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Abstract
Habitat selection is an important process in birds that influences individual survival and fitness, and ultimately shapes 
population dynamics. As a consequence, strong selective pressures apply to favor strategies allowing individuals to choose 
high-quality habitat for foraging while reducing predation risk and competition. In long-distance migratory birds, such as 
shorebirds, the non-breeding period is considered as a key period of their annual cycle with reported effects on individual 
survival and subsequent reproduction. Site selection by non-breeding shorebirds should depend on habitat quality for them 
to ensure survival until the next breeding season. More specifically, birds should distribute in space and time according to 
their resource availability and specialize on feeding habitats or/and prey to reduce intraspecific competition. To test this 
hypothesis, we studied Bar-tailed Godwits (Limosa lapponica) at one of their main non-breeding sites along the French 
coast. We first used GPS tracking to investigate their foraging and roosting home ranges as well as core sampling to define 
the diversity of available habitats and their quality as feeding resources. We then compared individual habitat selection in 
relation to feeding home range sizes and benthic macrofauna abundances. Our results provide the first fine scale definition 
of shorebird movements and distribution along the non-breeding period. We found that godwits showed an extreme fidelity 
to restricted feeding areas (about 3.4  km2) during winter, with low overlap between individual feeding home ranges. Each 
bird appeared to mainly use 4–6 of the 11 available foraging habitats, with a specialization on 1 to 2 main habitats and their 
associated prey. However, our results did not emphasize a clear relationship between home range sizes and the quality of bird 
feeding sites. This study thus demonstrates the high specialization of individual non-breeding Bar-tailed godwits relying on 
specific foraging grounds and habitats, with important implications for the conservation of this species.
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Zusammenfassung
Stark diversifizierte Lebensräume und Ressourcen beeinflussen die Habitatwahl bei überwinternden Limikolen.
Die Habitatwahl ist ein wichtiger Prozess bei Vögeln, der das individuelle Überleben und die Lebensqualität beeinflusst und 
letztlich die Populationsdynamik prägt. Infolgedessen existiert ein starker Selektionsdruck, der Strategien begünstigt, die 
es den Individuen ermöglichen, qualitativ hochwertige Lebensräume für die Nahrungssuche zu wählen und gleichzeitig das 
Prädationsrisiko und die Konkurrenz zu reduzieren. Bei Langstreckenziehern, wie z. B. Limikolen, gilt die Nichtbrutzeit 
als eine Schlüsselperiode ihres Jahreszyklus, die sich auf das individuelle Überleben und die anschließende Reproduktion 
auswirkt. Die Standortwahl von nichtbrütenden Küstenvögeln sollte von der Habitatqualität abhängen, damit sie ihr Überleben 
bis zur nächsten Brutsaison sichern können. Genauer gesagt sollten sich die Vögel räumlich und zeitlich entsprechend 
ihrer Ressourcenverfügbarkeit verteilen und sich auf Nahrungshabitate oder/und Beute spezialisieren, um intraspezifische 
Konkurrenz zu reduzieren. Um diese Hypothese zu testen, untersuchten wir Uferschnepfen (Limosa lapponica) an einem 
ihrer wichtigsten Nichtbrutplätze an der französischen Küste. Zunächst untersuchten wir mit Hilfe von GPS-Ortungen ihre 
Nahrungs- und Schlafplatzbereiche sowie Bodenproben, um die Vielfalt der verfügbaren Habitate und deren Qualität als 
Nahrungsressourcen zu bestimmen. Anschließend verglichen wir die individuelle Habitatwahl in Abhängigkeit von der Größe 
des Nahrungshabitates und der Abundanz der benthischen Makrofauna. Unsere Ergebnisse liefern die erste feinräumige 
Darstellung der Ortsveränderungen einer Küstenvogelart und ihrer Verteilung außerhalb der Brurzeit. Wir fanden, dass 
Uferschnepfen während des Winters eine extreme Ortstreue zu begrenzten Nahrungsgebieten (ca. 3,4 km2) zeigten, mit 
geringer Überlappung zwischen den einzelnen Nahrungsgebieten. Jeder Vogel schien hauptsächlich vier bis sechs der 11 
verfügbaren Nahrungshabitate zu nutzen, mit einer Spezialisierung auf ein bis zwei Haupthabitate und deren zugehörige 
Beute. Unsere Ergebnisse zeigten jedoch keinen eindeutigen Zusammenhang zwischen der Größe der genutzten Habitate 
und der Qualität der Nahrungsplätze der Vögel. Diese Studie zeigt die hohe Spezialisierung von Uferschnepfen außerhalb 
der Brutzeit auf bestimmte Nahrungsplätze und Habitate, was wichtige Folgerungen für den Schutz der Art hat.

