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Introduction

Organochlorine pesticides (OCPs) are a class of synthetic 
insecticides which were used worldwide for agriculture 
and public health since 1940s with characteristics of broad 
spectrum, high efficiency and low cost [1]. Polychlorin-
ated biphenyls (PCBs) are a group of chlorinated organic 
compounds derived from biphenyl and widely applied in 
industry since 1930s as dielectric fluid, lubricating oils and 
additives in capacitors, transformers, plastics, paints, flame 
retardants, etc. [2–4]. Some of OCPs and PCBs are persis-
tent pollutants which are still widespread in the environ-
ment and cause a global threat though banned and restricted 
for many years [5, 6]. OCPs and PCBs are hydrophobic and 
chemically stable, making them easily accumulated in the 
adipose tissues of animals and human causing variety of 
adverse health effects such as neurological, immunological, 
reproductive disorders and carcinogenicity [7–9].

Seafood is a term of aquatic products for human con-
sumption including aquatic animals and plants from marine 
or freshwater origin [10]. A variety of contaminants can 
enter aquatic environment via various ways, resulting in 
seafood contamination. Most of the animal seafood such 
as fish, shrimp, and shellfish contain high level of oil mat-
ters which makes the pretreatment procedure very difficult 
for the residue analysis of hydrophobic pollutants such as 
OCPs and PCBs.

Matrix solid-phase dispersion (MSPD) is a simple and 
efficient pretreatment method which was introduced by 
Barker in 1989 [11], and since then it has been widely used 
for isolation and extraction of environmental contaminants 
from various complex semi-solid or solid samples such as 
fruits [12], vegetables [13] and animal tissues [14] because 
of the superiority that makes tissue homogenization, 
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precipitation, centrifugation, filtration and the sample trans-
fer in one step. In MSPD, the sample was gently grinded 
with the solid adsorbent (C18, silica gel, etc.), making sam-
ples disrupt into tiny fragments scattered on the surface of 
the solid adsorbent to get better surface area. After the mix-
ture was transferred into an empty SPE column or needle 
tube, the target compounds were eluted with appropriate 
solvent. Some traditional methods such as Soxhlet extrac-
tion need numerous steps, high volume of solvent and long 
analytical time [15]. MSPD has many superiorities such as 
the mild extraction conditions, less operation steps, simple 
operate procedure, relatively less organic solvent, no need 
for expensive instrumentation, low cost and suitable for 
viscous samples [16].

There are some studies on the application of MSPD in 
the analysis of OCPs and PCBs in seafood, Lott HM devel-
oped MSPD method for the determination of 14 OCPs in 
oysters with recoveries of 66–84% [17]. Lott HM also used 
MSPD method to detect the concentration of 14 OCPs in 
crayfish, the recoveries were in the range of 55–118% [18]. 
Long AR applied MSPD method in the analysis of 9 OCPs 
in catfish muscle tissue, the recoveries ranged from 82 
to 97% [19]. Shen ZL combined MSPD with accelerated 
solvent extraction (ASE) for the detection of OCPs in fish 
muscles, with the recoveries ranging from 91 to 104% [20]. 
Martínez A developed MSPD method for 7 PCBs analy-
sis in turbot fish muscle and dogfish liver with recoveries 
above 75% [21]. Ling YC applied MSPD method to ana-
lyze 4 PCBs in fish with recoveries above 95% [22].

In this paper, a fast, simple, effective analysis method 
based on MSPD and GC–MS/MS for the detection of 
OCPs and PCBs in seafood was established. The influenc-
ing parameters including the type and amount of absorbent, 
the type and volume of elution solution were optimized. 
The developed method was applied to determine the OCPs 
and PCBs in seafood such as fish, shrimp and shellfish pur-
chased from local markets in Beijing, and the concentration 
and distribution of OCPs and PCBs were discussed.

