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ABSTRACT Double-layered graphene sheets (DLGSs) can be applied to the development of a
new generation of nanomechanical sensors due to their unique physical properties. A rectangular
DLGS with a nanoparticle randomly located in the upper sheet is modeled as two nonlocal
Kirchhoff plates connected by van der Waals forces. The Galerkin strip transfer function method
which is a semi-analytical method is developed to compute the natural frequencies of the mass-
plate vibrating system. It can give exact closed-form solutions along the longitudinal direction of
the strip. The results obtained from the semi-analytical method are compared with the previous
ones, and the differences between the single-layered graphene sheet (SLGS) and the DLGS mass
sensors are also investigated. The results demonstrate the similarity of the in-phase mode between
the SLGS and DLGS mass sensors. The sensitivity of the DLGS mass sensor can be increased by
decreasing the nonlocal parameter, moving the attached nanoparticle closer to the DLGS center
and making the DLGS smaller. These conclusions are helpful for the design and application of
graphene-sheet-based resonators as nano-mass sensors.

KEY WORDS Galerkin strip transfer function method, Double-layered graphene sheet, Mass
sensor, Nonlocal theory, Kirchhoff plate

1. Introduction
Detection systems or sensors at nanoscale are of great significance in a large amount of engineer-

ing applications, such as biomedical curing, environmental monitoring, etc [1]. Since the discovery of
graphene sheets (GSs) in 2004 [2], GSs have demonstrated a significant potential of application as
structural elements in nanoscale devices because of their remarkable physical and mechanical proper-
ties, such as high Young’s modulus, low weight, extremely high stiffness and specific surface-to-volume
ratio, as well as high sensitivity to the change of environment [3, 4]. Such features of GSs make them
ideally suitable for mass, force, and charge sensors.

Recently, GS used as a sensor has been widely investigated by researchers. Sakhaee-Pour et al.
[5, 6] discussed the potential of single-layered graphene sheet (SLGS) strain sensor and applied the
SLGS to detect the mass of atomistic dust. And then, Arash et al. [7, 8] accomplished research
on the potential of a graphene-based resonator sensor in the detection of noble gases. Shen et
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al. [9, 10] applied nonlocal Kirchhoff plate theory to study the transverse vibration of rectangu-
lar and circular graphene sheet-based mass sensors. Jiang et al. [11] investigated the utility of
inducing nonlinear oscillations to enhance the mass sensitivity of carbon nanotube (CNT) and GS-
based nanomechanical resonators using molecular dynamics simulation. Tsiamaki et al. [12] used
an improved spring-mass-based structural mechanics method to study the vibrational behavior of
a circular graphene sheet operating as a nanomechanical mass sensor monitoring resonant frequency.
Chun [13] proposed a transparent and stretchable all-graphene strain sensor capable of detecting var-
ious types of strains induced by stretching, bending, and torsion. By simulation, the results show
that the resolution of mass sensor made of a square GS (10 nm) can reach an order of 10−24 kg.
Moreover, by decreasing the size of graphene sheet, the mass sensitivity can be enhanced [4]. The
double-layered graphene sheet (DLGS), treated as two layers of SLGSs connected by van der Waals
(vdW) forces, is very different from the SLGS, especially in dynamics. In particular, experimental
evidence shows that the DLGS gas sensor exhibits higher response sensitivity to NO2 than mono-
layer and multilayer graphene [14]. Similarly, Asemi et al. [15] found that the frequency shifts of
double nanofilm-based mass sensors were always greater than those of single nanofilm-based ones.
Rajabi and Hosseini-Hashemi [1] developed a new nanoscale mass sensor based on the DLGS by
considering the effect of interlayer shear using multibeam shear model. The principle of mass detec-
tion using the nano-mass sensor is to detect recognizable shifts of its resonant frequency induced
by the added mass on the surface of the sensors [3]. Consequently, the study of the vibration
characteristics of the nano-mass sensor is the key technique in both design and practical applica-
tion.