Introduction

In spatially and temporally heterogeneous environments, 
habitat selection is a decision-making process where 
individuals are faced with choices not only resting upon 
habitat quality, but also on a trade-off between costs and 
benefits to acquire space for feeding (Fretwell and Lucas 
1969; Kennedy and Gray 1994). Hence, the quality and 
availability of local habitats vary along with abiotic (e.g., 
feeding substrate), biotic (e.g., food resources, predators, 
parasites) and social (e.g., intraspecific competition) factors 
(Bruggeman et al. 2016; Philippe et al. 2016). Habitat selec-
tion ultimately influences the survival and reproduction of 
individuals (Hutto 1985; Block and Brennan 1993). There-
fore, strong selective pressures apply to favor strategies that 
allow individuals to select high-quality habitats for foraging 
while avoiding predation and competition (Garabedian et al. 
2019; Abdulwahab et al. 2019). The first step to study habitat 
selection is to define spatial habitat use, investigating ani-
mal movements and individual home ranges (van Moorter 
et al. 2016). The home range is defined as the area used 
by mobile animal during its regular activities (i.e., forag-
ing, roosting, mating, caring for young; Burt 1943; Powell 
2000). By affecting their physiology, energetics and behav-
iour, many factors are known to directly affect animal home 
ranges (size and shape; reviews in Mace et al. 1983; Rolando 
2002; McGarigal et al. 2016), such as age, sex, body condi-
tion, habitat structure or weather conditions. Nonetheless, 

they are primarily driven by the distribution and availability 
of food resources (Brown 1975; Schoener 1983).

For long-distance migratory birds, such as many shore-
bird species, the non-breeding period is considered as a 
key period of their annual cycle with reported effects on 
individual fitness and population dynamics (Pienkowski 
and Evans 1984; Marra and Holmes 2001). Site selection 
by individuals during this period thus depends on habitat 
quality for them to ensure survival until the next breeding 
season (Evans 1976; Hutto 1985). At their coastal wintering 
sites, shorebirds are expected to face challenging weather 
conditions (Evans 1976; Clark 2009), high predation risks 
(van den Hout et al. 2008) and strong intraspecific compe-
tition (Beauchamp 2007). Most of them also have to deal 
with the characteristics of intertidal ecosystems where the 
tidal cycle reduces the time-window during which individu-
als can access their foraging grounds (Fonseca et al. 2017). 
In addition, birds must ensure their molt during this period, 
a particularly energy-demanding process (Murphy 1996). 
Consequently, wintering shorebirds have to balance their dif-
ferent energy gains and costs, especially the risk of starva-
tion against the risk of predation (Evans 1976; Lima 1986), 
weighting the time spent in secured roosting sites against 
the time spent foraging in challenging feeding habitats (to 
acquire energy and maintain their body condition).

