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both qualitative and quantitative analysis in practical appli-
cations. LC–MS is one of the most powerful tools for ana-
lyzing complex samples, but the deconvolution of peaks in 
extracted ion chromatograms (EIC) is challenging to the 
existing software tools [1]. Determination of peak parame-
ters was often impacted seriously by overlapped peaks. Sev-
eral techniques have developed for peak detection, which 
often follow two strategies, derivative and pattern matching 
[2]. Derivative-based peak detection uses the first derivative 
of a peak has a zero-crossing at its local maximum or the 
second derivative has a negative region to determine a peak. 
To avoid false positives, the threshold on slope or amplitude 
in zero crossings and negative regions is often imposed, so 
that those thresholds exceeds a predetermined minimum 
can be retained [3, 4]. Peakfit package relies on the first 
derivative to find peaks and resolve signals [5]. The famous 
pattern matching of peak detection is MassSpecWavelet 
[6]. It is based on CWT and maintains a low false posi-
tive rate. Zhang has applied CWT-based peak detection in 
baselineWavelet [7], alignDE [8], MSPA [9], and CAMS 
[10], and then, an improved peak detection method enti-
tled MSPD [11] has been proposed recently. Comparing 
with other methods, Cromwell [12], Limpic [13], Lms [14], 
and PROcess [15], CWT provides the best average perfor-
mance [16]. As the complexity increasing, MassSpecWave-
let is still sophisticated, whereas derivative-based methods 
require more preprocessing, such as baseline correction and 
smoothing. When analyzing complex samples with analyti-
cal instruments, overlapped peaks always appear which is 
difficult to extract quantitative information accurately from 
overlapped peaks. MassSpecWavelet may fail to detect 
these peaks in them, which means that vital information 
may be lost and error is unavoidable.

The peak model is significant to the deconvolution of 
overlapped peaks. The mathematical models should be 

Abstract  A novel algorithm, entitled recursive wavelet 
peak detection (RWPD), is proposed to detect both nor-
mal and overlapped peaks in analytical signals. Recursive 
peak detection is based on continuous wavelet transforms 
(CWTs), which can be used to obtain initial peak positions 
even for overlapped peaks. Genetic algorithm (GA) and 
Gaussian fitting are used to refine peak parameters (peak 
positions, widths, and heights). Finally, area of peaks can 
be calculated by numeric integration. Simulated and ultra-
high performance liquid chromatographic ion trap time-
of-flight mass spectrometry (UPLC-IT-TOF-MS) data sets 
have been analyzed by RWPD, MassSpecWavelet, and 
peakfit package by Tom O’Haver. Results show that RWPD 
can obtain more accurate positions and smaller relative fit-
ting errors than MassSpecWavelet and peakfit, especially 
in overlapped peaks. RWPD is a convenient tool for peak 
detection and deconvolution of overlapped peaks, and it has 
been developed in R programming language and is avail-
able at https://github.com/zmzhang/RWPD.

Keywords  Peak detection · Overlapped peaks · 
Continuous wavelet transforms · Genetic algorithm

Introduction

Accurate peak detection of chromatographic signals is criti-
cal to further data analysis, and it is a fundamental step for 
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sufficient flexible enough to fit different shapes of peaks. 
In the literature, peak models mainly include exponentially 
modified Gaussian (EMG), polynomial modified Gaussian 
function (PMG), hybrid of Gaussian and truncated expo-
nential functions (EGHs), and bi-Gaussian mixture model 
[17–19]. These models are designed to fit limited peak 
shapes, such as asymmetric, fronting, and tailing peaks. In 
addition, the number of parameters of them is more than 
four and cannot easily be determined, and thus, the versatil-
ity of them may be suffered. For these reasons, they are not 
benefit to achieve automatic detection of overlapped peaks 
[20, 21].

