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Abstract
In the Galapagos Islands, many endemic landbird populations are declining due to habitat degradation, food availability, intro-
duced species and other factors. Given nestlings typically lack efficient defense mechanisms against parasites, hematophagous 
ectoparasites such as the larvae of the introduced Avian Vampire Fly, Philornis downsi, can impose high brood mortality and 
cause threatening population declines in Darwin finches and other landbirds. Here, we assess whether the food compensation 
hypothesis (i.e., the parents’ potential to compensate for deleterious parasite effects via increased food provisioning) applies 
to the Green Warbler-Finch. We differentiated nests with low or high infestation levels by P. downsi and quantified food 
provisioning rates of male and female parents, time females spent brooding nestlings, and nestling growth. Male provision-
ing rates, total provisioning rates and female brooding time did not significantly vary in relation to infestation levels, nor 
by the number of nestlings. Opposed to the predictions of the food compensation hypothesis, females showed significantly 
reduced provisioning rates at high infestation levels. Nestling body mass was significantly lower and there was a reduction 
of skeletal growth, although not significantly, in highly infested nests. The females’ response to high infestation may be due 
to parasites directly attacking and weakening brooding females, or else that females actively reduce current reproductive 
effort in favor of future reproduction. This life-history trade-off may be typical for Darwin finches and many tropical birds 
with long lifespans and therefore high residual reproductive value. Conservation strategies may not build on the potential 
for parental food compensation by this species.
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Zusammenfassung
Elterliche Nahrungsversorgung und Nestlingswachstum beim durch die IUCN als „gefährdet “ eingestuften 
Waldsänger-Darwinfink bei Befall durch die parasitische invasive Vampirfliege Philornis downsi
Auf den Galapagos-Inseln sind auf Grund von Habitatstörungen, eingeschleppten und invasiven Organismen und anderen 
Faktoren viele Vogelarten und Populationen in ihrer Existenz bedroht. Beispielsweise führen die hämatophagen Larven 
der eingeführten Vampirfliege Philornis downsi zu einer hohen Brutsterblichkeit unter den endemischen Darwinfinken, 
insbesondere da bei Nestlingen die Immunabwehr noch schwach und unvollständig ausgeprägt ist. Hier wird untersucht, 
ob brütende Waldsänger-Darwinfinken Certhidea olivacea in der Lage sind, die für das Nestlingswachstum schädlichen 
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Parasiteneffekte durch eine erhöhte Fütterungsrate zu kompensieren (Nahrungskompensations-Hypothese). Entgegen dieser 
Hypothese zeigte sich zwischen Nestern mit schwachem und starkem Parasitenbefall kein signifikanter Unterschied sowohl 
in der Gesamtfütterungsrate der Nestlinge als auch in der Anwesenheitsdauer der Weibchen im Nest. Entsprechend waren 
Nestlinge in stark befallenen Nestern leichter und im Skelettwachstum eingeschränkt. Weibchen in stark befallenen Nestern 
zeigten sogar signifikant geringere Fütterungsraten, weil möglicherweise Parasitenlarven auch brütende Weibchen befallen 
und schwächen. Möglich ist auch, dass Weibchen ihre derzeitigen Reproduktionsanstrengungen zugunsten einer zukünftigen 
Reproduktion aktiv reduzieren, wie durch die Life-history-Theorie vorausgesagt wird. Dieser Life-history Trade-off kann 
insbesondere bei Darwinfinken und tropischen Vogelarten, auf Grund ihrer relativ langen Lebensdauer und demzufolge 
einem relativ hohen zukünftigen Reproduktionswert, erwartet werden. Maßnahmen zum Schutz von Darwinfinken sollten 
deshalb ihr beschränktes Potenzial zur Nahrungskompensation miteinbeziehen.