Recently, the continuum elastic model has also become effective in studying the vibrational behavior
of GS. He et al. [16] calculated the potential of multilayered GSs using the classical theory of elastic-
ity. Lei et al. [17] analyzed the vibrational properties of an nanomechanical mass sensor with atomic
resolution using a fixed-supported circular monolayer GS model with attached nanoparticles, based
on the continuum mechanics of elasticity and Rayleigh’s energy method. However, the significant size
effect on the mechanical properties of structure was shown in both experiments and simulations in the
case of very small dimensions. The size effect cannot be predicted quite well when using the classi-
cal continuum mechanics of elasticity. The nonlocal continuum theory presented by Eringen [18, 19]
solves scale-dependent problems. The dynamic behavior of GSs can be accurately predicted using the
nonlocal continuum models [3]. Using the nonlocal theory of elasticity, many researchers have stud-
ied the SLGS nanomechanical resonators [20–24]. In particular, Shi et al. [25] and Chang et al. [26]
investigated the vibration of circular DLGSs as nanomechanical resonators using the nonlocal the-
ory. Natsuki et al. [27] analyzed the free vibration of DLGS-based nanomechanical mass sensor using
an attached nanoparticle. Rajabi and Hosseini-Hashemi [28] examined the application of viscoelastic
orthotropic system of double-nanoplates as nanoscale mass sensors via the nonlocal theory of elastic-
ity.

The strip transfer function method (STFM) [29] can cope with complicated boundaries with much
higher efficiency, which is quite suitable for the static and dynamic analyses for plate problems. By
using the STFM, the plate is divided by a number of strips. Based on the feedback from each strip,
the nodal line displacement is correlated with the longitudinal coordinate of the strip and the time.
In the lateral direction of the strip, the transverse displacement of the plate is interpolated by nodal
line displacement. Therefore, along the strip longitudinal direction, the closed-form solution of plate
displacement can be obtained using the STFM. It also exhibits high computational efficiency along
the lateral direction of the strip. However, the conventional STFM is based on the potential functions.
To solve this problem, the STFM incorporating the principles of Galerkin method, called the Galerkin
STFM (GSTFM), is established. Using the GSTFM, Jiang et al. [30] analyzed the free vibration of a
single-layered graphene-sheet-based mass sensor based on the nonlocal Kirchhoff plate theory, showing
that the GSTEM is quite accurate and efficient.

In this paper, the GSTFM is used to study the vibration of the DLGS mass sensor. Two Kirchhoff
plates with an attached nanoparticle in the upper plate are used to model the DLGS mass sensor
based on the nonlocal theory, and the interaction between the two plates is governed by vdW forces.
The results obtained from the semi-analytical method are compared with the previous ones, and the
differences between the SLGS and DLGS mass sensors are also presented. Parametric studies such
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Fig. 1. DLGS mass sensor with an attached nanoparticle. a Discrete model, b continuum model

(a) (b)

Fig. 2. Substructures of a rectangle Kirchhoff plate. a Upper layer, b lower layer

as influences of nonlocal parameters, geometry parameters and the location of nanoparticle on the
frequency shift are investigated.

2. Governing Equations
Supposing that in the upper SLGS layer at the location of (x0, y0), there is an attached nanoparticle

m0, as shown in Fig. 1. The attached nanoparticle can be treated as a concentrated mass without
considering its mass distribution, when its dimension and mass are much smaller than those of the GS-
or CNT-based mass sensors [5, 31, 32].

In this paper, we use superscripts ‘I’ and ‘II’ to denote the parameters of the upper SLGS layer
and the lower SLGS layer, respectively. Van der Waals (vdW) forces exist in a DLGS nanomechanical
resonator which is made up of two layers of SLGS. The continuum model and the coordinate system
used for the DLGS are, respectively, displayed in Figs. 1 and 2, where the origin is chosen at one corner
of the midplane of the nanoplate; the x and y coordinates are taken along the length a and width b of
the nanoplate, respectively; and the z coordinate is taken along the thickness 2h of the nanoplate.