Experimental

Reagents and Standards

Twenty-one OCPs (α-HCH, β-HCH, γ-HCH, δ-HCH, o,p′-
DDE, p,p′-DDE, o,p′-DDD, p,p′-DDD, o,p′-DDT, p,p′-
DDT, heptachlor, heptachlor epoxide, c, trans-chlordane, 
aldrin, dieldrin, endrin, endosulfan I, endosulfan II, endo-
sulfan sulfate, methoxychlor) mixed standard stock solu-
tion (each OCP at 100 μg mL−1 in isooctane) and seven 
PCBs (IUPAC NO. 28, 52, 101, 118, 138, 153, 180) mixed 
standard stock solution (each PCB at 10 μg mL−1 in isooc-
tane) were purchased from AccuStandard (USA). Standard 

working solution (each analyte at 1 μg L−1) was prepared 
daily by appropriate dilution of aliquots of the standard 
stock solutions in acetone.

Mirex (100 μg mL−1 in hexane), 2,4,5,6-tetrachloro-
m-xylene (TCMX, 100 μg mL−1 in acetone) and PCB209 
(100 μg mL−1 in isooctane) standard solutions were pur-
chased from AccuStandard (USA). TCMX and PCB209 
were prepared in acetone as surrogate for all analytes at the 
concentration of 50 ng mL−1, and mirex was prepared in 
isooctane as internal standard for all analytes at the concen-
tration of 50 ng mL−1.

Dichloromethane, n-hexane, isooctane, acetone (HPLC 
grade) were purchased from Merck (Germany). Anhy-
drous sodium sulfate (analytical grade) was purchased from 
Beijing chemical works (China), heated at 150 °C for 5 h 
before use. Florisil (100–200 mesh) and neutral alumina 
(100–200 mesh) were purchased from Sinopharm Chemi-
cal Reagent Co., Ltd (China), heated at 150 °C for 5 h 
before use. Silica gel (100–200 mesh) was purchased from 
Qingdao Haiyang Chemical Co., Ltd (China), heated at 
120 °C for 2 h before use.

Apparatus

All sample extracts were analyzed by a TRACE 
GC Ultra gas chromatograph spectrometer (Thermo 
Fisher Scientific, USA). Capillary column HP-5 MS 
(30 m × 0.25 mm × 0.25 μm, Agilent Technologies) was 
used for separation. 10-mL Empty solid-phase extraction 
columns and polypropylene frits (Agilent Technologies) 
were used for the MSPD procedure. MTN-2008 Termovap 
Sample Concentrator (Tianjin Automatic Science Instru-
ment) and IKA T10 high speed homogenate machine (IKA) 
were used as well.

Sample Preparation

For the fish, shrimp and shellfish samples, 1 g of thawed 
muscle tissue was placed into a mortar and allowed to stand 
at room temperature for 10 min after adding 100 μL of sur-
rogate solution (50 ng mL−1). Then, 6 g of neutral alumina 
was transferred into the mortar, and the mixture was gently 
blended with glass pestle until homogeneous powder was 
obtained. The mixture was introduced into a 10-mL empty 
solid-phase extraction column pre-placed with a poly-
propylene frit and 1 g of neutral alumina as a co-column 
adsorbent. Two pieces of round filter paper were placed 
on the top and plugged with a glass pestle gently. The col-
umn was eluted with n-hexane/dichloromethane (50/50, 
v/v), and 10 mL of the eluate was collected by gravita-
tional force and evaporated to dryness by a gentle nitrogen 
stream. The residue was dissolved in the mixture solution 
consisting of 900 μL of isooctane and 100 μL of internal 
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standard solution, and then transferred to a sample vial for 
gas chromatographic analysis.

Chromatographic analysis

Helium (99.999%) was used as carrier gas and the flow rate 
was 1.0 mL min−1. The oven temperature was programmed 
from 90 °C (2 min) to 200 °C at a rate of 15 °C min−1, held 
for 10 min, then raised to 270 °C at 15 °C min−1, held for 
10 min. The temperature of the injector operated in the 
splitless mode was 270 °C and the injection volume was 
1 μL. The temperature of the transfer line was 290 °C.