Introduction

Birds are hosts of many types of parasites, including nest 
ectoparasites (for reviews, see e.g., Loye and Zuk 1991; 
Crompton 1997; Janovy 1997; López-Rull and Macías 
Garcia 2015). Nestlings of altricial birds are ideal hosts 
for ectoparasites since they are left unattended in the nest 
for many hours each day and have limited defenses against 
parasites, due to their reduced mobility and their still naïve 
immune functioning. Selection will thus favor parental 
control of parasite numbers or compensation of parasite 
effects on nestlings (e.g., Tschirren et al. 2009; López-Rull 
and Macías Garcia 2015). However, parental compensa-
tion via a higher food supply to nestlings, or other behav-
iors, will increase current reproductive effort, but at the 
expense of reducing residual reproductive value (Perrin 
et al. 1996), a life-history trade-off experimentally dem-
onstrated in many studies (e.g., Richner and Tripet 1999). 
Higher food provisioning allows nestlings to allocate more 
resources to blood and tissue replacement and growth 
(Mason 1944; Johnson and Albrecht 1993; Morrison and 
Johnson 2002). The extent of parental compensation may 
be influenced by environmental conditions and the amount 
or quality of available food (Tremblay et al. 2005), among 
other factors. However, ectoparasites may also exploit and 
weaken the brooding female, which may then decrease 
food provisioning rates and presence and direct care of 
nestlings (Koop et al. 2013; Knutie et al. 2016).

In the Galapagos Islands, Ecuador, one of the major 
threats to many landbird species including most Dar-
win finches is the invasive Avian Vampire Fly, Philornis 
downsi (Diptera: Muscidae). Female flies lay eggs in bird 
nests where subsequently the hematophagous larvae feed 
on blood and tissue of nestlings (Fessl et al. 2006b). First 
reports of the fly date back to the 1960’s (Causton et al. 
2006) and thus the fly is assumed to have recently invaded 
the Galapagos archipelago. It currently exploits at least 
21 native and endemic Galapagos landbird species (Fessl 
et  al. 2018; Anchundia and Fessl 2020; Coloma et  al. 
2020), several of which are currently classified by the 
IUCN as vulnerable or critically endangered (IUCN 2022). 
Philornis downsi can cause detrimental effects including 

blood loss, poor growth, deformed nasal cavities that inter-
fere with sexual selection (Kleindorfer et al. 2019), and 
up to 100% brood mortality (reviewed in Kleindorfer and 
Dudaniec 2016). Lower breeding success caused by P. 
downsi parasitism has been documented for the majority 
of Darwin’s finch species and the Little Vermilion Fly-
catcher (Pyrocephalus nanus) (as reviewed in Fessl et al. 
2018; Cimadom and Tebbich 2021; Mosquera et al. 2022). 
Evidence for parental compensation via an increase in care 
and food provisioning to nestlings in Galapagos bird spe-
cies is mixed: Knutie et al. (2016) showed that Galapagos 
Mockingbird (Mimus parvulus) parents can compensate 
for P. downsi parasitism, but this compensation was not 
found in another study (McNew et al. 2019), suggesting 
that parental compensation is a flexible response in this 
species. No compensation via increased parental provi-
sioning rate was found in the Small Ground Finch (Geo-
spiza fuliginosa), Medium Ground Finch (Geospiza fortis) 
(O’Connor et al. 2014; Knutie et al. 2016) or the Small 
Tree Finch (Camarhynchus parvulus) (Heyer et al. 2021). 
In a comparative study, Green Warbler-Finches (Certh-
idea olivacea) showed both a significantly lower infesta-
tion intensity and higher breeding success than sympatric 
Small Tree Finches (Camarhynchus parvulus) (Cimadom 
et al. 2014), which could be due either to lower parasite 
numbers or parental compensation, or both.

