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ABSTRACT A dynamic Timoshenko beam model is established based on the new nonlocal
strain gradient theory and slip boundary theory to study the wave propagation behaviors of
fluid-filled carbon nanotubes (CNTs) at nanoscale. The nanoscale effects caused by the CNTs
and the inner fluid are simulated by the nonlocal strain gradient effect and the slip boundary
effect, respectively. The governing equations of motion are derived and resolved to investigate
the wave characteristics in detail. The numerical solution shows that the strain gradient effect
leads to the stiffness enhancement of CNTs when the nonlocal stress effect causes the decrease in
stiffness. The dynamic properties of CNTs are affected by the coupling of these two scale effects.
The flow velocity of fluid inside the CNT is increased due to the slip boundary effect, resulting
in the promotion of wave propagation in the dynamic system.

KEY WORDS Nonlocal strain gradient theory, Fluid-filled carbon nanotube, Fluid boundary
condition, Timoshenko beam, Wave propagation

1. Introduction

Since the carbon nanotubes (CNTs) were discovered by Iijima in early 1990s [1], they have caught
enormous attention because of their remarkable mechanical and electronic properties which lead to
extensive potential applications in different fields of nanoscience [2-5]. In particular, the wave propa-
gation and vibration behavior of fluid-filled CNTs has been a challenging research topic of particular
interest because CNTs are very much useful in nanobiological, nanomechanical and nanochemical
applications such as nanofluid conveyance and drug delivery [6]. Experimental investigation and theo-
retical analysis are two main approaches to study the dynamic behavior of fluid-filled CNTs. However,
the operation of experimental investigation is quite difficult to control and maneuver at nanoscale [4].
Thus, a number of analytical and computational methods on discrete and continuous models have been
intensively developed.

Molecular dynamic simulation (MD) is a reasonable methodology among all kinds of theoretical
simulations. However, MD is inefficient because it needs to consider every atom within a CN'T molecule,
resulting in time-consuming computations and numerical instability [7, 8]. Thus the elastic continuum
models of CNTs have been rigorously developed. One of these continuum approaches is the classical
elastic beam and shell modeling for fluid-filled CNTs. Yan used the classical continuum elastic beam
and shell theory to study the instability and dynamic behaviors of multi-walled carbon nanotubes filled
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with fluid [9-11]. Yoon predicted the vibration and instability characteristics of fluid-conveying CNTs
based on the classical Euler-Bernoulli beam models [12, 13].

Although the classical elastic theory is simple and convenient, direct application of these classical
beam and shell models may lead to inaccurate solutions because the classical models cannot capture
the influences of nanoscale size effects on the mechanical properties of CNTs, such as electrostatic
attraction, surface effect, long-range forces between molecules, and so on.

Since the size effects are key factors that influence the material properties of CNTs and can’t be
ignored directly, it is necessary to develop new analytical continuum models to investigate the scale
effects on the material properties of CNTs. One of these new and effective models is the nonlocal
elastic stress model proposed by Eringen [14]. Due to simplicity of the differential nonlocal constitutive
relation, many research articles about the dynamic behaviors of fluid-filled CNTs based on these
nonlocal models have been published in the last decade [15-19]. For instance, Bahaadini analyzed the
small-scale effects on the vibration and stability of viscoelastic CNTs when conveying fluid [15]. Zhen
used the nonlocal stress theory to study the nonlinear vibration of fluid-conveying single-walled CNT's
[16]. Deng predicted the vibration of fluid-filled multi-walled CNTs based on the nonlocal elasticity
theory. The results show that the vibration frequencies increase with increasing wave number and
decrease with increasing length of CNTs. Also, the vibration frequencies decrease with the increase in
the innermost radius and tend to constant values [18]. Filiz analyzed the wave propagation of embedded
(coupled) functionally graded nanotubes conveying fluid. The effects of flow velocity, material property,
nonlocal parameter and spring coefficient on wave propagation were considered in this study [19].

The nonlocal elastic models can only account for the softening stiffness with increasing nanoscale
effects, which, however, cannot characterize the stiffness enhancement effect noticed from the exper-
imental observation and other elasticity theories. Therefore, Lim first developed the nonlocal strain
gradient theory by coupling the nonlocal elastic stress and the strain gradient together to simulate the
nanoscale effects [20]. Based on this new kind of models, some research articles about buckling and
wave propagation behaviors of nanostructures were published [21-23]. The analytical results of these
studies indicated good agreements with the experimental and MD results. It can be predicted that the
nonlocal strain gradient theory is also appropriate for the dynamic analysis of fluid-filled CNTs.