As for the mass spectra, compounds were fragmented 
with electron ionization (EI) with the temperature of ion 
source at 250 °C. Argon (99.999%) was used as colli-
sion gas and the pressure was set at 1.0 mTorr. Cycle time 
was set as 0.2 s. SRM mode was used for the quantitation 
and other parameters are given in Table 1; the chromato-
grams of target compounds are shown in Figure S1. The 

acquisition and processing of data were carried out with 
Xcalibur™ software.

The internal standard method was used for quantifica-
tion, TCMX and PCB209 were used as surrogate for all 
analytes, and mirex was used as internal standard for all 
analytes.

Market Sample Collection

To determine the concentration of the OCPs and PCBs in 
marketed seafood, grass carp (Ctenopharyngodon idel-
lus), spotted silver carp (Aristichthys nobilis), crucian 
carp (Carassius auratus), little yellow croaker (Larimich-
thys polyactis), white shrimp (Penaeus chinensis), scallop 
(Chlamys farreri) and clam (Ruditapes philippinarum) 
were sampled from local markets or supermarkets in 
Beijing, and the information of the samples was listed 
in Table 2. All the samples were moved back to labora-
tory within 3 h, and the muscle tissues were removed and 

Table 1  SRM parameters for the OCPs and PCBs

Target compounds Qualitation ion pair (m/z) Collision energy (eV) Quantitation ion pair (m/z) Collision energy (eV)

α-HCH 218.89 → 182.91 8 216.89 → 180.91 8

β-HCH 218.89 → 182.91 8 216.89 → 180.91 8

γ-HCH 218.89 → 182.91 8 216.89 → 180.91 8

δ-HCH 218.89 → 182.91 8 216.89 → 180.91 8

Heptachlor 336.84 → 301.85 12 338.84 → 265.87 15

Heptachlor epoxide 352.83 → 252.88 15 288.86 → 252.88 15

Aldrin 292.90 → 257.91 25 292.90 → 185.93 25

Dieldrin 278.91 → 242.92 10 276.91 → 240.92 10

Endrin 278.91 → 242.92 8 280.91 → 244.92 8

Endosulfan sulfate 271.88 → 234.89 15 273.88 → 238.89 15

cis-Chlordane 374.81 → 267.87 15 372.81 → 265.87 18

trans-Chlordane 374.81 → 267.87 15 372.81 → 265.87 18

Endosulfan I 271.88 → 236.89 15 240.89 → 205.91 15

Endosulfan II 271.88 → 236.89 15 240.89 → 205.91 15

o,p′-DDE 317.94 → 245.95 20 245.95 → 175.97 25

p,p′-DDE 317.94 → 245.95 20 245.95 → 175.97 25

o,p′-DDD 236.97 → 164.98 20 234.97 → 164.98 20

p,p′-DDD 236.97 → 164.98 20 234.97 → 164.98 20

o,p′-DDT 236.97 → 164.98 20 234.97 → 164.98 20

p,p′-DDT 236.97 → 164.98 20 234.97 → 164.98 20

Methoxychlor 227.01 → 184.08 20 227.01 → 169.01 20

PCB 28 257.96 → 185.97 20 255.96 → 185.97 20

PCB 52 291.92 → 219.94 20 289.92 → 219.94 20

PCB 101 323.88 → 253.91 20 325.88 → 255.91 20

PCB 118 325.88 → 255.91 20 323.88 → 253.91 20

PCB 138 357.84 → 287.88 25 359.84 → 289.87 25

PCB 153 357.84 → 287.88 25 359.84 → 289.87 25

PCB 180 391.81 → 321.84 25 393.81 → 323.84 25
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grinded uniformly by high speed homogenate machine, 
then stored at −20 °C.

Results and Discussion

Optimization of the MSPD Method

All the optimizing experiments were performed with the 
muscle tissue sample of crucian carp, and the added con-
centration of the standard solution was 1.0 ng g−1, three 
replicates were applied for each parameter, and the RSDs 
were in range of 0.3–16.9%.