Many tree finch species in Galapagos, including two criti-
cally endangered species, the Mangrove Finch (Camarhyn-
chus heliobates) and the Medium Tree Finch (Camarhynchus 
pauper), are in decline in part due to P. downsi parasitism 
(Fessl et al. 2010, 2017; Dvorak et al. 2012, 2017; Cima-
dom et al. 2014). Populations of the Green Warbler-Finch 
(Certhidia olivacea) have continued to decline, including 
in its small habitat range in Santa Cruz Island, as shown 
by close monitoring of populations since 1997 (Dvorak 
et al. 2012; Cimadom et al. 2014; Fessl et al. 2017). Under-
standing behavioral adaptations of avian hosts to P. downsi 
parasites, including the parents’ ability to compensate for 
effects of parasites, is critical for the choice and allocation 
of conservation efforts.

In this study, we evaluated whether male and female 
Green Warbler-Finches compensate for P. downsi parasitism 
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via higher provisioning rates and feeding efforts. We 
assessed infestation levels in Warbler-Finch nests and for 
data analysis grouped nests in low and high infestation cat-
egories, respectively. Our working hypothesis of parental 
compensation predicts that one or both parents increase the 
rate of food provisioning under high parasite infestation 
intensity, and that consequently nestlings of the high and 
low infestation categories should show similar growth and 
development. Knowledge of parental compensation behavior 
and efficiency is relevant for informing conservation efforts 
and strategies.

Methods

Study site

The study took place within the Galapagos National Park 
protected areas at Los Gemelos (0° 37′ 50″ S, 90° 23′ 25″ 
W, altitude 569–625 m a.s.l.) on Santa Cruz Island in the 
Galapagos Islands, Ecuador. The site consists of a 0.33 km2 
area in a cloud forest habitat dominated by the endemic 
Scalesia pedunculata and includes other characteristic plant 
species such as the cat’s claw (Zanthoxylum fagara), ferns, 
and the endemic Galapagos guava tree (Psidium galapa-
gium) (CLP, pers. obs.; McMullen 1999). Since 2012, this 
area has also undergone long-term management for the 
invasive Mysore raspberry (Rubus niveus) (Cimadom et al. 
2019).

Nest monitoring and treatment

From February to mid-April 2021, Green Warbler-Finch 
nests (n = 26) were monitored for activity every two to 
three days during incubation. Incubating nests close to 
hatching were monitored every one to two days for record-
ing the precise hatch date. Nests located in the canopy of 
Scalesia trees at a height of 1.5 to 5.4 m were monitored 
for parental activity during incubation and using an endo-
scopic camera attached to a long carbon fiber pole to visually 
inspect nestlings in the nest after hatching. Eight nests were 
treated against parasites by manual injection with 5 mL of 
a 0.5% permethrin solution (Permacap CS) (for details of 
this method see Cimadom et al. 2019), applied with a 5 mL 
plastic syringe inserted into the base of the nest from the 
outside. Nests were treated within three days before or after 
the nestlings hatched. Hatching date was recorded as the 
date when the first egg hatched and was confirmed by visual 
observation via the camera monitor. Nestlings on hatch date 
were recorded as zero days old.

Feeding rate observations

Each nest was observed for a duration of 60 min between 
6:30 a.m. and 10:00 a.m. when the nestlings were five to 
six days old. The number of feeding visits by the male and 
female were recorded, along with the duration the female 
spent inside the nest. Observations were not conducted in 
rainy weather. Observers kept a minimum distance of four 
meters from the nest as to not disturb the parents, a distance 
also used in other studies (e.g. Heyer et al. 2021).

Data recorded at each nest were standardized following 
the methodology in Heyer et al. (2021). Briefly, a feeding 
visit was defined as a ‘visually confirmed insertion of food 
into a nestling's beak, and in cases the insertion could not 
be seen, a parent coming to the nest with food and leaning 
inside the nest in a feeding-like behavior’. For data analysis, 
total provisioning rate per nest was defined as the summed 
number of feeding visits per hour by both parents plus the 
male passing food to the female. Since males sometimes 
give the food to the brooding female who may then feed the 
nestlings, we defined male provisioning rate as the number 
of feeding visits per hour to nestlings by the male plus the 
feedings delivered to the female. Thus, male provisioning 
rates reflect total male parental effort. In principle, it is irrel-
evant whether food brought by the male is consumed by the 
female or given to the nestlings, since in the first case the 
female can bring more of the food items caught by herself 
to nestlings instead of consuming them for her own mainte-
nance. Female provisioning rate was defined as the number 
of direct feeding visits per hour to nestlings by the female 
parent. Female nest attention was defined as the minutes per 
hour a female spent sitting in the nest during the observa-
tion period. Nests that were no longer active were collected, 
dismantled in the laboratory, and the number of P. downsi 
larvae and pupae were counted.