A large number of shorebirds winter along the French 
Coasts (Gaudard et al. 2018), and particularly in the Pertuis 
Charentais (Central Atlantic French Coast, Fig. 1), a region 
offering large areas of intertidal mudflats, essential feeding 
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habitats for these species (Bocher et al. 2014; Robin et al. 
2015). The Pertuis Charentais is the most important winter-
ing area for shorebirds in France and is recognized as a site 
of international importance for these species (Delany et al. 
2009). The Bar-tailed Godwit Limosa lapponica is one of 
them with a maximum of c. 4000 individuals recorded in 
January (F. Robin, com. Pers.). Two subspecies of Bar-tailed 
Godwit are present in western Europe but only L. l. lap-
ponica overwinters in this region (Duijns et al. 2012), from 

the Netherlands and British Islands to the Iberian Peninsula, 
with a population estimated to 150,000 individuals (Wet-
lands International 2017). The species predominantly feeds 
on polychaetes whatever their wintering site in Europe dur-
ing non-breeding period (Duijns et al. 2013). L. l. lapponica 
is characterized by stable population trends at the European 
scale. Nonetheless, important decreases of wintering popula-
tions were observed in France during 1980s and 1990s (Tri-
plet et al. 2010), likely due to degraded wintering habitats 

Fig. 1  Map of the Pertuis Charentais (Central French Atlantic coast) and localisation of the study areas on Ré Island. Dark grey corresponds to 
the mainland and light grey to the intertidal area
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and increasing human disturbance during this sensitive 
period (Verger 2005; Delany et al. 2009; BirdLife Interna-
tional 2017), when godwits are known to occupy a few small 
areas (Delany et al. 2009). The creation of Nature Reserves 
in the Pertuis Charentais (Fig. 1) highlighted positive effects 
on Bar-tailed Godwits by reducing disturbance at their high 
tide roosts, resulting in a significant increase in bird num-
bers over the 1985–2009 period on Ré Island, Yves Bay and 
Marennes–Oléron Bay, reaching national or international 
importance threshold (Triplet et al. 2010). In that context, 
understanding the spatial distribution of wintering Bar-tailed 
Godwits is essential to refine conservation measures (Mor-
ris 2003; Klar et al. 2008). Likewise, characterizing their 
habitat use is crucial, not only for a complete understanding 
of ecosystem functioning, but also to develop appropriate 
management strategies bound to protect this near-threatened 
species (BirdLife International 2017). In the present study, 
we tested the hypotheses that in a context of high bird den-
sities, (1) female Bar-tailed Godwits specialize on feeding 
habitats and prey to avoid conspecific competition during 
the non-breeding period (Duijns and Piersma 2014), and 
(2) individuals using habitats with higher food abundances 
are predicted to have smaller home ranges. We first defined 
individual home ranges and more specifically feeding home 
ranges using tracking devices. Second, we determined avail-
able foraging habitats and benthic prey availability on acces-
sible mudflats at low tide and their respective surfaces by 
in situ sampling. Finally, we compared individual habitat 
selection in relation to feeding home ranges size and prey 
abundance.

Methods

Study site

The study was carried out on Ré Island (Central French 
Atlantic Coast) during non-breeding periods (from August 
to March) of 2015–2016 and 2016–2017. Ré Island is a part 
of the Pertuis Charentais area (Fig. 1), a region including the 
largest surface of intertidal mudflats on estuarine systems in 
France (Verger 2005). Two main feeding areas are available 
for Bar-tailed Godwits (hereafter godwits) on soft substrates 
on the Island (Aubouin 2014; Duijns et al. 2014). The first 
site is a mudflat inside a semi-enclosed bay, the ‘Fier d’Ars’ 
(46° 13′ 18′′ N; 1° 30′ 29′′), and the second site is sandflat 
on an exposed coast in the north of the Island, ‘La Loge’ 
(46° 14′ 25′′ N; 1° 28′ 42′′ W).

The ‘Fier d’Ars’ is a bay of about 800 ha bordered by 
1600 ha of saltpans or brackish marshes. This wetland has 
been classified according to the Ramsar Convention since 
2003, and part of it (the western part of the bay and the high 
tide roosts in saltmarshes) is part of the National Nature 

Reserve ‘Lilleau des Niges’ since 1980. The ‘Fier d’Ars’ 
is divided by a central creek, with a mainly bare muddy 
substrate on the edges or covered by seagrass beds (Zostera 
noltei) at the center, and a restricted sandy area along the 
stream to the north.