This study aims to develop an automatic peak detection 
method for both normal and overlapped peaks in analytical 
signals. CWT-based pattern matching is utilized for peak 
detection. It can not only directly apply to the raw chroma-
tograms without baseline correction and signal smoothing 
but also identify each peak accurately [6]. The segments of 
overlapped peaks in analytical signals are extracted to per-
form deconvolution. Genetic algorithm (GA) is then used 
to optimize positions and widths of overlapped peaks to 
obtain optimal solutions in acceptable time, and the balance 
between population sizes and iterations is adjusted by grid 
searching. Combining with the results of GA, Gaussian fit-
ting and trapezoidal integration are employed to calculate 
peak heights and peak areas of each fitting curve. To obtain 
exactly peak parameters, the baseline can be corrected by 
linear model [22] or airPLS [23] if necessary. After base-
line correction, RWPD is applied to this baseline-corrected 
signal. If residual signal is large after deducting detected 
peaks from raw signal, there may exist undetected peaks. 
Then, CWT peak detection is performed recursively with 
residual signal until the residue is small enough. When it 
cannot detect new positions or can detect the approxima-
tion positions with last time, this process will be termi-
nated. If new peak positions are detected, then repeat the 
above steps to obtain better fitting results. The flow chart 
describing the architecture of RWPD is shown in Fig. 1.

Theory

Recursive Peak Detection via Continuous Wavelet 
Transforms

Identification of peak positions is a critical step in analysis 
of analytical signal. One of the most popular techniques is 
based on CWT. CWT can analyze signal at some special 
frequency or sets of frequencies (scales), and it has been 
widely applied in peak detection [24–30].

Wavelet theory is based on a series of basic functions 
which are continuously differentiable and zero mean. 
Mother wavelet is represented as follows:

where a and b represent the dilation (or scaling) and trans-
lation parameter, respectively. The CWT can be represented 
as:

where s(t) denotes given signal, and C(a,b) represents 2D 
matrix of wavelet coefficients [31]. The Mexican hat wave-
let is similar to Gaussian and Lorentzian functions, and it is 
symmetrical and has one major positive peak. Therefore, it 
is selected as mother wavelet and described mathematically 
as:

where ψ(x) represents the Mexican hat wavelet.
The peak identification process can be divided into four 

steps: (1) identify the ridges by linking the local maxima in 
2D matrix of CWT coefficients; (2) define of the signal to 
noise ratio; (3) identify the peaks based on the ridges lines; 
and (4) refine the peak parameters estimation.

The peak width can be estimated roughly according 
to its optimal scale in wavelet space. It is based on CWT 
using the Haar wavelet function to improve the SNR during 
the derivate calculation [7]. In Fig. 2, the initial estimation 
of peak positions and widths by Mexican hat wavelet and 
Haar wavelet is marked as solid square points and circles.
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Fig. 1   Flow chart describing the framework of RWPD
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The peak detection method based on CWT such as 
MassSpecWavelet can detect most peaks in signal (please 
see Fig.  3), and the results are robust and accurate. How-
ever, the main defect of MassSpecWavelet is that it can-
not handle overlapped peaks well. If there exist relatively 
weak peaks overlapped with strong peaks on their both 
sides, MassSpecWavelet may not detect the weak peaks. To 
address it, the solution has been proposed in this study as fol-
lows. Peak positions of raw analytical signal are detected by 
CWT, and GA and Gaussian fitting can fit the detected peaks 
(please see the next section for more details). Then, deduct-
ing fitted signal from raw signal, the residual signal includes 
undetected peaks but without or smaller influence from 
overlapped large peaks. It can be applied to search whether 
there are undetected peaks in residual signal. These results 
combine with first fitting results can determine all peak posi-
tions in raw signal and repeat above procedure until no new 
peaks have been detected. GA, Gaussian fitting, and integral 

are used to get the peak widths, heights, and areas. This pro-
cedure is called recursive wavelet peak detection (RWPD), 
which can remedy the major defect of MassSpecWavelet. By 
RWPD, each peak in analytical signal, weak, strong or over-
lapped peaks, can be determined effectively.