Nestling measurements

We collected measurements on 5 to 6-day-old nestlings. 
To limit disturbance time to under 15 min, maximally two 
nestlings per nest were briefly removed from the nest. We 
recorded tarsus length (tarso-metatarsus in mm) of the right 
leg and nestling mass to the nearest 0.01 g using an elec-
tronic scale. We additionally examined each nestling for 
signs of P. downsi parasitism, such as larvae clinging to the 
body and nares or typical body wounds caused by blood-
sucking larvae. All nestling manipulation was done either 
directly after the feeding observation, or a day before or 
after observation as to not disturb the natural behavior of 
the parents and nestlings on observation day.
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Statistical analysis

For the analysis, we grouped nests by infestation level, based 
on the number of P. downsi larvae or pupae found after nest 
collection. The “low infestation” group included nests with 
0–3 parasites and the “high infestation” group included nests 
with 5–65 parasites. Three nests not treated with permethrin 
had naturally very few parasites (0, 1, and 2, respectively) 
and hence were added to the “low infestation group”. Two 
nests that were treated still had 7 and 10 parasites and thus 
were added to the “high infestation group”. Infestation level 
with P. downsi was significantly higher (W = 144, p < 0.001) 
in nests in the high infestation group than in nests in the low 
infestation group. Mean infestation intensity per nestling was 
more than 15-fold higher in the “high infestation” group (low 
infestation: mean = 0.59 ± SD 0.533, median = 0.50, n = 9; 
high infestation: mean = 9.73 ± SD 7.696, median = 7.33, 
n = 16). For provisioning rates, one nest observation from 
the high infestation group was excluded due to absence of 
parents during the entire observation. Brood sizes were on 
average 1.93 ± SE 0.17 (or SD 0.68) for the high infestation 
intensity nest group (n = 16) and 2.33 ± SE 0.24 (or SD 0.70) 
for the low infestation intensity nest group (n = 9). Brood 
size did not depend significantly on infestation level (glm 
(quasipoisson family), t = 0.298, p = 0.768). Additionally, 
sample size for nestling measurements differed from the 
sample size for provisioning rates due to limited access to 
higher nests to measure nestlings.

All analyses were conducted in R Studio (R Core Team 
2021) using the lme4 and cars packages (Bates et al. 2015; 
Fox and Weisberg 2019). We conducted separate generalized 
linear models (GLM) of the Poisson family with provision-
ing rates as the response variables. A separate GLM of the 
quasipoisson family was done for female provisioning rates 
with significant (p = 0.024) underdispersion. Predictors for 
each model included infestation group (high and low infesta-
tion), the number of nestlings per nest on observation day, 
and the time each observation started between 6:30 and 9:00 
a.m. For the duration of female nest attention (min per hour), 
we conducted a linear model (LM) with infestation group, 
number of nestlings on observation day and time of day at 
start of observation as predictors. Tarsus length (mm) and 
body mass (g) of nestlings were analyzed using linear mixed 
models (LMM) with the infestation group and number of 
nestlings per nest on the date of measurements as predictors. 
Nest ID was included in each LMM as a random factor, to 
control for pseudoreplication since multiple nestlings were 
measured from a nest. Each model was checked for normal 
distribution of residuals using tests for normality and by 
visually inspecting the QQ plots. Each GLM was addition-
ally tested for overdispersion and heteroscedasticity, while 
LMMs were checked for heteroscedasticity only. No prob-
lems with dispersion or heteroscedasticity were detected, 

except for the underdispersion in the female provisioning 
rates model, addressed using the quasipoisson family. For 
all tests, statistical significance was considered as p ≤ 0.05.