According to the nonlocal Kirchhoff plate theory, the governing equation of the upper SLGS layer
with an attached nanoparticle yields [25, 30]

−
(

∂2M I
xx

∂x2
+ 2

∂2M I
xy

∂x∂y
+

∂2M I
yy

∂y2

)
+ [ρh + m0δ (x − x0) δ (y − y0)]

∂2wI

∂t2
− cv

(
wII − wI

)
= 0 (1)

And the governing equation of the lower SLGS layer is



Vol. 31, No. 1 Z.B. Shen et al.: Nonlocal Galerkin Strip Transfer Function Method 97
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where ρ is the density, h is the thickness, and δ is the Dirac delta function. The moments in Eqs. (1)
and (2) can be exactly expressed as
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Here E is Young’s modulus, υ is Poisson’s ratio, D = Eh3/12
(
1 − υ2

)
is the bending stiffness of thin

plate, and μ is the nonlocal parameter.
In Eqs. (1) and (2), vdW forces fv = cv

(
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)
, where cv is the vdW interaction coefficient

between the two layers that can be obtained by [25]
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in which acc is the carbon bond length of C–C equaling 1.42 nm; ε and σ are parameters related to
the physical properties of the GSs, with ε = 2.968 MeV and σ = 0.34 nm; and hij is the distance
between the two layers.

3. Galerkin Strip Transfer Function Method
Usually, the method with the assumed mode is applicable to classical plate problems with simply

supported and clamped boundary conditions. However, it is not an ideal way for the Kirchhoff plate
with an attached mass owing to the fact that it is difficult to converge at the position of the attached
mass. The plate with a concentrated mass can be treated as a special boundary condition, while the
STFM is good at dealing with complex boundary conditions. Considering the difficulty of explicitly
expressing the potential functions based on Eringen’s nonlocal stress gradient theory, the GSTFM is
proposed to solve this problem.

3.1. Formulation of Element Equations

Firstly, along the x direction and from the location of the attached nanoparticle x = x0, each SLGS
layer of the DLGS resonator needs to be divided into two substructures using the GSTFM. As shown in
Fig. 2, there are four substructures in total, which are marked with ΩI

1, ΩI
2, ΩII

1 and ΩII
2 , respectively.

Also, the continuity conditions at x = x0 should be added. Then, the governing equations of the DLGS
resonator become

ΩI
i : −
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)
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ΩII
i : −

(
∂2M II

xx,i

∂x2 + 2∂2M II
xy,i

∂x∂y + ∂2M II
yy,i

∂y2

)
+ ρh

∂2wII
,i

∂t2 + cv
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)
= 0

(i = 1, 2) (5)

The moments in Eq. (5) can be converted from Eq. (3).
In addition, the continuity conditions at x = x0 for the DLGS are

wI
,1 (x0, t) = wI

,2 (x0, t), wII
,1 (x0, t) = wII

,2 (x0, t)

∂wI
,1 (x0, t)
∂x

=
∂wI

,2 (x0, t)
∂x

,
∂wII

,1 (x0, t)
∂x

=
∂wII

,2 (x0, t)
∂x

M I
xx,1 (x0, t) = M I

xx,2 (x0, t), M II
xx,1 (x0, t) = M II

xx,2 (x0, t)

QI
xx,1 (x0, t) + m0

∂2wI
,1 (x0, t)
∂t2

= QI
xx,2 (x0, t), QII

xx,1 (x0, t) = QII
xx,2 (x0, t) (6)

where QI
xx,i and QII

xx,i (i = 1, 2) are shear forces of ΩI
i and ΩII

i at x = x0, respectively.
Each divided substructure should be separated into NE strip elements, as shown in Fig. 3.
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Fig. 3. Strip elements of substructures. a Substructure, b displacements at the strip nodal lines