Deconvolve Overlapped Peaks by Genetic Algorithm

GA was based on the famous evolutionary rule of Darwin, 
which is survival of the best. In 1975, J. Holland introduced 
GA, and it was used in mathematics, physics, and chem-
istry. In chemistry, it was used to predict the chromato-
graphic retention time in LC [32–36], and peak alignment 
of 1H-NMR and IR spectra [32, 37].

As an optimization method, GA has several advantages 
over other local searching techniques: (a) simple, effi-
cient, and accurate in computation. (b) Global optimiza-
tion method to avoid local optimization. (c) Select the most 
suitable solution from series of optimal solutions. (d) Solve 
different search space, as continuity, discrete or existence of 
derivation [38, 39]. Owing these advantages, GA is suitable 
for optimizing parameters of each peak in overlapped peaks.

The advantage of GA over peakfit package is that GA 
can set the boundary for each parameter to narrow the 
search range. The initial input parameters are the estima-
tion of peak positions and widths in previous step. The 
difference between the fitting signal ŷ and raw signal y is 
regarded as the error. To minimize the error, the negative of 
least squares norm (L-2) of it is regarded as fitness function 
and can be calculated as:

Baseline Correction for Better Quantification

It is difficult to directly find accurate peak areas of the over-
lapped peaks with the existence of a non-zero baseline. To 
calculate exact peak areas by integration, two algorithms of 
baseline correction techniques are introduced.

The baseline, which is simulated linearly using starting 
and ending data points, is called polynomial fitting method. 
These points are 10 % of the total points that are selected, 
respectively. The linear model is applied to these points 
to fit a line, which is defined as baseline. Thus, the signal 
without baseline can be calculated by deducting the base-
line from the raw signal [22].

When signal is simple, polynomial fitting method 
can be selected to remove baseline. However, if baseline 
drift is complex, the polynomial fitting method performs 
poorly, more flexible methods, such as adaptive iteratively 
reweighted penalized least squares (airPLS) [23], MPLS 
[40], SirQR [41], and ATEB [42], can replace it to remove 
baselines. airPLS is simple but flexible, valid, and fast algo-
rithm for estimating baseline. The parameters in airPLS can 

(4)Fitness function = −(||y − ŷ||2).

Fig. 2   Detect peak positions by Mexican hat wavelet and mark them 
with solid squares. Estimate peak widths by calculating the derivative 
using Haar wavelet. For each peak, its derivative by the optimal Haar 
wavelet has been shown at the bottom of this figure

Fig. 3   Results of peak detection of simulated data. The solid squares 
are the estimation of peak positions by CWT with Mexican hat wave-
let. The segments in the dotted boxes are overlapped peaks and they 
will be deconvolved by RWPD
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be set as follows. The lambda is adjustable parameters, and 
the larger lambda, the baseline is smoother. When baseline is 
similar to the linear function, it can be set 102; if the baseline 
is quadratic function, it is 104 generally. It has been applied 
to chromatograms, Raman spectra, and NMR signals, and its 
performance is better than other baseline correction methods.

Extract Important Features of Peaks

Least squares fitting and Gaussian fitting can be used 
together to infer peak heights as Eq. (5) shows. In these two 
equations, X denotes the computation results by Gaussian 
model; y denotes the measurement data; h denotes the cor-
responding peak height:

The area of peak can be calculated by trapezoidal inte-
gration on the multiplication of estimated height and 
Gaussian peak model.

Experimental

Both simulated data and real data are used to benchmark 
the performance of RWPD, and the segments of overlapped 
peaks in them are extracted to resolve orderly.

Simulated Data

The simulated data consists of Gaussian peaks by adding 
to 1 % random noise to the data in Fig. 3. The resolutions 
of the triplet overlapped peaks near 850 and the doublet 
overlapped peaks near 600 are shown in Sects. 4.1 and 4.5, 
respectively.