Results

Food provisioning and breeding success

The total food provisioning rate per nest was not signifi-
cantly affected by infestation level with P. downsi (Tables 1, 
2), nor the number of nestlings or time of observation 
(Table 2). There was no significant difference in male pro-
visioning rate between nests with low or high infestation 
level or the number of nestlings (Table 2). Male provisioning 
rates were close to significantly higher earlier in the morn-
ings (p = 0.056; Table 2). Female provisioning rate was 
significantly lower at nests with higher infestation, but not 
significantly affected by the number of nestlings or time of 
observation (Table 2). Although females spent on average 
more time attending nestlings of the high infestation group, 
the difference was not significant, nor affected by brood size 
(Table 2). Female nest attendance was significantly higher 
earlier in the morning than later (Table 2).

At low infestation levels, parents were slightly more 
successful in fledging at least one offspring (78% of nests) 
compared to high infestation levels (68% of nests), yet the 
difference was not significant (Mann Whitney U test, W = 65, 
p = 0.66, n = 25).

Nestling size

Mean nestling mass (g) at age 5 to 6 days old was signifi-
cantly higher in nestlings with low infestation, compared to 
nestlings with high infestation (Tables 3, 4). Mean tarsus 
length (mm) was longer at low infestation levels; however, 
not significantly so (Tables 3, 4).

Table 1   Food provisioning data for both high and low infestation 
groups of Green Warbler-Finch nests. Provisioning data are reported 
as mean values with standard error

Number of nests are reported in parentheses after each value. Total 
per nest, male, and female provisioning rates are reported as mean 
visits per hour; while the female nest attention is reported as total 
number of min. per hour the female was sitting in the nest

High infestation (n) Low infestation (n)

Total provisioning rate 4.88 ± 0.50 (16) 6.22 ± 0.92 (9)
Male provisioning rate 2.13 ± 0.39 (16) 2.11 ± 0.65 (9)
Female provisioning rate 2.75 ± 0.25 (16) 4.11 ± 0.51 (9)
Female nest attention 19.50 ± 3.3 (16) 12.11 ± 4.67 (9)
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Discussion

Overall, we found no significant difference between 
parental provisioning rate in nests with high versus low 
infestation intensity, similar to other studies on parental 
food compensation in Darwin finches with P. downsi nest 
parasitism, including the Medium Ground Finch (Knutie 
et al. 2016), Small Tree Finch (Heyer et al. 2021), and 

Small Ground Finch (O’Connor et al. 2014). Contrast-
ingly, in one study, Galapagos Mockingbirds responded 
to P. downsi parasitism with increased provisioning rates 
(Knutie et al. 2016). Studies on similar systems in North 
America involving hematophagous larvae of Protocalli-
phora spp. also failed to show a significant difference in 
parental food provisioning in relation to infestation, as for 
example, Eastern Bluebirds (Sialia sialis) infested by the 
blowfly Protocalliphora sialia (Grab et al. 2019), or House 
Wrens (Troglodytes aedon) infested by Protocalliphora 
parorum (Morrison and Johnson 2002).