‘La Loge’ extends over c. 100 ha. The foreshore remains 
uncovered by the tide for about 4 h only, and the period of 
food availability is, therefore, limited for birds compared to 
the ‘Fier d’Ars’. ‘La Loge’ is part of the Ramsar site ‘Marsh 
of the Fier d’Ars’ as the only protection status, and tourist 
activities on the beach during summer are frequent during 
daylight.

Coastal shorebird survey data

Counts of shorebirds were carried out by the staff of the 
National Nature Reserve, year-round, around the 15th of 
each month on the whole Ré Island from 2000 to 2016. The 
census targeted all the known high tide roosts during the 
highest water levels during spring tide. Birds were counted 
with telescopes, simultaneously by five observers distributed 
on the main spots of Ré Island, from 2 h before and until 
the high tide.

Godwit captures and tracking

Godwits were captured using mist nets on high tide roosts 
between October 2015 and November 2016. Catching ses-
sions took place during non-moonlight nights inside the 
National Nature Reserve. Individuals were marked with a 
metal ring and a unique color rings combination. The sex 
of individuals was determined based on their body mass 
(230–383 g for males and 280–455 g for females) and bill 
length (69–90 mm for males and 86–110 mm for females; 
Demongin 2016); and the age defined according to their 
plumage pattern (Demongin 2016).

A total of 15 godwits (11 in 2015 and 4 in 2016) were 
fitted with a GPS-VHF logger (STERNA UHF-SRD with 
solar charger, Ecotone, Gdánsk, Poland; 35 × 16 × 10 mm, 
7.5 g). Birds were chosen so that the mass of the logger 
was less than 3% of the bird body mass. Consequently, only 
adult females (bill length > 86 mm) were selected for the 
study, considering that males were too small and that juve-
nile females were possibly not faithful to the study site dur-
ing winter. Loggers were attached on the lower part of the 
back with a 2 mm Teflon harness according to the ‘leg-loop’ 
method (Mallory and Gilbert 2008). Tags recorded GPS 
locations (tested mean accuracy of ± 10 m) every 30 min. 
Out of the 15 females tagged, 6 recorded a sufficient num-
ber of positions during all the winter period. Among the 
others, four birds never contacted after the logger deploy-
ment and probably moved outside of the area, four birds 
had a tag which progressively stopped working because of 
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misfunctioning in battery recharging and gave less than 300 
locations in total over a short period of the winter, and one 
bird was found predated shortly after release. Among the 
six females, three (BTG01, BTG02 and BTG03) recorded 
locations for two consecutive winters (2015–2016 and 
2016–2017). The three others birds provided only one winter 
of data in 2015–2016 (BTG04 and BTG05) or 2016–2017 
(BTG06).