For the jth element which is in substructure Ωn
i (n = I, II; i = 1, 2), we set the unknown displace-

ment vector at the nodal lines

φn
j,i (x, t) =

{
wn

j,i
∂wn

j,i

∂y wn
j+1,i

∂wn
j+1,i

∂y

}T

(7)

where n=I, II, and i = 1, 2.
wn

,i (x, y, t) denotes the element’s transverse displacement function, which can be written as

wn
,i (x, y, t) = φn

j,i (x, t) N (y) (n = I, II ; i = 1, 2) (8)

where N(y) is the shape function, and one of the applicable forms can be seen in Ref. [30].
Using Eq. (3), we can get the weak form of Eq. (5) as follows
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where W̄ is the trail vector. Substituting Eqs. (8) into (9), we can get

ΩI
i : k(4) ∂4φI

j,i
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j,i
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where c(0) and c(2) are the vdW force matrices, which can be expressed as

c(0) =
∫ l

0

cvNTNdy −
∫ l

0

cvμNT ∂2N

∂y2
dy

c(2) = −
∫ l

0

cvμNTNdy (11)

where k(0), k(2) and k(4) are the strip stiffness matrices, and m(0) and m(2) the strip mass matrices.
Their specific forms can be found in Ref. [30].

The global equations for the substructures can be obtained by assembling the element governing
equations, following the same procedure as the finite element method.

Firstly, the unknown global displacement vector should be defined as follows

Φn
,i (x, t) =

{
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After that, the global equations can be achieved as
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)
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)
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(
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,i

)
= 0 (13)

where K(j), M(j) and C(j) (j = 0, 2 or 4) are the global stiffness matrices, global mass matrices and
vdW force matrices, respectively.

Supposing that there are displacement boundary conditions at y = 0 and y = b, or some constraints
are imposed on a nodal line, the variation of Φn

,i in Eq. (13) is not arbitrary. In this case, the dynamic
equation is derived by eliminating those known nodal line displacements from Φn

,i. Let Φn
,i have N1

unknown nodal line displacements, denoted by vector Φ̄
n
,i, and N2 known nodal line displacements,

denoted by vector ¯̄Φ
n

,i. Rearranging the elements of Φ̄
n
,i and ¯̄Φ

n
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,i, one obtains

Φn
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,i + T2

¯̄Φ
n

,i (14)

where T1 and T2 are row transformation matrices consisting of 0 and 1. Substituting Eqs. (14) into
(13), the global governing equations are
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where
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3.2. Transfer Function Solution Method

After obtaining the global equations, the transfer function method is used in the solution. The
Laplace transforms of the global equations are

∂4

∂x4
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where ‘̂ ’ denotes the Laplace transformation, s is the Laplace transform parameter, and
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By setting the state space vector
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Equation (16) can be rewritten as

∂

∂x
η (x, s) = F (s)η (x, s) (20)

where

F (s) =
[

F̄ (s) 08N1×8N1

08N1×8N1 F̄ (s)

]
, F̄ (s) =

[
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]
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⎤
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⎤
⎥⎥⎦
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For the displacement boundary conditions at y = 0 and y = b, the finite element method can be
used, similar to Eqs. (15)–(17). For the displacement boundary conditions at x = 0 and x = a, it can
be rewritten as

Mb (s) η (0, s) + Nb (s) η (a, s) = 0 (22)

where

Mb (s) =
[

E
(0)
L (s) E

(1)
L (s) E

(2)
L (s) E

(3)
L (s)

0 0 0 0

]
16N1×16N1

Nb (s) =
[

0 0 0 0

E
(0)
R (s) E

(1)
R (s) E

(2)
R (s) E

(3)
R (s)

]
16N1×16N1

(23)

here
[
E
(i)
L (s)

]
2N1×2N1

and
[
E
(i)
R (s)

]
2N1×2N1

are coefficient matrices, which are depend on the types

of boundary conditions. For simply supported and clamped boundary conditions, the exact forms of
Mb (s) and Nb (s) are
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1. Simply supported