LC–MS Data Set of Isomers of Diaminotoluenes

2,4-Diaminotoluene(2,4-DAT) is widely used as intermedi-
ates in the synthesis of dyes, and it has carcinogenicity and 
genotoxic activity [43–45]. To avoid the interference of the 

(5)
y = Xh

h = (X ′X)−1X ′y.

non-banned structural isomers (2,3-DAT, 2,6-DAT and 3,4-
DAT) on the determination of 2,4-DAT [46], an effective 
LC–MS method combining with RWPD was established. 
It also solves effectively the false positive problem in the 
analysis of 2,4-DAT. The chemical structures of DATs iso-
mers are shown in Fig. 4.

Chemicals and Reagents

2,3-DAT, 2,4-DAT, 2,6-DAT, and 3,4-DAT were purchased 
from Dr. Ehrenstorfer GmbH (Germany). HPLC-grade ace-
tonitrile was from Merck (Germany). LC–MS grade formic 
acid was purchased from Sigma (America). HPLC-grade 
methyl alcohol was purchased from Merck (Germany). The 
water used in all test was treated in a Milli-Q water purifi-
cation system (Millipore, Bedford, MA, USA).

Preparation of Standard Solutions

Standard stock solutions of drugs (including 2,3-DAT, 2,4-
DAT, 2,6-DAT, and 3,4-DAT) were dissolved in methyl 
alcohol. Mixture standard solutions were prepared by mix-
ing stock solutions and diluting appropriately with methyl 
alcohol. The concentrations of them were 2.04, 1.94, 2.18, 
and 2.45 µg mL−1, respectively.

Apparatus

All sample analyses carried out on a UPLC-IT-TOF-MS 
system (Shimadzu, Tokyo, Japan). LC experiments were 
conducted on a Shimadzu (Kyoto, Japan) ultrahigh perfor-
mance liquid chromatography (UPLC) system consisting of 
a solvent delivery pump (LC-30AD), an auto-sampler (SIL-
30AC), a DGU-20A5R degasser, a photodiode array detec-
tor (SPD-M20A), a communication base module (CBM-
20A), and a column oven (CTO-30A). Chromatographic 
separation was carried out on a column of Shim-pack XR-
ODS (1.6 µm, 2. 0 mm I.D. × 75 mm) using a gradient elu-
tion consisting of mobile phase A (0.1 % formic acid) and 
mobile phase B (acetonitrile). The gradient was as follows: 
0–3 min, a linear gradient from 5 % B to 10 % B; 3–8 min, 

Fig. 4   Chemical structures of 
2,3-DAT, 2,4-DAT, 2,6-DAT, 
and 3,4-DAT
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a linear gradient to 90 % B; 8–8.01 min a linear gradient 
back to 5 % B. The injection volume was 5 µL, the flow 
rate was 0.4  L  min−1, and PDA detection was performed 
from 190 to 800 nm. The sample chamber in the autosam-
pler was maintained at 4 °C, while the column was set at 
40 °C. The whole analysis lasted 10 min.

Mass spectral data for the compounds were obtained 
using a Shimadzu ITTOF mass spectrometer. It was 
equipped with an electrospray ionization (ESI) source 
operated in the positive ionization mode. Liquid nitrogen 
was used as nebulizing gas at a flow rate of 1.5 L min−1, 
drying gas (N2) pressure 0.1 MPa. The interface and detec-
tor voltages were set at 4.5 and 1.56 kV, respectively. The 
CDL voltage sets at constant mode (optimized by autotun-
ing), and its temperature was 200  °C. Mass spectrometry 
was conducted in the full scan and automatic multiple stage 
fragmentation scan modes over an m/z range of 100–500 
for MS1. The ion accumulation time was set at 10  ms. 
Argon was used as the collision gas. Trifluoroacetic acid 
(TFA) sodium solution was used as the standard sample 
for calibrating the instrument against the entire mass range 
(m/z 100–2000). Data processing was performed using the 
LC–MS Solution software (version 3.70).