Prey availability and habitat description

The availability and quality of trophic resources at the feed-
ing areas used by tagged godwits (distribution, density and 
biomass of benthic macrofauna) were investigated by sedi-
ment core sampling. Sampling was performed at the centroid 
of each predefined individual Feeding Core Area (hereaf-
ter FCA), based on GPS locations recorded over the first 
2 months of deployment. Indeed, to determine the benthic 
macrofauna potentially available for birds during winter, 
the sampling of sediment was carried out during the course 
of the winter. Given the high fidelity of godwits to forag-
ing sites, these sampling stations based on birds’ FCA after 
2 months were considered to be representative of the entire 
winter. The number of core sampling stations per bird ranged 
from two to nine, depending on the size of its FCA and the 
number of core areas which composed it, to apply the same 
sampling pressure per feeding surface between the differ-
ent birds. These samples were collected between January 
and February, by foot and at low tide according to methods 
described in Bocher et al. (2007) and Kraan et al. (2007). At 
each point, a 15 cm diameter sediment core (0.018  m2) was 
collected at a depth of 15 cm (depth of sediment containing 
almost all polychaetes available for foraging birds according 
to mean bill length of females). These samples were sieved 
over a 1-mm mesh size on site. Annelids were separated and 
preserved in 70 °C ethanol. Molluscs were stored at − 20 °C 
until sorted at the laboratory. Although mud snails Hydrobia 
ulvae are rare in the godwits diet, they were sampled by 
taking one additional core (70 mm diameter) of 0.0037  m2 
to a depth of 5 cm and sieved over a 0.5 mm mesh, to dif-
ferentiate between present and available abundance. Mud 
snails were a potentially abundant and small prey that would 
require too long processing time for a larger sediment core 
sampling. In the laboratory, all organisms were identified to 
the species level, if possible, and the molluscs were meas-
ured to an accuracy of 0.1 mm. The Dry Mass (DM) of flesh 
for each prey was measured after 72 h of drying at 55 °C. 
Dried specimens were then incinerated at 550 °C for 5 h to 
determine their ash mass and then a proxy of their energy 
content: the ash free dry mass (AFDM; Zwarts and Wanink 
1993). For annelids damaged or cut during sieving, ante-
rior part of the body, when remaining, was measured and 
DM and AFDM estimates were determined from allometric 

relationships specific to each species and established in a 
related study (Bocher et al., in prep.).

A sediment sample was collected to a maximum depth 
of 5 cm for granulometric characteristics. Medium Grain 
Size (mm) and the percentage of silt (fraction < 0.063 mm) 
were determined using a Malvern Mastersizer 2000 diffrac-
tion laser (particle sizes analyzed from 0.04 to 2000 mm). 
Results on granulometric characteristics of sediment were 
used as complement data to define the habitat type at each 
sampling station and to draw the map of habitats available 
to godwits.

A fine scale cartography of intertidal habitats was drawn 
by combining benthic macrofauna and sediment sample 
results with field observations, and using the EUNIS clas-
sification of coastal habitats as a reference Bajjouk et al. 
(2015). Seagrass beds delimitations were achieved during 
summer 2012 on field with GPS (Trimble GeoXH).

Home ranges and habitat selection

Space use during the winter period was analyzed through 
the estimation of the Utilization Distribution (UD), i.e., the 
probability density to found each bird at any place accord-
ing to the location of this place (Calenge 2015). The UDs 
were computed with the Kernel density estimates (KDE; 
van Winkle 1975; Worton 1989) using the function ‘kern-
elUD’ (package ‘adehabitatHR’) on the statistical software 
R (3.6.1; Calenge 2020). KDE takes into account the spatial 
distribution of locations, and corresponding time spent by 
birds in an area, to estimate, at the individual scale, their 
home range (at 95% isopleth) and core area (at 50% isop-
leth; Worton 1989). We used a fixed-kernel method with 
a smoothing factor of 70% the minimum reference value 
computed by the ‘ad-hoc’ bandwidth over all individuals, 
a compromise between under-smoothing of least-square 
cross-validation (LSCV) and over-smoothing of reference 
bandwidth (Kie et al. 2010; Schuler et al. 2014). Using a 
single value of smoothing factor allowed us to compare indi-
viduals. Cell size was set to 20 m considering the accuracy 
of GPS positions.

