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Abstract
A liquid chromatography with electrospray ionization tandem mass spectrometry method was developed and validated for 
the determination of dioctyldiethylenetriamine acetate in soil and tobacco. The separation was performed on a Restek Ultra 
AQ  C18 column (2.1 × 100 mm i.d., particle size 3 µm) at 40 °C with a gradient elution. Methanol and trifluoroacetic acid 
(0.1%) were used as mobile phase, and the flow rate was set at 0.3 mL min−1. A modified quick, easy, cheap, effective, rug-
ged, and safe (QuEChERS) method was used for sample extraction and cleanup pretreatment. The recovery was tested in 
the real samples and calculated to be 86.3–97.4%, the relative standard deviations were 1.1–11.9%. The limits of detection 
and quantitation were 3.3–16.7 and 10–50 µg kg−1, respectively. The method was demonstrated to be reliable for the routine 
monitoring of dioctyldiethylenetriamine acetate in tobacco samples.
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Introduction

Dioctyldiethylenetriamine acetate, N1-octyl-N2-(2-
(octylamino)ethyl)ethane-1,2-diamine (Fig. 1), is an envi-
ronmentally friendly amino acid polymer fungicide. It can 
combat a variety of diseases caused by fungi, bacteria and 
viruses. The anti-fungi mode of action includes solidifying 
bacteria’s protein, destroying the bacteria’s cell membrane 

and inhibiting bacteria’s respiration [1]. Broad-spectrum 
anti-fungi activities of dioctyldiethylenetriamine acetate ren-
der it widely used to control Botrytis cinerea, Fulvia fulva, 
Phytophthora capsici, Valsa mali, Physalospora piricola and 
other fungal diseases in various field crops such as tobacco, 
apples, rice, pepper, tomato, cotton and wheat [2, 3]. Owing 
to the broad application of dioctyldiethylenetriamine acetate 
in China, rapid and sensitive methods for its detection are 
required.

In 2003, a simple method for sample pretreatment called 
QuEChERS (quick, easy, cheap, effective, rugged and safe) 
based on acetonitrile extraction and partitioning, and a sub-
sequent dispersive solid-phase extraction (DSPE) clean-up 
of the extracts was created [4]. In QuEChERS procedure, 
analytes are extracted with an aqueous miscible solvent with 
a high amount of salt and/or buffering agents, to induce liq-
uid phase separation and stabilize acid and base pesticides 
[5]. This method covers a lot of analytes, including polar, 
semi-polar and non-polar pesticide residues in various food 
matrices [6]. QuEChERS approach has been  shown in 
numerous laboratories to provide high-quality results, save 
time and labor, and lower solvent consumption [7–11]. Even 
though QuEChERS method has been employed for several 
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kinds of chemicals and crops, it has not been reported on 
the extraction of dioctyldiethylenetriamine acetate residue 
in tobacco and soil.

Liquid chromatography coupled with tandem mass spec-
trometry (LC–MS/MS) detection is currently considered as 
the method of choice for quantitative analysis of compounds 
in many matrices [12]. The advantages of using LC–MS/
MS are mainly higher versatility, specificity and selectivity, 
and enabling the detection of target analytes in the low ng/L 
range [13]. However, the major drawback of this technique 
in quantitative analysis, especially with electrospray ioniza-
tion (ESI), is ion suppression/enhancement when analyz-
ing complex matrices [14–16]. Therefore, a related study 
to evaluate matrix effects should be included in the method 
validation, to ensure the reliability of the data obtained.

To our knowledge, there was no research on pretreat-
ment and residue of dioctyldiethylenetriamine acetate in 
any crops. The aim of this work was to develop a rapid and 
effective liquid chromatography coupled by an ESI source 
to tandem mass chromatography (LC–ESI–MS/MS) method 
for the determination of concentration levels of dioctyldi-
ethylenetriamine acetate in soil, green and cured tobacco 
leaf samples. The proposed method was successfully applied 
on the quantification of dioctyldiethylenetriamine acetate 
in actual soil, green and cured tobacco leaf samples. The 
results could provide some data for the pretreatment and 
detection method of dioctyldiethylenetriamine acetate in 
other crop matrix.