Many factors may influence parental food provision-
ing behavior in Green Warbler-Finches. Proximate factors 
include nestling begging rates, as demonstrated in Galapagos 
Mockingbirds (Knutie et al. 2016), food availability, food 
quality and others. The soil of the typical breeding habitats 
of the Green Warbler-Finch on Galapagos is often densely 
covered by invasive plant species (e.g., invasive blackberry) 
that prevent foraging on or near the ground, thus causing 
limited access to food that may prevent higher food provi-
sioning rates to nestlings. It is unlikely that parents of highly 

Table 2   Results from mixed 
models for each dependent 
variable

Values are the model (LM or GLM) estimate with the standard error, z-score or t-statistic (specified in 
parentheses) and p value

Dependent variable Fixed effect Model estimate ± SE z-score or t value p value

Total provisioning rate Intercept 2.80 ± 1.192 2.35 0.019
Infestation level (low) 0.18 ± 0.182 0.97 0.330
Number nestlings 0.09 ± 0.131 0.70 0.482
Time of day − 0.19 ± 0.151 − 1.25 0.210

Male provisioning rate Intercept 4.29 ± 2.001 2.15 0.032
Infestation level (low) − 0.10 ± 0.296 − 0.33 0.739
Number nestlings 0.04 ± 0.205 0.18 0.854
Time of day − 0.49 ± 0.257 − 1.91 0.056

Female provisioning rate Intercept 0.85 ± 0.993 0.86 0.400
Infestation level (low) 0.35 ± 0.156 2.26 0.035
Number nestlings 0.12 ± 0.115 1.08 0.294
Time of day − 0.01 ± 0.124 − 0.09 0.928

Female nest attention Intercept 98.61 ± 32.924 3.00 (t) 0.007
Infestation level (low) − 6.60 ± 5.386 − 1.23 (t) 0.234
Number nestlings − 5.79 ± 3.799 − 1.53 (t) 0.142
Time of day − 9.12 ± 4.127 − 2.21 (t) 0.038

Table 3   Nestling growth measurements by infestation level, reported 
as mean per nest with standard error and number of nests in paren-
theses

High infestation (n) Low infestation (n)

Number of parasites
 Mean per nest 14.36 ± 1.515 (11) 1.7 ± 0.448 (10)

Measurements
 Body mass (g) 5.14 ± 0.236 (11) 6.26 ± 0.183 (10)
 Tarsus (mm) 13.20 ± 0.407 (11) 14.50 ± 0.354 (10)

Table 4   Results from a linear 
mixed model with tarsus length 
and mass as the dependent 
variables, infestation level as 
the predictor and nest ID as a 
random factor to control for 
pseudoreplication

Dependent variable Fixed effect Model estimate ± SE t value p value

Mass Intercept 4.97 ± 0.552 8.99 < 0.001
Infestation level (low) 0.95 ± 0.376 2.51 0.023
Number nestlings 0.12 ± 0.246 0.50 0.622

Tarsus length Intercept 12.60 ± 0.97 12.99 < 0.001
Infestation level (low) 1.14 ± 0.654 1.75 0.099
Number nestlings 0.31 ± 0.430 0.72 0.478
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infested nests brought higher quality food to the nestlings to 
compensate for parasites, given that nestlings from highly 
infested nests showed significantly lower body mass than 
nestlings from nests with low infestation intensity, despite 
similar food provisioning rates in the two groups of high and 
low infestation. As a proximate factor, it may be that nest-
lings in nests with high infestation intensity were too weak 
to beg, as reported in the Small Ground Finch (O’Connor 
et al. 2014). However, begging rates of nestlings are rarely 
assessed in relation to Philornis parasitism on Galapagos 
and elsewhere. Overall, infestation intensity and preva-
lence were lower in the year of this study than in previous 
years (Cimadom et al. 2014; Cimadom and Tebbich 2021), 
potentially due to a weak La Niña event during the breed-
ing season in 2021 (NOAA 2021), which may have led to a 
lower abundance of insects, including P. downsi. Although 
unlikely, infestation rates even in the ‘high parasitism’ nests 
may have been too low for detecting a significant increase in 
parental provisioning rates.