As the number of recorded positions differed between 
birds, we checked that data quantity had no effect on the 
estimation of home ranges size. To this end, we calculated 
wintering home range size (95% isopleth) of each individual 
using the kernel method for position samples successively 
increased by 50 locations chronologically, from n = 50 to 
n = max number of positions collected (Supplementary 
material Fig. S1). For most of birds, the size of the home 
range showed a significant increase until c. 1000 GPS fixes, 
beyond, it no longer changed significantly and then reached 
a plateau. This confirmed that the number of GPS fixes 
recorded was sufficient for all individuals to provide reli-
able estimates of home ranges size.
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The UDs were analyzed at the global frame for each bird to 
estimate the individual home range (HR) and core area (CA) 
using all GPS locations. Then, we calculated separately UDs 
on feeding positions (i.e., when birds were foraging on inter-
tidal areas at low tide, below a water height of 3.3 m relative to 
the hydrographic zero) and roosting positions (i.e., when birds 
were roosting on salt marshes, upper intertidal areas or pond 
when the water height exceeded 3.3 m). We thus estimated 
the complete home range (HR, 95% kernel density contour) 
and core area (50% kernel density contour) during Feeding 
(FHR and FCA) and during roosting (RHR and RCA). For 
the three birds for which two consecutive wintering periods 
were recorded, we investigated the inter-annual fidelity to their 
wintering feeding areas. The high fidelity observed in these 
three individuals allowed us to assume the absence of a ‘year’ 
effect on the feeding UDs, and thus to compare the six indi-
viduals by retaining the winter 2015–2016 data for BTG01, 
BTG02, BTG03, BTG04, BTG05, and winter 2016–2017 data 
for BTG06.

In another study on Ré Island (Bocher et al., in prep.), 64 
droppings of godwits were sorted of and there were found 
almost exclusively remains from polychaetes, and very anec-
dotally shell fragments of molluscs. Hence, considering that 
godwits predominantly feed on polychaetes whatever their 
wintering sites in Europe (Duijns et al. 2013), including Ré 
Island (Bocher et al., in prep.), we tested the hypothesis that 
the size of individual FCA was negatively related to the abun-
dance of polychaete biomass (excluding small species with 
individual biomass < 0.001 g AFDM) inside the FCA. To 
investigate the use and importance of foraging habitats, a habi-
tat selection analysis was then performed with the R package 
‘adehabitatHS’ (Calenge 2011). To this end, we considered 
the estimated Minimum Convex Polygon (MCP) of foraging 
locations from all equipped godwits to define the available 
foraging areas. Habitat selection analysis was performed over-
laying the FCA and the habitat typology using the method of 
selection ratios (Manly et al. 2002) for design II (second-order 
selection), where the availability of habitats is the same for all 
six monitored birds and the habitat selection is analyzed at 
the individual level (Johnson 1980). To explain variations in 
habitat selection among individuals, we used an Eigen analysis 
of selection ratios (Calenge and Dufour 2006), an extension of 
principal component analysis were birds are projected in the 
factorial plane describe by the habitat types and which best 
explains the heterogeneity of the selection. This multifactorial 
method is suitable for the exploration of habitat selection and 
identification of groups of animals using habitats in a same or 
different way.

Results

Phenology and abundance of godwits

The wintering period at the study site spanned over a maxi-
mum of 8 months from August to March, with a maximum 
number of birds recorded in January with a mean of 641 ± 85 
individuals over 2000–2016 (Supplementary material Fig. 
S2). The last birds arrived in late-October/early-November 
and most of the birds left the site for pre-nuptial migration 
during March. Very few birds were present from April to 
July, i.e., during the migration period.

Home range variability

HR of the six birds over the two winters of study varied 
between 248 and 581 ha (mean = 461 ± 48 ha, n = 6). Despite 
a different number of total recorded locations, the size evo-
lution of the HR of most of birds showed a plateau beyond 
which the additional locations bring no significant variation 
(Table 1, Supplementary material Fig. S1).