Experimental

Materials and Reagents

Analytical standards of dioctyldiethylenetriamine acetate 
(95.0% purity) and 8% aqueous solution were offered by 
Qinchengyixin Co., Ltd. (Beijing, China). HPLC–grade 
methanol and acetonitrile were purchased from Tedia Co 
Inc. (Phoenix, USA). Distilled water was purchased from 
Watson Co., Ltd. (Dongguan, China). Analytical grade 
magnesium sulfate  (MgSO4), sodium chloride (NaCl), 
trifluoroacetic acid (TFA) and acetic acid were purchased 
from Chengdu Jinshan Chemical Reagent Co. (Chengdu, 
China). Syringe filter (nylon, 0.22 µm) was purchased from 
PeakSharp Technologies (Yibin, China). Primary secondary 

amine (PSA, 40–60 µm), octadecyl silane  (C18, 40–60 µm) 
and graphitized carbon black (GCB, 60–90 µm) were pur-
chased from Agela Technologies (Tianjin, China).

Standard Solutions

Stock standard solution of dioctyldiethylenetriamine acetate 
(100 µg mL−1) was prepared in methanol. The standard solu-
tions required to obtain the analytical curves (5, 10, 50, 100, 
500, 1000 and 10,000 µg L−1) were prepared from stock 
solution by serial dilution with methanol. Correspondingly, 
matrix-matched standard solutions were prepared by add-
ing a certain volume of the standard solution to the blank 
extracts (soil, green and cured tobacco leaves) to each seri-
ally diluted standard solution. A matrix-matched calibra-
tion method was used to eliminate matrix effects. The con-
centration ranges of dioctyldiethylenetriamine acetate were 
5–10,000 µg L−1 for soil, green and cured tobacco leaves. 
All solutions were stored in a refrigerator in the dark at 
− 20 °C. The stability was determined in the solvent and in 
the matrix. The stability of the spiked samples (1000 µg L−1) 
for the target compounds were evaluated monthly (stable in 
1 month), and all the samples used in the stability test were 
stored at − 20 °C. These three matrices were obtained from 
the tobacco experiment base in Huishui, which were not 
contaminated by the target pesticide. Soil, green and tobacco 
leaves were put into polyethylene bags. They were trans-
ported to the laboratory and stored in the dark at − 20 °C 
until analysis.

Instrumentation

Chromatographic separation of dioctyldiethylenetriamine 
acetate was performed on a Shimadzu (Tokyo, Japan) 
20AD–XR LC system, a binary solvent manager, a column 
oven, a solvent degasser, and an autosampler equipped with 
a Restek Ultra AQ  C18 column (100 mm × 2.1 mm i.d., par-
ticle size 3 µm; Bellefonte, USA). The mobile phase was 
a mixture of methanol (A) and 0.1% TFA aqueous solu-
tion (B). The following chromatographic gradient was used: 
0–3.1 min, held at 40% A + 60% B; 3.1–3.2 min, changed 
from 40% A + 60% B to 90% A + 10% B; 3.2–10.1 min, 
held at 90% A + 10% B; 10.1–13.0 min, changed from 90% 
A + 10% B to 40% A + 60% B; and 13.0–13.1 min, held at 
40% A + 60% B. 5 µL of the sample solution was injected 
at 0.3 mL min−1. The column oven temperature was main-
tained at 40 °C to decrease viscosity, and the temperature 
of the sample vial holder was set at 10 °C. The retention 
time of dioctyldiethylenetriamine acetate was approximately 
5.8 min.

A Sciex API 4000Q Trap quadrupole mass spectrometer 
(Foster City, CA, USA) equipped with an Ion Source Turbo 
Spray unit was used to quantify dioctyldiethylenetriamine 

Fig. 1  The chemical structure for dioctyldiethylenetriamine acetate
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acetate. Nitrogen was used as curtain, nebulizer, and col-
lision gas. The ESI source-dependent parameter settings 
were as follows: curtain gas pressure, 40 psi; ion source 
gas 1 pressure, 60 psi; ion source gas 2 pressure, 60 psi; 
ion source temperature, 550 °C; interface heater, “on”; 
and ion spray voltage, 5500 V. Multiple reaction monitor-
ing (MRM) in positive mode was used for the quantita-
tive determination of dioctyldiethylenetriamine acetate. 
The m/z 328.5 → 156.2 was used for quantification, and 
m/z 328.5 → 199.2 was used for confirmation. The col-
lision energy was set at 35.1 and 24.6 V for dioctyldi-
ethylenetriamine acetate’s daughter ions 156.2 and 199.2, 
respectively.