Mb (s) =

⎡
⎢⎢⎣

E1 E2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

16N1×16N1

Nb (s) =

⎡
⎢⎢⎣

0 0 0 0
0 0 E1 E2

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

16N1×16N1

(24)

where

E1 =

⎡
⎢⎢⎣

I 0 0 0
0 0 I 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

4N1×4N1

E2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
I 0 0 0
0 0 I 0

⎤
⎥⎥⎦

4N1×4N1

(25)

2. Clamped

Mb (s) =

⎡
⎢⎢⎣

E1 E2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

16N1×16N1

Nb (s) =

⎡
⎢⎢⎣

0 0 0 0
0 0 E1 E2

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

16N1×16N1

(26)

where

E1 =

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

4N1×4N1

E2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
I 0 0 0
0 I 0 0

⎤
⎥⎥⎦

4N1×4N1

(27)

According to Eq. (6), the continuity conditions at x = x0 can also be rewritten as
(

�

Φ
I

,1

)T

=

(
�

Φ
I

,2

)T (
�

Φ
II

,1

)T

=

(
�

Φ
II

,2

)T

∂

(
�

Φ
I

,1

)T

∂x
=

∂

(
�

Φ
I

,2

)T

∂x

∂

(
�

Φ
II

,1

)T

∂x
=

∂

(
�

Φ
II

,2

)T

∂x

∂2

(
�

Φ
I

,1

)T

∂x2
=

∂2

(
�

Φ
I

,2

)T

∂x2

∂2

(
�

Φ
II

,1

)T

∂x2
=

∂2

(
�

Φ
II

,2

)T

∂x2

−K̄(4)

∂3

(
�

Φ
I

,1

)T

∂x3
+ m0s

2�

Φ
I

j,1 = −K̄(4)

∂3

(
�

Φ
I

,2

)T

∂x3

∂3

(
�

Φ
II

,1

)T

∂x3
=

∂3

(
�

Φ
II

,2

)T

∂x3
(28)

Here,
�

Φ
I

j,1, the jth component of
�

Φ
I

,1, is also the degree of freedom of the nodal lines where the attached
nanoparticle locates. Then, Eq. (28) can represented as

Rb (s) η (x0, s) = 0 (29)

Also, the exact form of Rb (s) is

Rb (s) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

rb1 0 −rb2 0
0 rb2 0 rb2

⎤
⎥⎥⎦
16N1×16N1

(30)

where

rb1 =

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 I 0

m0 0 0 −K̄(4)

⎤
⎥⎥⎦
4N1×4N1
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Upper layer
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Lower layer
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Fig. 4. Different vibration modes of DLGS. a In-phase mode (IPM), b anti-phase mode (APM)

rb2 =

⎡
⎢⎢⎣

−I 0 0 0
0 −I 0 0
0 0 −I 0
0 0 0 K̄(4)

⎤
⎥⎥⎦
4N1×4N1

(31)

Also, m0 is an N1 × N1 matrix. The jth diagonal element of m0 is m0·s2 and other elements are 0’s.
Thus, the boundary conditions of Eqs. (22) and (29) can be rewritten as

Mb (s) η (0, s) + Nb (s) η (a, s) + Rb (s) η (x0, s) = 0 (32)

Then, the characteristic equation of Eqs. (20) and (32) is

det
(
Mb (s) + Nb (s) eaF (s) + Rb (s) ex0F (s)

)
= 0 (33)

Setting s = iωk in Eq. (33), the root ωk is the kth natural frequency.

4. Results and Discussion
In this study, the vibration of a rectangular DLGS mass sensor is analyzed via a numerical example

for simply supported edges and clamped edges, respectively. The DLGS mass sensor is modeled as two
layers of nonlocal Kirchhoff plates coupled together via vdW interactions. According to the published
literature, the parameters of DLGS adopted are as follows [24]:

Young’s modulus E = 1.06 TPa; Poisson’s ratio υ = 0.25; mass density ρ = 2.25 g/cm3; the
effective thickness of each layer h is 0.34 nm which equals the diameter of a carbon atom; and the vdW
interaction coefficient is cv = −108 GPa/nm according to Eq. (2).