Inter‑annual fidelity to feeding areas

For the three birds displaying two successive non-breeding 
periods, FHR overlapped by 83%, 74% and 71% between 
both winters (Supplementary material Table S1), while the 
average inter-individual overlap of FHR was 43% (Sup-
plementary material Table S2). Individual BTG01 had the 
largest FHR (478 ha in 2015–2016; 408 ha in 2016–2017) 
and used both winters a large part of the bay with multiple 
FCA (Fig. 2). BTG02 foraged mainly in the ‘Fier d’Ars’, 
with only a few visits on ‘La Loge’. The difference in FHR 
between winters for BTG02 (363 ha in 2015–2016; 232 ha in 
2016–2017) was explained by the sporadic visit of a supple-
mentary area during the first winter located outside the study 
site (‘Fossé de Loix’ not represented on Fig. 2). The FHR 
of BTG03 during both periods were very similar (287 ha 
in 2015–2016; 297 ha in 2016–2017). The estimated size 
of FCA between both winters was also close for BTG01 
(69 ha in 2015–2016; 73 ha in 2016–2017), BTG02 (22 ha 
in 2015–2016; 34 ha in 2016–2017) and BTG03 (51 ha in 
2015–2016; 49 ha in 2016–2017), but their location slightly 
changed with an overlap of 55%, 16% and 63%, respectively.

Feeding and roosting home ranges

For each bird, the number of GPS fixes at roost and on feed-
ing areas was similar, allowing us to compare the size of 
FHR and RHR (Table 1). The number of GPS locations 
between birds was not comparable both for roosting and for 
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feeding fixes, but our dataset is large enough not to bias 
the estimation of the utilization distributions between birds 
(see above). The mean size of RHR (kde 95%) and RCA 
(kde 50%) were 211 ± 35 ha (min–max 161–250 ha) and 
33 ± 12 ha (min–max 19–48 ha), respectively (Fig. 3). The 
birds used between six and ten different roosts all around the 
bay according to individual. During neap tide, they remained 
in the upper part of the intertidal area but during spring tide, 
they only roosted in marshes within the Nature Reserve or 
in saltpans. The mean size (± SE) of FHR (kde 95%) and 
FCA (kde 50%) were 340 ± 105 ha (min–max 167–478 ha) 
and 43 ± 21 ha (min–max 13–69 ha), respectively (Fig. 2). 
The FHR and RHR overlapped only on the upper part of the 
intertidal area during neap tide, particularly on an elevated 
sandflat in front of the Nature Reserve.

Rhythm of feeding activity

According to GPS fixes located on potential feeding areas, 
godwits fed during approximately 6–7  h by tide cycle 
(Fig. 4). The presence time of birds on the mudflats was 
not symmetrical around low tide, with a feeding period of 
2–3 h before low tide and 3–4 h after. Beyond this general 
pattern, the duration of use of the mudflats seems to differ 
between individuals, with an arrival of birds on the feeding 
areas generally more synchronous (between − 4 and − 2 h in 
tidal cycle) than the return towards roosting places (between 
2 and 5 h in tidal cycle). BTG05 spent less time than other 
birds on feeding areas, with a maximum value of 80–85% of 
its time on intertidal areas during the low tide.

Prey availability and feeding home ranges

A total of 19 stations located in FCA were retained to 
describe habitat quality within the FHR (between two 

and nine stations per FCA per bird). A total of 16 bivalve, 
five gastropod, 32 annelid and 1 nemert species or taxa 
were identified for all sampled stations (Table S4). Three 
bivalve species were largely abundant: Cerastoderma edule 
(mean minimal and maximal densities for individual FCA: 
98–274 ind  m−2), Ruditapes spp. (12–62 ind  m−2) and Scro-
bicularia plana (0–154 ind  m−2); but differed between habi-
tats. Among gastropods, only Hydrobia ulvae was largely 
abundant (22–468  ind   m−2). Among annelids, the most 
abundant species were Capitellidae sp. (0–180 ind  m−2), 
Cirriformia tentaculata (0–25 ind  m−2), Hediste diversi-
color (0–117 ind  m−2), Nephtys hombergii (11–41 ind  m−2), 
Notomastus latericeus (2–82 ind  m−2), Owenia fusiformis 
(8–46 ind  m−2), Scoloplos armiger (0–462 ind  m−2) and 
Arenicola marina (2–10 ind  m−2). The size of bird FCA was 
not related to the mean abundance of polychaete biomass 
inside predefined core areas (t = 0.80, df = 4, p value = 0.47, 
Fig. 5).