Sample Pretreatment

For soil sample, it was collected from 0 to 15 cm depth, 
air-dried and passed through a 1 mm sieve. 10 g aliquot 
of homogenized sample was weighed into a 50 mL poly-
propylene centrifuge tube with screw cap. Recovery stud-
ies for validation were carried out by spiking appropri-
ate amounts of standards to blank samples. The tubes 
that contained the samples were vortexed for 1 min and 
allowed to stand for 2 h at room temperature to distrib-
ute the pesticide evenly. Afterwards, water (5 mL) and 
20 mL of acetonitrile were added. The sample tube was 
vortexed for 3 min using a XW-80A vortex mixer (Kylin-
Bell Lab Instruments, Haimen, China) and sonicated for 
30 min using an AS3120 ultrasonic instrument (Autosci-
ence, Tianjin, China). Subsequently, 5 g of NaCl and 5 g 
of  MgSO4 were added. The tube was capped and immedi-
ately vortexed intensively for 1 min and then centrifuged 
with a TGL-10B Centrifuge (Anke, Shanghai, China) at 
relative centrifugal force (RCF) 4025×g for 5 min. Then, 
1 mL of the upper layer was filtered through 0.22 µm nylon 
syringe filter and analyzed by LC–MS/MS without further 
clean-up.

For tobacco sample, green tobacco leaves were chopped 
and cured tobacco leaves were crushed after cured. An ali-
quot (5 g) of homogenized green tobacco leaves or (2 g) 
of homogenized cured tobacco leaves was weighed into a 
50 mL polypropylene centrifuge tube with screw cap. After-
wards, water (5 mL) and 20 mL of methanol were added. 
The sample tube was vortexed for 1 min and sonicated for 
20 min. 5 g of NaCl and 5 g of  MgSO4 were added. The tube 
was capped and immediately vortexed intensively for 1 min 
and then centrifuged at RCF 4025×g for 5 min. Then, 1 mL 
of the upper layer was transferred into a single-use centri-
fuge tube containing 50 mg of PSA and 50 mg of  C18. The 
tube was vortexed for 30 s and centrifuged at RCF 3220×g 
for 5 min. The supernatant was filtered through 0.22 µm 
nylon syringe filter and analyzed by LC–MS/MS.

Method Validation

The method was validated to evaluate its performance in 
accordance with a routine validation procedure that included 
the following parameters: linearity, limit of detection (LOD), 
limit of quantification (LOQ), matrix effects, accuracy and 
precision by fortifying blank fresh tobacco leaf, soil or cured 
tobacco leaf samples to satisfy the SANTE/11945/2015 
requirements (method validation and quality control proce-
dures for the analysis of pesticide residues in food and feed) 
[17]. A series of dioctyldiethylenetriamine acetate matrix-
matched standard solutions (5–10,000 µg L−1 for soil, green 
and cured tobacco leaves) were prepared to determine the 
linearity of dioctyldiethylenetriamine acetate by LC–MS/
MS analysis. Calibration curves were generated by plotting 
the peak area versus the concentration of dioctyldiethylen-
etriamine acetate. Linear regression analysis was performed 
using Microsoft Excel 2010. The matrix effect (ME) was 
calculated as follows: ME% = (peak area of standard in 
matrix − peak area of standard in solvent)/peak area of stand-
ard in solvent × 100. Positive values of the MR demonstrate 
enhancement, whereas negative values indicate suppression 
[18]. The LODs were the concentrations that produced a sig-
nal-to-noise (peak area to peak area) ratio of 3, whereas the 
LOQs were defined as the lowest spiked concentration levels 
that acceptable recoveries and precision have been attained 
[19]. Precision and accuracy of the methods were evaluated 
by recovery studies using fortified samples at three concen-
tration levels (10, 100 and 1000 µg kg−1) for dioctyldieth-
ylenetriamine acetate in soil, (20, 200 and 2000 µg kg−1) 
in green tobacco leaves and (50, 500 and 5000 µg kg−1) in 
cured tobacco leaves based on five replicates. For recov-
ery studies, samples without residue (10 g soil, 5 g green 
tobacco leaves and 2 g cured tobacco leaves) were spiked 
prior to extraction by the addition of appropriate volumes 
of the dioctyldiethylenetriamine acetate standard solution 
in methanol. The treated samples were analyzed following 
the described procedure, and the recoveries were calculated. 
The precision in these conditions for repeatability, expressed 
as relative standard deviation (RSD), was determined by the 
intra- and inter-day assays [20].

Field Trials

To study the application of established methods, the field 
trials were performed in Guizou and Hunan. Each experi-
ment plot was 15 m2 and each treatment was applied three 
times. A buffer area of 15 m2 was used to separate the plots 
with different treatments. Formulation of dioctyldiethylen-
etriamine acetate (aqueous solution, 8%) was applied at a 
low dosage of 60 g a.i  ha−1 (the recommended high dosage) 
and at a high dosage of 90 g a.i  ha−1 (1.5 times the recom-
mended high dosage), every 7 days for a total of 3–4 times. 
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Approximately, 2 kg of tobacco leaves and representative 
2 kg of surface soil (from 0 to 15 cm depth) samples were 
collected randomly from several points in each plot at 7, 14, 
21 days after last spraying. Tobacco leaves were cured by 
conventional processes and then crushed [21]. Both cured 
tobacco leaf and soil samples were placed into polyethylene 
bags and stored at − 20 °C until analysis.