LC–MS Data Set of FaahKO

The faahKO package consist quantitated LC/MS peaks 
from the spinal cords of six wild-type and six FAAH 
knockout mice. The data are a subset of the original data 
from 200 to 600 m/z and 2500–4500 s, and it is collected 
in positive ionization mode. The extraction ion chroma-
tographic (EIC) in Fig. 7a is a sample in FAAH knockout 
mice, and its m/z range is between 429.0 and 429.5. The 
EIC in Fig. 7c is a sample in wild type, and its m/z range is 
between 575 and 575.5 [47, 48].

Results and Discussion

RWPD can fit peak parameters of each peak in the signal. 
Here, undetected peaks and overlapped peaks are selected 
to test the performance of it.

Results and Comparisons with Previous Methods 
on Simulated Data Set

The peakfit package is capable of measuring peak positions 
and heights accurately; however, peak widths and areas are 
accurate only when peak shapes are approximate Gaussian 
or Lorentzian. The comparison of fitting results of simu-
lated data by RWPD and peakfit is shown in Fig.  5 and 
Table 1.

From Table 1, it is found that the fitting error of RWPD 
is lower than peakfit. Comparing the estimation of strong 
peaks, both methods have good performance, but when 
estimating weak peaks, RWPD is more accurate and closer 
to the expected than peakfit.

Results of LC–MS Data Sets

The molecular ions of m/z 123.0912 for DATs isomer were 
analyzed using RWPD, and four peaks were observed, and 
the fitting signal is consistent with EIC in Fig. 6. Each fit-
ting peaks in EIC is corresponding to different structural 
isomers, and they are 3,4-DAT, 2,3-DAT, 2,6-DAT, 2,4-
DAT, respectively. Each sample in DATs was analyzed by 
LC–MS, and the retention time was consistent with fit-
ting peaks in EIC. The quantitative analysis is based on 

Fig. 5   Deconvolution results of simulated data by RWPD. The solid 
squares denote the detect peak positions by Mexican hat wavelet. 
Black lines, red dashed lines, and blue dotted lines represent raw sig-
nals, fitting signals, and fitting peaks, respectively

Table 1   Comparison of the estimation of peak parameters among 
expected, RWPD and peakfit package

No. peak Method Peak posi-
tion

Peak 
height

Peak 
width

Peak area

1 Expected 800.0000 3.0000 30.0000 95.8020

RWPD 800.3400 2.9584 30.5743 96.2834

Peakfit 800.0400 3.0628 29.3150  95.5830

2 Expected 850.0000 2.0000 40.0000 85.1574

RWPD 850.7994 2.0315 39.2496 84.8775

Peakfit 850.1500 1.9881  41.0140 86.8040

3 Expected 900.0000 1.0000 50.0000 53.2234

RWPD 900.2079 0.9927 47.5860 50.2855

Peakfit 901.3000 0.9699 46.8610 48.3760

Fitting 
error 
(%)

RWPD 1.3019

Peakfit 3.2315
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integrating the area under the curve to estimate the relative 
abundance.

The EICs of faahKO data sets were extracted by XCMS 
package. The overlapped peaks in EICs of LC–MS data set 

are also applied to benchmark the performance of RWPD, 
and the results are shown in Fig. 7. One can observe that 
the fitting signal match pretty well with the raw (or base-
line corrected) signal from the deconvolution results, which 
means that almost all the peaks information in the over-
lapped peaks has been correctly extracted.

The Choice of Peak Model

The Gaussian and Lorentzian are used as peak models to 
fit overlapped peaks in chromatograms and spectra, respec-
tively. They have less parameters, and can give a reason-
able fit to most experimental peaks in this study. Although 
signals are more complex and always impacted by random 
noise or baseline drift, these effects can be dealt with our 
method. Based on the characteristics of the signals, Gen-
erally, Gaussian is used as peak model of chromatograms; 
Lorentzian is used to fit spectra. In the cases of chroma-
tographic peak serious distortion, tailing, and heavy over-
lapping in real application, these models may fail to solve 
them and other functions may be implemented.