In this paper, the wave propagation behaviors of fluid-filled single-walled carbon nanotubes (SWC-
NTs) are studied by employing a high-order nonlocal strain gradient theory. New governing equations
of motion based on the Timoshenko beam model are derived. The small-scale effects on CNTs and
inside fluids are analyzed using the nonlocal/strain gradient theory and the slip boundary theory,
respectively. The influences of nanoscale effects on the dynamic properties of fluid-filled CNTs are
investigated in detail.

2. Establishment of the Fluid-Filled Timoshenko Beam Model

The fluid-filled CNT is simplified as a shear deformable Timoshenko beam in the Cartesian coordi-
nate system, as shown in Fig. 1, where x and y denote the axial and vertical coordinates, respectively.
In Fig. 1, w denotes the vertical deflection, U the flow velocity of the inner fluid, and L the beam
length.

Fig. 1. Simply supported fluid-filled SWCNT
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The governing equations for the free vibration of classical fluid-filled Timoshenko beam with respect
to the rotation angle ¢ and the vertical deflection w are expressed as [24]:

0Q 0*w 0%w 0%w
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In Egs. (1a, 1b), M is the bending moment, @ is the shear force, p is the mass density, I is the second-
order moment of inertia of SWCNT, A is the cross-sectional area, t is time, and the subindices f and
¢ denote fluid and CNT, respectively. The bending moment and shear force in Eq. (1) are taken as

M= [ yo(@)da, (2)
/
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In Eq. (3),  is the Timoshenko shear correction factor, G is shear modulus, and (n) denotes the nth
derivatives with respect to x. According to the nonlocal strain gradient theory, the one-dimensional
constitutive relation is presented as [20]

and
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where o(z) and e(z) are the normal stress and strain with respect to the = coordinate, E is Young’s
modulus, and V? is the Laplace operator. In Eq. (4), ea and [ are nonlocal stress and strain gradient
parameters which account for the nanosize effects induced by nonlocality and the strain gradient field
[20, 25-28]. The classical constitutive equation of stress and strain can be obtained when ea = 0 and
[=0.

The geometry relationship between strain and the rotation angle is taken as

%
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By submitting Eqgs. (4) and (5) into Eq. (2), the bending moment with size effects is obtained as
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where
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By applying Egs. (5) and (6), the governing equations shown in Eq. (1) can be changed as
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Since the nanoscale effects contributed by fluid also need to be considered, the dynamic model based
on Egs. (8a, 8b) should be further improved. According to the slip boundary theory, the flow velocity
of fluid inside the CNT is affected by the nanoscale effects caused by the interaction between the CNT

and the fluid molecules. Rashidi studied the ratio between the average flow velocities through the CNT
with and without the nanoscale boundary effects, and defined the VCF number as [15]:

VCF = % = (1+ aKn) [4 (2 EC> (1 f?m) + 1} 9)
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where Uy, and U are average flow velocities through the nanotube with and without slip boundary
conditions at nanoscale, respectively; Kn is the Knudsen number, whose value represents the degree of
fluid velocity affected by the nanoscale effects. The value of a is defined as:

_ 6 2 1 k04
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a

Kn (the Knudsen number) is able to simulate the nanoscale effects induced by fluid. By substituting
Egs. (9) and (10) into Eqgs. (8a, 8b), the governing equations for fluid-filled SWCNT beam are further
derived as:
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The solutions of Eq. (11) are assumed as
w = Wellkz=«t) (12a)
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where W is the amplitude of the wave, w the angular frequency, k the wave number, and @ the angular
amplitude. By substituting Egs. (12a, 12b) into Egs. (11a, 11b), a linear equation group of W and ¢

is obtained as
A Ag wy
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where the entities of the coefficient matrix are expressed as

Ay = 2p; A;U(VCF)kw — kGAK? — pr AfUA(VCF)2E? — (ppAp + pede) w? (14a)
Ay = —kGA ik (14b)
Az = kGA.ik [1+ (ea)’k?] (14c)
Ay = (prAs + peAe) [1 + (ea)’k?| w? — EIE* (1+1°k*) — kG A, [1 + (ea)®k?] (14d)