The Type of the Adsorbent

Adsorbent plays an important role in MSPD procedure for 
supporting, adsorbing, and cleaning-up. The cellular struc-
tures of the samples can be disrupted by the adsorbent and 
the impurities such as water and lipophilic compounds can 
be solubilized in the adsorbent [23]. Therefore, the choice 
of an appropriate adsorbent is vital. In this research, florisil, 
silica gel, and neutral alumina were tested. The mass of 
adsorbent and sample were 6 and 1 g, the elution solvent 
was n-hexane/dichloromethane (50/50, v/v) and the vol-
ume of collected solution was 10 mL. Figure 1 showed the 
recoveries using neutral alumina were better than using flo-
risil and silica gel. Moreover, a more homogeneous and dry 
mixing powder was obtained when using neutral alumina 
during the blending procedure. Thus, neutral alumina was 
selected as adsorbent in this MSPD procedure.

The Amount of the Adsorbent

The amount of the adsorbent could influence the extract-
ing and cleaning-up effects as well. When the adsorbent 
was insufficient, the sample could not be well dispersive 
with the adsorbent, getting low extracting efficiency and 
poor purifying effect as well. But if the adsorbent was 
excessive, the amount of the mixture increased, resulting 
in slow flow rate and more eluent solvent. In this work, 
5, 6 and 7 g of neutral alumina were tested, n-hexane/
dichloromethane (50/50, v/v) was used and 10 mL of 

Table 2  The information of the seafood samples collected

Type Number Characterization

Grass carp (Ctenopharyngodon 
idellus)

9 Herbivority, freshwater

Spotted silver carp (Aristichthys 
nobilis)

9 Predacity, freshwater

Crucian carp (Carassius auratus) 9 Omnivory, freshwater

Little yellow croaker (Larimich-
thys polyactis)

6 Predacity, marine

White shrimp (Penaeus chinensis) 8 Marine

Scallop (Chlamys farreri) 8 Marine

Clam (Ruditapes philippinarum) 6 Marine

Fig. 1  The optimization of the type of the adsorbents. The mass of adsorbent was 6 g; the mass of sample was 1 g; the elution solvent was 
n-hexane/dichloromethane (50/50, v/v) and the volume of collected solution was 10 mL
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eluent solvent was collected. As shown in Fig. 2, 6 g was 
chosen as the amount of the adsorbent for best recovery 
results and appropriate flow rate.

The Type of the Elution Solvent

For the types of elution solvent, n-hexane/ethyl ace-
tate, n-hexane/acetone and n-hexane/dichloromethane 
were tested with 6 g of neutral alumina as adsorbent. 
It was found that n-hexane/dichloromethane had the 
best clean-up effects for the interferences. Four volume 
ratios of n-hexane/dichloromethane, 70/30, 60/40, 50/50 
and 40/60 were tested. From the results shown in Fig. 3, 
n-hexane/dichloromethane 40/60 and 50/50 got better 
recoveries for most target compounds, but n-hexane/
dichloromethane 40/60 had more interferences because 
of higher polarity. In this case, n-hexane/dichlorometh-
ane (50/50, v/v) was used as elution solvent.

The Volume of the Elution Solvent

For the volume of elution solution, 6, 8, 10 and 12 mL 
were tested. From the results shown in Fig. 4, the recov-
eries were no longer improved when the volume reached 
10 mL. Due to the principle of using less organic sol-
vent as far as possible, 10 mL of collected solution was 
selected eventually.