The default edge length of the DLGS are a = b = 10 nm in Fig. 1; and the initial location of the
adding nanoparticle is at x0 = 0.5a and y0 = 0.5b.

In response to the mode shape, the vibration mode of DLGS is divided into an in-phase mode (IPM)
and an anti-phase mode (APM) [25, 33, 34]. For the IPM, same vibration amplitude and direction are
shown for both SLGS layers. By contrast, same amplitude but opposite directions are exhibited for
the APM. As shown in Fig. 4, the IPM is always in the lower-order mode, and no relative motions are
found between the two layers. On the contrary, the APM appears in the higher-order mode, and the
two layers always move in the opposite directions.

4.1. Result Validation

To verify the validity of the method, the results of the present method are compared with
those in literature. The comparisons between the fundamental frequencies with a simply supported
DLGS of the IPM and the APM are made in Tables 1 and 2, respectively. The results show
very good agreement of the results in the present paper with those in Ref. [33]. The error of
the IPM trends to be zero, and the maximum error of the APM is only 0.4659%. It means the
present method is valid and very effective. Also, the comparison between Tables 1 and 2 shows
that the frequencies in the APM are much higher than those in the IPM. That is because vdW
forces can increase the rigidity of the system when there is relative motion between the two
sheets.

To compare the differences between the SLGS and DLGS mass sensors, the fundamental frequency
results of the SLGS and DLGS (IPM) mass sensors with different attached nanoparticles and nonlocal
parameters are listed in Table 3. No differences can be observed between the SLGS and DLGS when
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Table 1. Comparison of the IPM fundamental frequencies obtained by the GSTFM with the results in Ref. [33] for nonlocal
simply supported DLGS sensor without attached mass (m0 = 0)

μ (nm2) IPM (THz) %error

GSTFM Ref. [33]

0 0.06913 0.06912 0.0001
1 0.06317 0.06317 0.0000
2.25 0.05752 0.05752 0.0000
4 0.05167 0.05167 0.0000

GSTFM Galerkin strip transfer function method

Table 2. Comparison of the APM fundamental frequencies obtained by the GSTFM with the results in Ref. [33] for nonlocal
simply supported DLGS sensor without attached mass (m0 = 0)

μ (nm2) APM (THz) %error

GSTFM Ref. [33]

0 2.6752 2.6833 0.3019
1 2.6722 2.6831 0.4062
2.25 2.6713 2.6830 0.4361
4 2.6704 2.6829 0.4659

GSTFM Galerkin strip transfer function method

Table 3. Comparison of the fundamental frequencies between the SLGS and DLGS nanomechanical resonators

m0 (kg) μ (nm2) Fundamental frequency %error

SLGS (GHz) DLGS (IPM) (GHz)

0 0 69.1263 69.1263 0.0000
1 63.1720 63.1720 0.0000
4 51.6736 51.6736 0.0000

1 × 10−24 0 67.3748 67.4280 0.0790
1 61.8281 61.8692 0.0665
4 50.9314 50.9544 0.0452

1 × 10−23 0 55.5911 55.8827 0.5245
1 52.3846 52.6302 0.4688
4 45.2987 45.4591 0.3541

m0 = 0. The overall trend is that the errors increase with the increase in the mass of attached
nanoparticle. The reason is mainly attributed to the nanoparticle. The nanoparticle is only attached
to the upper layer of the DLGS, i.e., no nanoparticle is attached to the lower layer. Even so, the
maximum error is only 0.5245%. It means the DLGS can be replaced by the SLGS in the IPM.
Moreover, it is also found that the increase in the nonlocal parameter can result in the decrease in the
error.

4.2. Effect of the Attached Nanoparticle on the DLGS-Based Nanomechanical Sensor

The published results indicated that the responses of resonant frequencies are different for APM
and IPM. In general, the APM shows less sensitivity to the vibration modes and a narrower range of
resonant frequencies than the IPM because of the existence of vdW forces [25]. Considering that the
frequencies in the IPM are much lower than those in the APM, lower energy is required for stimulation.
In the following analyses, more attention will be paid to the frequencies in the IPM.