Results and Discussion

Optimization of Chromatographic Conditions

The chromatographic conditions such as column, mobile 
phase and flow rate were optimized systemically in the pre-
liminary test to improve the separation of the analyte in a 
reasonable analysis time [22]. Four different  C18 columns, 
including waters BEH  C18 column (100  mm × 2.1  mm 
i.d., particle size 1.7 µm; Milford, USA), Agilent ZOR-
BAX SB–C18 column (150 mm × 4.6 mm i.d., particle size 
5 µm; Santa Clara, USA), Phenomenex Luna  C18 column 
(250 mm × 4.6 mm i.d., particle size 5 µm; Tianjin, China), 
and Restek Ultra AQ  C18 column (100 mm × 2.1 mm i.d., 
particle size 3 µm) were compared. It was observed that 
the best separation results were obtained using the Restek 
Ultra AQ  C18 column (100 mm × 2.1 mm i.d., particle size 
3 µm) at the shortest time (Fig. S1). The column tempera-
ture was set at 40 °C. As to the mobile phase, we compared 
methanol/water, methanol/acetate acid, methanol/TFA and 
it was found that without acid, the peak of dioctyldiethyl-
enetriamine acetate was very broad and cannot be separated 
thoroughly. To acquire sharp peak, TFA was adopted and 
the optimized concentration was 0.1% (Fig. S2). Gradient 
and isocratic LC modes were optimized for the separation 
of dioctyldiethylenetriamine acetate and the latter mode was 
chosen for better separation. As to the flow rate, we com-
pared 0.2, 0.3, 0.4 mL min−1 and found that the best flow 
rate was 0.3 mL min−1 (Fig. S3).

Optimization of MS/MS Conditions

Precursor ion scan was used for screening and MRM acqui-
sition mode was used for the analysis. Dioctyldiethylen-
etriamine acetate was infused into the mass spectrometer. 
The precursor ion and two product ions were preliminar-
ily selected in both positive ion and negative ion modes. 
Due to the nitrogen atom in the chemical structure, which 
is more easy to get positively charged [23], dioctyldieth-
ylenetriamine acetate exhibited better signal sensitivity in 
positive ion mode. Two abundant daughter ions were cho-
sen as the quantitative (156.2) and qualitative (199.2) ion 
pairs after optimization of collision energy. Nitrogen was 
used as the nebulizer, heater, and curtain gas as well as the 

collision activated dissociation gas. The optimized MS con-
ditions were as follows: positive ion mode; ion spray volt-
age, 5500 V, nebulizing gas, 5 L min−1; nitrogen drying gas, 
12 L min−1; desolvation temperature, 550 °C; heater block 
temperature, 550 °C.

Optimization of Sample Pretreatment

The extraction procedure, as described above, was optimized 
by evaluating the performance of different combination of 
solvents. Different proportions of water/methanol and water/
acetonitrile were used to extract dioctyldiethylenetriamine 
acetate from soil and tobacco matrix. The best compromise 
for the extraction of dioctyldiethylenetriamine acetate from 
soil was achieved using 5 mL water and 20 mL acetonitrile. 
For green and cured tobacco leaf samples, the best extract-
ant was 5 mL of water and 20 mL of methanol (Fig. 2a). 
Based on QuEChERS methodology,  MgSO4 and NaCl were 
selected to dewater, reduce the solubility of co-extracted 
interferences and enhance the separation of mixed solvents 
[24, 25]. The best combination was 5 g of each salt. The dif-
ferent extraction times of vortex/sonication were compared. 
Finally, 3 min vortex and 30 min sonication were selected 
for soil samples, 1 min vortex and 20 min sonication were 

Fig. 2  Effect of different extractants (a) and extraction times (b) for 
dioctyldiethylenetriamine acetate in different matrix. (Spiked at 100, 
200 and 500 µg kg−1 for soil, green and cured tobacco leaf samples)
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selected for green and cured tobacco leaf samples (Fig. 2b) 
because it was the shortest time for each matrix that obtained 
acceptable recoveries range (90–100%) of dioctyldiethylen-
etriamine acetate.