As we know, a condition for the existence of nontrivial solutions of Eq. (18) is that the determinant of
the coefficient matrix vanishes, namely

ALAy — AyAs =0 (15)

3. Results and Discussions

The material and geometry parameters of the SWCNT beam and the fluid used are taken as E =
1 TPa, G =04 TPa, =11, 1, =1.78 x 1073 m? I; =1.43 x 1073 m?, A, =3.63 x 10712 m?
Ay =3.0x 107" m?, p. =2.27 x 10> kgm™°, and p; = 1.0 x 10°> kgm™>.

Figure 2a illustrates the dispersion relations for the fluid-filled SWCNT beam between the real part
of w (Re(w)) and the wave number k with different values of ea. The nonlocal parameters of SWCNT
are, respectively, taken as ea = 0.5, 1, and 2 nm when [ = 1 nm. As is shown in Fig. 2a, the value
of Re(w) keeps rising when the wave number increases, which is similar to the classical model [29].
However, the angular frequency decreases with the increase in the nonlocal parameter ea, which means
the stiffness of SWCNT is weakened due to the nonlocal effect.

In Fig. 2b, the dispersion relations with different strain gradient parameters are indicated, where
the values of [ respectively take 0.5, 1, and 2 nm when ea = 1 nm. The increasing trend for angular
frequency with wave number k is the same as that in Fig. 2a. However, the value of Re(w) becomes
higher since [ varies from 0.5 to 2 nm, which means the stiffness is enhanced due to the strain gradient
effects. Therefore, the scale effects contributed by the nonlocal stress and strain gradient fields lead to
opposite influences on the stiffness of nanotubes, as illustrated by Fig. 2a, b.
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Fig. 2. The real part of angular frequency versus wave number: a with different values of ea; b with different values of
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Fig. 3. The real part and imaginary part of angular frequency versus ea: a real part; b imaginary part

Figure 3a, b shows the real and imaginary parts of frequency (Re(w) and Im(w)) varying with the
nonlocal parameter. In Fig. 3a, four different modes of frequency are illustrated. The values of Re(w)
for the first and second modes take the same absolute value, but mode 1 is positive and mode 2 is
negative. The absolute value of the two modes decreases when increases because the wave decaying is
enhanced when the nonlocal effect increases. However, both modes approach a constant value when,
which means the vibration of beams cannot be promoted or damped with high nonlocal effects. The
third and fourth modes keep zero, since these two modes only contribute decaying effects to the wave.
More information about Im(w) is illustrated in Fig. 3b, where modes 1 and 2 are positive, and modes
3 and 4 are negative. However, the absolute values of Im(w) for all these four modes are the same
and keep decreasing when increases, which means the damping of wave is enhanced when the nonlocal
effect becomes higher. Thus the damping of wave induced by the nonlocal effect is further confirmed.

Figure 4a, b illustrate the relationships between the frequency and the strain gradient parameter
I. The real part Re(w) in Fig. 4a also contains four modes. The first mode takes positive Re(w) and
the second mode takes negative Re(w), but the absolute values of Re(w) for both modes are the same
and keep increasing as [ increases; thus, the stiffness of beam is enhanced and the vibration and wave
propagation are promoted due to the strain gradient effect. However, similar to the case in Fig. 3a,
modes 3 and 4 take zero, since the strain gradient effect only contributes damping to higher-mode
frequencies. In Fig. 4b, the imaginary parts of modes 1 and 2 are the same, and both negative, while
those of modes 3 and 4 are also the same, but both positive. Furthermore, the absolute values of the
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Fig. 4. The angular frequency versus [: a real part; b imaginary part

four modes are the same and keep decreasing with increasing [. Therefore, comparing with the results
obtained from Fig. 3a, b, the opposite results in Fig. 4a, b confirm the stiffness enhancement and
vibration promotion caused by the strain gradient effect.