The frequency shift Δf is written as

Δf = |f − f0| (34)

where f and f0 are the frequencies of the DLGS with and without an attached nanoparticle, respec-
tively. The frequency shift Δf is the index to denote the mechanical behavior of the nanomechanical
sensor.
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Fig. 5. Nonlocal parameter effect on the fundamental frequency shift of a DLGS mass sensor with a = b = 10 nm and
x0 = y0 = 0.5a. a Simply supported edges, b clamped edges
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Fig. 6. Attached nanoparticle locations effect on the fundamental frequency shift of a DLGS mass sensor with
a = b = 10 nm and µ = 1.0 nm2. a Simply supported edges, b clamped edges

The nonlocal effect on the frequency shift Δf of DLGS mass sensor is indicated in Fig. 5. Although
increasing the mass of attached nanoparticle results in the decrease in the natural frequency, the overall
frequency shift still increases when the mass increases. The frequency shift Δf becomes smaller if the
small-scale effect is considered, and it becomes obvious for large nanoparticles. The decrease in Δf
can be expected when the nonlocal parameter increases, which is the same as the SLGS mass sensor
[30]. In addition, the frequency shift becomes obvious in the case that the attached mass is larger
than 10−24 kg. Therefore, the mass sensitivity of the nanomechanical mass sensor can achieve at least
10−21 kg. Comparing the data from Fig. 5a with those from Fig. 5b, the clamped DLGS sensors exhibit
their sensitivity when comparing the results of frequency shift with those of the simply supported ones.

In addition, the location of nanoparticle also has an influence on the natural frequency variation of
the DLGS-based mass sensor. As shown in Fig. 6, the effect of the location of the nanoparticle on Δf
is obvious. Δf increases when the nanoparticle approaches the center of the DLGS. Thus, the most
sensitive location of the DLGS mass sensor is the center.

As discussed in the previous sections, the natural frequency is more sensitive to the plate side length
because it is closely correlated to the rigidity and total mass of the nanoplate. Figures 7 and 8 describe
the plate side length effect of the DLGS on Δf of the mass sensor. The plate side length effect on Δf
is of great significance. The frequency shift can be significant in the case of small side length of the
DLGS, especially with large attached mass. Therefore, if the mass sensitivity needs to be increased,
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Fig. 7. Plate side length effect on the fundamental frequency shift of a square DLGS mass sensor with µ = 1.0 nm2 and
x0 = 0.5a, y0 = 0.5b. a Simply supported edges, b clamped edges
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Fig. 8. Plate side length effect on the fundamental frequency shift of a rectangle DLGS mass sensor with b = 10 nm,
µ = 1.0 nm2 and x0 = 0.5a, y0 = 0.5b. a Simply supported edges, b clamped edges

smaller-size DLGS resonators are required for the mass sensors. The reason is mainly attributed to the
increase in rigidity of the mass sensor when the size reduces. On the other hand, when the side length
of a nanoplate gets smaller, the overall mass of the nanoplate will decrease, and the natural frequency
will increase consequently. For this case, the ratio of the mass of the added nanoparticle to the total
mass of the sensor is relatively high, and hence the portion of the frequency shift will be high as well.

5. Conclusions
In this paper, the GSTFM is applied to solve the governing equations of a DLGS mass sensor car-

rying an attached nanoparticle based on the nonlocal Kirchhoff plate theory. The results are compared
with those in the references. The conclusions are drawn as follows:

1. The IPM results of the DLGS mass sensor are almost the same as those of the SLGS. This means
the DLGS can be regarded as the SLGS as a mass sensor at lower modes.

2. Decreasing the nonlocal parameter, moving the attached nanoparticle closer to the DLGS center
or making the DLGS smaller can increase the sensitivity of the DLGS mass sensor.

3. The required sensitivity for the DLGS mass sensor has to be at least 1 × 10−24 kg.
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