Fig. 6   Deconvolution of DATs EIC into Gaussian peak shapes by 
RWPD. Each peak with different elution times correspond to differ-
ent chemical isomeric structures. The lines and solid squares have the 
same meaning as given in Fig. 5

Fig. 7   Deconvolution results of EICs by RWPD. The segments in the dotted boxes are overlapped peaks, and they will be deconvolved by 
RWPD. The lines and solid squares have the same meaning as given in Fig. 5
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Balance between Accuracy and Computation Speed

The choice of population sizes and iterations can affect the 
final results of GA. The lower number of population sizes 
or iterations may not search the optimal solution before the 
process stopped. In theory, the greater population sizes or 
iterations can keep the population diversity, and the fitness 
results are closer to the true values and error is lower. How-
ever, this may take up lots of computational resources, and 
leads to reduce the search efficiency. The suitable popula-
tion sizes and iterations should be determined to achieve 
accurate solution within acceptable time. The iterations are 
the convergence criteria of GA, when the maximum num-
ber of iterations has been reached, and GA is terminated.

The relationship between population sizes, maximum 
iterations, and fitting error can be seen in Fig. 8. The fitting 
error is a dependent variable of population sizes and maxi-
mum iterations. It is calculated with different iterations and 

population sizes. Both of them range from 1 to 300, and 
the interval is 10. The data have been smoothed to obtain 
clearer trends between them. The relationships are obvi-
ous: with the increase in population sizes and iterations, the 
fitting error is reducing obviously; especially, population 
sizes and iterations are less than 100 and 150, respectively. 
It has been tested the relationship between them with many 
overlapped peaks. When population sizes and iterations 
equal 100 and 150, respectively, this method can achieve 
acceptable fitting error.

Recursive Wavelet Peak Detection of Overlapped Signal

RWPD can extract each peak from the overlapped signal. 
In simulated data, there is overlapped peak near 600, and 
the weak peak cannot be detected in Fig.  3. The residual 
signal after the first iteration is shown in Fig.  9b. It is 
detected by CWT again until no new position is appearing. 
The peak positions and widths can be determined by com-
bining the new positions with the results in first iteration. 
Then Gaussian fitting and other methods have been used to 
obtain the accurate fitting results. As shown in Fig. 9c, the 
undetected peak can also be detected by RWPD. Table  2 
shows the results by comparison the first and second itera-
tions, and the fitting results are more accurate. The fitting 
signal matches better with the raw signal, while the fitting 
error is rapidly decreasing.

Conclusion

In this study, we present a practical peak detection method 
by seamlessly combining RWPD and heuristic optimiza-
tion. RWPD has been proposed for peak positions estima-
tion of overlapped peaks. It is significantly better than the 
traditional peak detection method based on CWT. Heuris-
tic optimization has been used to optimize the important 
features of peaks including positions, widths, heights, and 

Fig. 8   Fitting error and its relationship with population sizes and 
iterations

Fig. 9   Results of RWPD of simulated data in dotted boxes in Fig. 3. 
a In the first iteration, only strong peaks are detected and fitted; 
b detecting peak positions in residual signal; c combining with the 

results of (a, b), fitting each peak again. Black lines denote the resid-
ual signal in (b). The lines and solid squares have the same meaning 
as given in Fig. 5
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areas. The initial value and boundary of each parameter 
to be optimized can be obtained from RWPD. By investi-
gating the results of simulated and LC–MS data set, one 
can observe that RWPD has more accurate positions and 
smaller relative errors than MassSpecWavelet and peak fit, 
especially in overlapped peaks. It means that our method 
is suitable for extracting features of scientific interest from 
complex analytical signals.
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