The information illustrated by Figs. 2, 3 and 4 indicates that the nonlocal stress effect leads to wave
damping and stiffness decrease, especially for high-frequency waves, when the strain gradient effect
induces opposite results. The physical explanation for this result can be deduced from the constitutive
equation shown as Eq. (4). Comparing with the classical constitutive equation o(x) = Ee(z), the
nonlocal stress on the left side of Eq. (4) is reduced by the nonlocal term —(ea)? azz(f)7 which means

2
the stiffness is decreased due to the nonlocal effect. On the contrary, the strain gradient term —I? 9 ai(f )

on the right side of Eq. (4) leads to smaller strain and higher stiffness as compared with the classical
form. Therefore, the two kinds of nanoscale effects induce reverse consequences for materials, and the
final influences of nanoscale effects depend on the values of ea and [ illustrated by Figs. 2, 3 and 4.
Similar results of stiffness prediction for nanostructure materials based on higher-order nonlocal strain
gradient models have been confirmed and published [20-23].

Beside the scale effects contributed by nonlocality and the strain gradient of CNT, the slip boundary
effects induced by fluid flow also influence the dynamic behaviors. Figure 5a shows the relationship
between Re(w) and the Kn number. We can see that Re(w) keeps constant when Kn varies from 0 to
0.1. However, the values of Im(w) for the four modes shown in Fig. 5b all become higher when Kn
increases; thus, the slip boundary effect from fluid only leads to promotions in wave and vibration.

Because according to Eq. (9), the slip boundary effect directly affects the flow velocity, the relation-
ships between frequency and flow velocity of Fig. 6a, b indicate similar trends with those of Fig. 5a, b.
Firstly, the values of Re(w) in Figs. 6a and 5a are the same, where the frequencies for all modes keep
constant with increasing U. Furthermore, the values of Im(w) for all the modes described in Fig. 6b
also keep increasing when U becomes higher, which is similar to those in Fig. 5b. The reason for this
can be explained by the analytical relationship between U and Kn in Eq. (9), where U keeps increasing
when Kn becomes higher. However, Fig. 6b indicates the nonlinear relationships between Im(w) and
U, while the relationships between Im(w) and Kn in Fig. 5b are linear. Therefore, the wave promotion
caused by the slip boundary effect of fluid flow is further confirmed here.

Because of the difficult operation for experiments, the reasonable methodologies for verification of
numerical solution are the MD simulation and the Monte Carlo simulation (MCS) [7, 8]. However, due
to time-consuming computations and numerical instability, few studies on fluid-conveying CNTs have
been conducted based on either MD simulation or MCS. Liu and his colleagues investigated the wave
propagation behaviors of fluid-conveying CNTs by MCS and the interval analysis method (IAM) [30].
We now employ the dispersion relation proposed by Liu et al. to verify the present nonlocal models. The
wave dispersion curves obtained by MCS, IAM and the nonlocal strain gradient model are compared
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Fig. 6. The angular frequency versus flow velocity: a real part; b imaginary part

and indicated in Fig. 7, where all physical and geometry parameters of the fluid-filled CNT take the
same values as Ref. [30].

Figure 7 first illustrates the good agreement of numerical results based on the MCS and IAM
proposed by Liu [30]. However, the frequency based on IAM is a little higher than the one by MCS
according to Liu’s study, but the difference is very small. Thus MCS and IAM are both reliable for
verification of other analytical models [30]. It is shown in Fig. 7 that the frequency predicted by the
nonlocal strain gradient model is a little higher than those by MCS and IAM. However, the dispersion
curve obtained by the nonlocal strain gradient model indicates the same trend with the MCS and IAM
results, and the difference between the frequencies obtained by the nonlocal strain gradient model
and MCS is very small. Therefore, the nonlocal strain gradient model is capable of providing accurate
results at lower computational cost for wave propagation analysis of fluid-conveying CNTs. Similar
results for CNTs without fluid have been verified by comparing with MD and other models [20]. Here
the conclusions are further improved for fluid-conveying CNTs.

4. Conclusions
The wave propagation behaviors of fluid-filled CNTs are analyzed based on the Timoshenko beam
model established according to new nonlocal strain gradient theory and slip boundary theory. The
governing equations are derived and resolved to investigate the wave characteristics of CNTs. The
numerical results show that the strain gradient effect leads to stiffness enhancement for CNTs, while
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the nonlocal stress effect causes stiffness to decrease. The dynamic behaviors of fluid-filled CNTs are
affected by both scale effects. The flow velocity of fluid inside the CNT is increased by the slip boundary
effect, resulting in the promotion of wave propagation in CNTs.
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