MSPD Method Validation

The accuracy and precision of the method were evaluated 
by blank samples (crucian carp, white shrimp and clam) 
spiked with the OCPs and PCBs at 0.1, 1 and 10 μg L−1 
with three replicates for each level, and the results were 
shown in Table 3. The recoveries for most target com-
pounds were between 70 and 120%, with relative stand-
ard deviation less than 20%. Limit of detection (LOD) and 
limit of quantification (LOQ) were tested with 0.1 μg L−1 
spiked samples and calculated by three or ten times of the 
signal-to-noise ratio. As shown in Table 3, the LODs and 
LOQs of the OCPs and PCBs ranged from 0.011 to 0.046 
and from 0.037 to 0.153 μg L−1 in the seafood samples. 
The linearity was in the range of 0.1–100 μg L−1, and the 
results are summarized in Table S1.

The Concentration and Distribution of OCPs and PCBs 
in Real Samples

From the results shown in Table 4, most of the OCPs and 
PCBs could be detected in the samples. The residual con-
centration of ∑OCPs was 1.216–4.248 μg L−1 in grass 
carp, 1.403–15.918 μg L−1 in spotted silver carp, 1.432–
8.9 μg L−1 in crucian carp, 1.988–14.206 μg L−1 in lit-
tle yellow croaker, 0.986–4.021 μg L−1 in white shrimp, 
0.722–1.444 μg L−1 in scallop and 2.583–8.853 μg L−1 
inclam, and the concentration of ∑PCBs was 0.166–
0.374 μg L−1 in grass carp, 0.034–0.658 μg L−1 in 

Fig. 2  The optimization of the amount of neutral alumina as adsorbent. The mass of sample was 1 g; the elution solvent was n-hexane/dichlo-
romethane (50/50, v/v) and the volume of collected solution was 10 mL
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spotted silver carp, 0.24–0.529 μg L−1 in crucian carp, 
0.27–1.184 μg L−1 in little yellow croaker, 0.193–
0.353 μg L−1 in white shrimp, 0.174–0.224 μg L−1 in scal-
lop and 0.306–0.543 μg L−1 inclam. Among the OCPs, 
DDTs (o,p′-DDE, p,p′-DDE, o,p′-DDD, p,p′-DDD, o,p′-
DDT, p,p′-DDT) had apparently high concentration in 

all the samples, and ∑DDTs in the samples followed the 
order: little yellow croaker (6.549 ng g−1) > spotted silver 
carp (4.408 ng g−1) > clam (4.263 ng g−1) > crucian carp 
(2.662 ng g−1) > grass carp (1.418 ng g−1) > white shrimp 
(1.117 ng g−1) > scallop (0.600 ng g−1). In the fish samples, 
the concentration of ∑DDTs in marine fish was apparently 

Fig. 3  The optimization of the ratio of n-hexane and dichloromethane as elution solvent. The adsorbent was 6 g of neutral alumina; the mass of 
sample was 1 g; the elution solvent was n-hexane/dichloromethane and the volume of collected solution was 10 mL

Fig. 4  The optimization of the volume of the elution solution n-hexane/dichloromethane (50/50, v/v). The adsorbent was 6 g of neutral alumina 
and the mass of sample was 1 g
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higher than that in freshwater fish, and the concentration in 
predacious fish was far higher than that in omnivorous and 
herbivorous fish. The DDTs concentration in little yellow 
croaker, spotted silver carp and clam samples was appar-
ently higher than in other samples. The Other OCPs were 
in a relative low level in all the samples.

From Fig. 5, the relative abundances of DDT congeners 
(to ∑DDTs) were similar in fish samples from freshwater 
(grass carp, spotted silver and crucian carp), and followed 
the sequence of p,p′-DDE > o,p′-DDE > p,p′-DDD > o,p′-
DDT ~ p,p′-DDT > o,p′-DDD. p,p′-DDE was the predomi-
nant DDT congener in grass carp, spotted silver, crucian 
carp and little yellow croaker, ranged from 33.0 to 68.6%. 

While o,p′-DDE was the predominant in white shrimp and 
scallop samples.