Ultimate factors are typically based on life-history trade-
offs that will determine the evolution and expression of 
parental compensation strategies. That is, an increase in 
food provisioning rates, and thus parental effort, will entail 
a decrease in residual reproductive value. Thus, the cost of 
an increase in parental provisioning rates under low food 
availability, lower food quality, higher predation exposure 
and many other factors is predicted to ultimately affect 
future reproduction. It will influence the decision of parents 
to increase parental effort in a currently infested nest. In an 
experimental study on Great Tits (Parus major), a forced 
increase in male and female current reproductive effort led 
to an increase in malaria infections (Richner et al. 1995; 
Oppliger et al. 1996) and affected return rates of breeders the 
following year (Richner et al. 1995), i.e., future reproduc-
tion. In Blue Tits (Parus caeruleus), parents of nests experi-
mentally parasitized with the Hen Flea (Ceratophyllus gal-
linae) had lower return rates and breeding success the year 
following infestation (Richner and Tripet 1999). Similarly, 
Alpine Swifts (Apus melba) experimentally infested with 
louse flies (Crataerina melbae) experienced significantly 
reduced breeding success the year following infestation 
(Bize et al. 2004).

Females spent more time brooding the nestlings earlier 
in the morning while males provisioned food at a close to 
significantly higher rate earlier in the morning than later 
on. Nestling thermoregulation at an age of 5–6 days is not 
yet well developed, and at our study site in the highlands of 
Santa Cruz, the mornings can be cooler, between ~ 19 and 
21 °C, with the temperature typically increasing between 
sunrise and midday. Thus, earlier in the morning it was 
likely more profitable for the female to keep nestlings warm 
and at an optimal temperature for metabolizing food, rather 
than spending time foraging. Males then partly compensated 

by higher food provisioning rates earlier in the morning. 
Similarly, Small Tree Finch females of infested nests spent 
more time at the nest than females of nests with low para-
site numbers (Heyer et al. 2021). It is unknown whether the 
additional time was used for active brood care or simply due 
to the weakening of the female, given that parasites also use 
brooding females as a food source.

The parental food compensation hypothesis predicts 
that parents will increase investment in nestlings when 
parasitized, and in turn parasitized nestlings will benefit 
and show similar growth rates as uninfested ones. Our 
results lend no support to this hypothesis: nestlings of 
highly infested nests had poorer growth and female parents, 
opposed to the prediction, lowered provisioning rates when 
highly infested. Lower nestling mass as a consequence of P. 
downsi infestation was also reported in the Galapagos Mock-
ingbird, Medium Ground Finch and Small Ground Finch 
(Fessl et al. 2006a; Koop et al. 2011; Knutie et al. 2016), 
but interestingly not in another study on the Small Ground 
Finch (O’Connor et al. 2014) where nestlings of infested 
and uninfested broods were of similar body size and mass. 
However, there, nestlings died sequentially in infested nests 
but survived in nests treated against parasites (O’Connor 
et al. 2014), which suggests that body size and mass could 
be maintained due to smaller brood sizes in infested nests. 
In another similar host-parasite system with Protocalliphora 
parasites, Blue Tit nestlings had higher body mass in nests 
with lower infestation intensities (Bańbura et al. 2004). In 
an experimental system with Great Tits infested by Hen 
Fleas, parents increased provisioning rates, yet nestlings 
still had lower body mass (Christe et al. 1996). This actu-
ally supports theoretical models that predict partial, but not 
full compensation due to the life-history trade-off in current 
versus future investment (Perrin et al. 1996). The observed 
difference in compensation behaviors between non-tropical 
Passerines and Galapagos landbirds may be explained by 
the difference in longevity: Galapagos landbirds experience 
typically long average life span, most likely selected by 
low predation risk combined with a fluctuating food supply 
among breeding seasons (Grant and Grant 2011). Thus, their 
life-history trade-offs are strongly in favor of residual repro-
ductive value and will thus disfavor a significant increase 
in current reproductive effort and hence the evolution of 
parental compensation strategies. It may well explain why 
essentially all studies on Darwin finches so far did not find 
parental compensation for the effects of nest parasitism by P. 
downsi. Thus, future conservation efforts should rather not 
build on expectations of parental compensation behaviors 
for the effects of P. downsi parasites.
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