To obtain satisfactory clean-up effect for QuEChERS pre-
treatment, three sorbents, PSA,  C18 and GCB, were used in 
this work to investigate the influences on recovery in tobacco 
matrix. The results showed that, without the clean-up using 
PSA,  C18 or GCB, the tobacco extracted colors were much 
deeper than that with sorbent; furthermore, GCB could 
greatly adsorb dioctyldiethylenetriamine acetate. However, 
when sorbent mixtures were used, the best results were 
obtained with 50 mg PSA and 50 mg  C18 for dioctyldiethyl-
enetriamine acetate in green and cured tobacco leaf matrices.

Method Validation

The typical chromatograms (Fig. 3) of standard and spiked 
samples proved that the established method was able to sepa-
rate dioctyldiethylenetriamine acetate from the matrix inter-
ferences. As shown in Table 1, the linearity was evaluated by 
preparing different calibration curves (standard, soil, green 
and cured tobacco leaves) in the concentration range of 
5–10,000 µg L−1. The regression equations and correlation 
coefficients (R2) of all the matrix-matched curves and stand-
ard solution curves indicated that satisfactory linearity was 
observed for dioctyldiethylenetriamine acetate (R2 > 0.999). 
The LODs and LOQs were estimated to be 3.3 and 10, 6.7 
and 20, 16.7 and 50 µg kg−1 for dioctyldiethylenetriamine 
acetate in soil, green and cured tobacco leaves, respectively.

When ESI is used, the ionization of the tested compounds 
can be affected by the presence of co-extractives from sam-
ples [26]. The matrix effects might affect the response in a 
positive or negative way depending on the level of ion sup-
pression or enhancement [27]. The accuracy and precision 
of the method could be greatly influenced by matrix effects. 
So the matrix effect was investigated in soil, green and 
cured tobacco leaves by comparing standard in the solvent 
with matrix-matched standards. If the ME value was < 0 or 
> 0, the matrix effect showed suppression or enhancement, 
respectively [17]. The results in Table 1 indicated signal sup-
pression was observed in cured tobacco leaf samples as the 
ME value was − 24.7%, however, signal enhancement differ-
ences were found in soil and green tobacco leaf samples with 
the ME values of 39.2% and 34.4%, respectively. Therefore, 
external matrix-matched standards were used to eliminate 
the matrix effect and more realistic data could be obtained.

To evaluate the stability and precision of the established 
method, the intra- and inter-day recovery precisions are 
listed in Table 2. The average recovery of dioctyldiethylen-
etriamine acetate ranged from 86.3 to 94.6, 89.7–92.3 and 
87.3–97.4% in soil, green and cured tobacco leaves, respec-
tively. Intra-day precision (n = 5) was evaluated by analysis 

of samples at different concentration levels during the same 
day. Inter-day precision were determined by repeated analy-
sis of samples at different concentration levels over three 
consecutive days [28, 29]. The RSD was calculated as a 
measurement of method repeatability. As shown in Table 2, 
the established method shows good repeatability with all the 
RSDs under 12%.

Application to Real Samples

To evaluate the feasibility of the established method for the 
analysis of real samples, it was applied to the determination 
of dioctyldiethylenetriamine acetate in soil and tobacco (144 
samples of soil and 144 samples of cured tobacco leaf) col-
lected from the trial fields in Guizhou and Hunan in 2014 

Fig. 3  Typical LC–MS/MS multiple reaction monitoring chroma-
tograms of dioctyldiethylenetriamine acetate in standard solution 
(100  µg  L−1), spiked soil sample (10  µg  kg−1), green tobacco leaf 
sample (20 µg kg−1) and cured tobacco leaf sample (50 µg kg−1)
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and 2015. The residues in soil samples of the two experi-
ment sites were all below the LOQ value (0.5 µg kg−1). And 
the results also showed that the residual levels of dioctyldi-
ethylenetriamine acetate were < 50–710 µg kg−1 in cured 
tobacco leaves at harvest after the last spraying at low and 
high dosages in Guizhou and Hunan, China.

Conclusions

A simple and sensitive approach has been established for 
the qualitative and quantitative analysis of dioctyldiethyl-
enetriamine acetate in soil, green and cured tobacco leaves 
by LC–MS/MS system. The optimized procedure includes a 
modified QuEChERS extraction followed by a cleanup with 
DSPE (PSA + C18). The LODs and LOQs were 3.3–16.7 and 
10–50 µg kg−1, respectively. The recoveries were between 
86.3 and 97.4% in all the three matrices. The new method 
was proved to be an important tool for the determination of 
dioctyldiethylenetriamine acetate residues in tobacco and 
soil samples. Considering the advantages and satisfactory 
performance of the proposed method, it could be applied for 
the routine monitoring of dioctyldiethylenetriamine acetate 
residues.
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