The ratio of (p,p′-DDE + p,p′-DDD) to p,p′-DDT 
was used to evaluate the source of DDTs [24]. When the 
ratio was greater than 1, indicating that the metabolites of 
DDTs were mainly exist in seafood without fresh inputs, 
and when the ratio was less than 1, it means that the envi-
ronment had new source of DDTs. In this study, the ratios 
were 9.9 for grass carp, 44.4 for spotted silver carp, 21.0 
for crucian carp, 1.7 for little yellow croaker, 3.7 for white 
shrimp, 0.9 for scallop and 3.5 for clam, indicating that 
almost none freshness of exposure occurred recently except 
scallop, but historical inputs of dicofol.

Table 4  The average concentration of the OCPs and PCBs in the marketed seafood (ng g−1)

Grass carp 
(n = 9)

Spotted silver 
carp (n = 9)

Crucian carp 
(n = 9)

Little yellow 
croaker (n = 6)

White shrimp 
(n = 8)

Scallop (n = 8) Clam (n = 6)

α-HCH 0.054 0.099 0.131 0.033 0.028 0.014 0.091

β-HCH 0.188 0.216 0.429 0.032 0.047 0.020 0.217

γ-HCH 0.025 0.021 0.084 0.022 0.028 0.025 0.221

δ-HCH 0.142 0.094 0.076 0.045 0.020 0.027 0.060

Heptachlor ND 0.006 0.001 0.009 0.007 0.003 0.015

Heptachlor 
epoxide

0.002 ND 0.002 0.014 ND 0.009 0.012

cis-Chlordane 0.020 0.014 0.021 0.037 0.009 ND 0.016

trans-Chlordane 0.048 0.080 0.055 0.068 0.065 0.063 0.072

Endosulfan I 0.057 0.376 0.073 0.008 0.015 0.005 0.054

Endosulfan II 0.170 0.293 0.037 0.189 0.398 0.215 0.112

Endosulfan 
sulfate

0.179 0.415 0.315 0.041 0.026 0.017 0.225

o,p′-DDE 0.455 0.539 0.469 0.549 0.595 0.450 0.676

p,p′-DDE 0.607 3.025 1.470 2.164 0.364 0.053 0.852

o,p′-DDD 0.028 0.067 0.016 0.053 0.014 0.012 0.127

p,p′-DDD 0.203 0.523 0.445 1.388 0.036 0.012 1.184

o,p′-DDT 0.043 0.174 0.172 0.364 ND 0.002 0.839

p,p′-DDT 0.082 0.080 0.091 2.033 0.109 0.072 0.584

Methoxychlor ND ND ND ND ND ND ND

PCB 28 0.249 0.299 0.285 0.287 0.240 0.186 0.374

PCB 52 0.016 0.024 0.013 0.044 0.007 0.010 0.012

PCB 101 0.002 0.005 0.004 0.035 ND ND 0.004

PCB 118 ND 0.006 0.004 0.036 0.004 0.002 ND

PCB 138 0.003 0.012 0.011 0.093 0.006 0.004 0.012

PCB 153 ND 0.002 0.004 0.093 0.002 ND 0.005

PCB 180 0.001 0.004 0.006 0.014 ND ND 0.004

DDTs 1.418 4.408 2.662 6.549 1.117 0.600 4.263

HCHs 0.408 0.431 0.720 0.132 0.122 0.087 0.589

∑Chlordan 0.070 0.100 0.080 0.128 0.081 0.075 0.115

∑Endosulfan 0.406 1.084 0.425 0.237 0.440 0.237 0.391

∑OCPs 2.302 6.023 3.886 7.046 1.759 0.998 5.358

∑PCBs 0.272 0.353 0.327 0.600 0.259 0.202 0.410



821Matrix Solid-Phase Dispersion Combined with GC–MS/MS for the Determination of Organochlorine…

1 3

As for the relative abundances of HCH congeners (to 
∑HCHs) were not significantly different among seafood 
species with different habitats. As shown in Fig. 6, β-HCH 
was predominant HCH congener in grass carp, spotted 
silver, crucian carp and white shrimp, ranged from 38.2 
to 59.6%. While δ-HCH was predominant in little yellow 
croaker and scallop.

