15◦ 0.330 269.72 260.75
30◦ 0.690 255.00 255.00
45◦ 1.580 226.77 237.75
60◦ 1.050 227.50 245.75
75◦ 0.550 247.20 263.75
90◦ 0.690 254.45 266.48 0.955
σb 289.40
rb 0.670

Table 13. Anisotropic parameters in the YLD96 yield function

Material c1 c2 c3 c6 αx αy αz1 m

2090-T3 0.9180 0.6220 0.9650 0.9060 2.7 20 6 8

Table 14. Anisotropic parameters in the YLD2000-2d yield function

Material α1 α2 α3 α4 α5 α6 α7 α8 m

2090-T3 0.4878 1.3773 0.7539 1.0245 1.0362 0.9037 1.2314 1.4849 8

Table 15. Anisotropic parameters in the YLD2004-18p yield function

Material Anisotropic parameter m

2090-T3 c′
12 c′

13 c′
21 c′

23 c′
31 c′

32 c′
66 8

4.8534 3.0880 − 3.5375 − 1.5231 − 0.3767 3.4013 1.1310
c′′
12 c′′

13 c′′
21 c′′

23 c′′
31 c′′

32 c′′
66

4.9953 2.5993 − 4.3205 − 2.6706 − 1.7018 3.6444 1.1808

Fig. 6. Deformed configurations of completely drawn cups using a Yld96; b Yld2000-2d; c Yld2004-18p
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Fig. 8. Comparison between predicted and measured thickness strains: a along the rolling direction; b along the transverse
direction

earing profiles obtained from the three yield functions are in very good agreement with the measured
profile. Using the Yld2000-2d and Yld2004-18p yield functions, the small ears around 0 (or 360) and
180 are well predicted. The earing profile obtained from Yld96, however, exhibits only four ears, which
is included in the plot. Unlike many usual phenomenological yield functions, the Yld2004-18p and
Yld2000-2d yield functions combined with FE simulations have the capability of predicting more than
four ears in cup drawing.
Figure 8 shows the thickness strain distributions along the rolling and transverse directions by using
the Yld96, Yld2000-2d and Yld2004-18p yield function, respectively. Compared with the cases of Yld96
and Yld2000-2d, some improvement in the thickness strain distribution can be observed for the case of
Yld2004-18p because of the enhanced predicted R-value and yield stress directionality. For thickness
strain distribution, the simulation discrepancy between Yld96 and Yld2000-2d is negligible.

7. Discussions
In Sect. 4.1, two approaches were introduced for the calibration of anisotropic parameters in the

Hill48 yield function: one using one yield stress of σ0 and three R-values of R0, R45 and R90; and
the other based on four yield stresses of σ0, σ45, σ90 and σb. For simplicity purpose, only the former
approach is adopted to calculate anisotropic parameters of the Hill48 yield function in Sect. 4.8 and
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Fig. 9. Performance evaluation of the Hill48 yield function calibrated with two methods for 718AT: a yield surfaces; b
uniaxial yield stresses; and c R-values

construct the yield surfaces in Sect. 5. Here these two approaches are compared based on their perfor-
mance on describing the anisotropic behavior of sheet metals. The anisotropic parameters calculated
by σ0, R0, R45 and R90 are summarized in Table 3, while the anisotropic parameters are calibrated
for 718AT by σ0, σ45, σ90 and σb as represented in Table 16. The yield surfaces predicted by the
Hill48 yield function are compared in Fig. 9a, while Fig. 9b, c compares the predicted anisotropy in
uniaxial yield stresses and R-values, respectively. It is obvious that the balanced biaxial yield stress
and directionality of uniaxial yield stresses are reasonably modeled when the anisotropic parameters
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Table 16. Anisotropic parameters in the Hill48 yield function calculated by σ0, σ45, σ90 and σb

Material F G H N

718AT 0.8062 0.9085 1.0915 2.8380

are calibrated by σ0, σ45, σ90 and σb, but the anisotropy in R-values cannot be correctly described.
When the anisotropic parameters are computed by σ0, R0, R45 and R90, the anisotropy in R-values
is properly predicted by the Hill48 yield function, but the balanced biaxial yield stress and direction-
ality in uniaxial yield stresses cannot be described correctly. That is the main reason why Stoughton
[18] combined the Hill48 yield function with the non-associated flow rule to enhance the accuracy for
both yield stresses and R-values. Similarly, the Yld89 and Yld91 yield functions also incorporate four
anisotropic parameters related to the in-plane anisotropic behavior of sheet metals. These anisotropic
parameters can be calibrated by either σ0, σ45, σ90 and σb, or σ0, R0, R45 and R90. However, none of
the Hill48, Yld89 and Yld91 yield functions can provide acceptable predictability for both yield stress
and R-values under associated flow rules.

It is shown from the application example that, associated with the phenomenological Yld2004-18p
yield function, FE simulations of the cup drawing process can predict cups with six or eight ears.
However, in order to obtain this result, the anisotropy of the tensile properties must be described very
accurately. In the present case, the R-value and flow stress anisotropies are very well captured with
Yld2004-18p (Table 15).

8. Conclusions
This paper evaluated the accuracy of anisotropic yield functions for two steel sheets and two alu-

minum alloys. The evaluation demonstrates that the Hill48, Yld89 and Yld91 yield functions cannot
properly describe the anisotropic behavior in both yield stresses and R-values due to the limit numbers
of anisotropic parameters of these yield functions. Thus, these three yield functions are not suggested
to model the anisotropic plastic deformation of sheet metals. The Yld96, Yld2000-2d and BBC2000
yield functions reasonably predict both the yield stresses and the R-values. In addition, the Yld2000-2d
and BBC2000 yield functions have the same accuracy in modeling the anisotropy in both yield stresses
and R-values. The Yld2004-18p yield function is recommended to be utilized in modeling anisotropic
sheet metals. If the experimental data are limited, the Yld96, Yld2000-2d and BBC2000 yield functions
are suggested to describe the anisotropy of yield stresses and R-values with acceptable accuracy.

In order to investigate the earing phenomenon, the circular cup drawing test of a circular blank
was performed for the 2090-T3 sheet sample. The use of Yld96 and Yld2000-2d with the coefficients
determined by the tensile test results led to acceptable predictions compared to the experimental
results. However, the best agreement with experimental results in both earing and thickness strain
was obtained when Yld2004-18p was used because more tensile test results were implemented. In
consideration of the balance between accuracy and efficiency, the Yld2000-2d and BBC2000 yield
functions are recommended.
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