The ratio of β-/(α + γ)-HCH was used to identify the 
source of HCH [25]. If the ratio was less than 0.06, it means 
that new inputs of lindane or technical HCH occurred. If 
the ratio was greater than 0.06, indicating the historical 
inputs of lindane or technical HCH. In this study, the ratios 
were 2.4 for grass carp, 1.8 for spotted silver carp, 2.0 for 
crucian carp, 0.6 for little yellow croaker, 0.8 for white 
shrimp, 0.5 for scallop and 0.7 for clam. From the results, 
no fresh exposure existed recently.

As shown in Fig. 7, the concentration of ∑PCBs was 
much lower than that of ∑OCPs. The composition of the 

PCBs in samples is shown in Fig. 8. Among the seven 
PCBs, PCB28 was the predominant component.

Compared with the maximum residue limit (MRL, 
0.5 mg kg−1 for ∑DDTs, 0.1 mg kg−1 for ∑HCHs, 
0.5 mg kg−1 for ∑PCBs) of seafood legislated by China, 
the residue concentration of ∑DDTs, ∑HCHs and ∑PCBs 
determined in this study was far below the limits. The 
MRLs in muscles from other animal origin food fixed by 
European Union was 1.0, 0.2 and 0.1 mg kg−1 for ∑DDTs, 
α-HCH and β-HCH, respectively. All the limited concen-
tration was significantly higher than that detected in the 
present study. Furthermore, many literatures reported the 
residue levels of OCPs and PCBs in seafood. For instance, 
11 OCPs in edible fish from Wuhan (China) were in the 
range of 2.04–189.04 ng g−1 [26] and the OCPs in four 
fish species from Lake Ziway (Ethiopia) was between 
1.41 and 63.8 ng g−1 [27]. The concentration of 15 PCBs 
in marketed shrimp in San Francisco ranged from 0.11 

Fig. 5  Relative abundances of 
individual DDT components 
to ∑DDTs in the marketed 
seafood samples

Fig. 6  Relative abundances of 
individual HCH components 
to ∑HCHs in the marketed 
seafood samples
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to 2.40 ng g−1 [28]. It was also found OCPs and PCBs in 
the fish and shellfish collected from Dalian, Tianjin and 
Shanghai in China with concentration of 0.01–145 and 
0.83–11.4 ng g−1 [29]. Comparing to the reported levels of 
residue, the concentration of OCPs and PCBs in the present 
study was relatively low.

Comparison with Other Published Methods

The performance characteristics of the developed method 
in this work were compared with that in other published 
methods which obtained to extract OCPs and PCBs in 

seafood samples. The published methods including Sox-
hlet extraction, pressurized liquid extraction (PLE), 
selective pressurized liquid extraction (SPLE) and 
microwave-assisted extraction (MAE) were compared in 
aspects of recovery, adsorbent amount, solvent consump-
tion and whether need to heat. As shown in Table 5, the 
developed method in this work got satisfactory results, 
simple operation, less solvent and energy consumption.

As given in Table 5, compared to other published 
method using MSPD for determination of OCPs and 
PCBs in seafood, the method in this work has many 
advantages such as abundant target compounds, large 

Fig. 7  The concentrations of the OCPs and PCBs in the marketed seafood samples

Fig. 8  The composition of the 
PCBs in the marketed seafood 
samples
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number and wide range of matrix samples and acceptable 
results.

Conclusion

A simple, rapid and effective method based on MSPD and 
GC–MS/MS was established for the detection of 21 OCPs 
and 7 PCBs in marketed seafood. The influencing param-
eters including the type and amount of the absorbent, the 
type and volume of the elution solution were optimized. 
Under the optimized conditions, satisfying recovery, LODs 
and LOQs were obtained. The developed method was suc-
cessfully applied to detect the residue of OCPs and PCBs 
in the marketed seafood. The results showed the concentra-
tions of the OCPs and PCBs were at relatively low levels.
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