Foraging habitat selection

Eleven habitats were identified and delimited on the inter-
tidal areas of both study areas, with marked differences 
between ‘La Loge’ and ‘Fier d’Ars’ (Fig. 6). On ‘La Loge’, 
two habitats of intertidal muddy sand (A2.242 and A2.231; 
EUNIS Typology) and one habitat of barren littoral coarse 
sand (A2.221) were described. Outside the ‘Fier d’Ars’, a 
last type of intertidal habitat, mainly composed of rocky ele-
ments, was represented on the area of ‘La Loge’ composed 
by littoral rockpool communities: A1.41 (Fig. 6a). The ‘Fier 
d’Ars’ was muddy prevailing facies, largely dominated by 
seagrass beds on muddy sand (A2.6111) and oyster parks 
on muddy foreshore (A2.32). The rest of intertidal areas on 
‘Fier d’Ars’ was characterized by bare muddy sand habitats 

Table 1  Feeding and roosting home ranges sizes of Bar-tailed Godwits per winter

CA core area (kde 50%), HR home range (kde 95%)

Feeding Roosting

Bird id Bill 
length 
(mm)

Year Period No. of days GPS fixes CA-50% (ha) HR-95% (ha) GPS fixes CA-50% (ha) HR-95% (ha)

BTG01 91.5 2015–2016 Oct–Mar 156 1388 69 478 1247 45 214
2016–2017 Aug–Mar 208 4045 73 408 3469 34 210

BTG02 105 2015–2016 Oct–Mar 170 1347 22 363 1138 48 250
2016–2017 Jun–Feb 247 1627 34 233 1786 26 149

BTG03 99 2015–2016 Oct–Mar 153 824 51 287 740 30 175
2016–2017 Aug–Mar 227 761 49 297 672 34 172

BTG04 101 2015–2016 Nov–Mar 136 2171 54 396 1663 36 234
BTG05 95 2015–2016 Nov–Mar 139 1823 13 167 2063 19 161
BTG06 101 2016–2017 Nov–Mar 137 3524 49 350 2383 21 231
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(A2.242 and A2.313) and rocky habitats (A1.11 and A1.4; 
Fig. 6b).

There was a strong habitat selection by the six godwits 
(χ2 = 86,441.52, df = 54.0, p < 0.001) and habitat selec-
tion was not identical among all individuals (χ2 = 9618.85, 
df = 45.0, p < 0.001; Supplementary material Table S3). 
Three habitats were preferentially used by females: sea-
grass beds in muddy sand (A2.6111) dominated by poly-
chaetes, oligochaetes and molluscs; sandflat dominated by 
C. edule and polychaetes (A2.242); and Mudflat dominated 
by H. diversicolor and S. plana (A2.313; Global Selection 
Ratios > 1; Fig. 7, Supplementary material Fig. S3). Con-
versely, the habitats of muddy sand dominated by poly-
chaetes Nephtys cirrosa and S. armiger (A2.231), fucoids 
on sheltered marine shores (A1.31) and oyster parks (A2.32) 
were globally avoided (Global Selection Ratios < 1), but 
confidence intervals indicate their marginal use by some few 
birds (Fig. 7, Supplementary material Fig. S3). The four 
remaining habitats were clearly avoided (Global Selection 
Ratios and IC < 1).

The Eigen analysis highlighted that two factors mainly 
explained the habitat selection, with 90.2% of information 
explained by the first axis and 6.2% by the second one. The 
results show that birds much more frequently used habitats 
A2.6111, A2.242 and A2.313. BTG01, BTG03 and BTG06 
used preferentially the seagrass beds (A2.6111; Fig. 8), 
BTG04 favored sandflat (A2.242), and BTG02 and BTG05 
did not selected one specific habitat but combined the use of 
A2.611, A2.242 and A2.313 (intertidal muddy sand domi-
nated by H. diversicolor, M. balthica and S. plana). With-
out highlighting groups of birds, the Eigen analysis under-
lies a variability in habitat selection between individuals, 
with a ‘continuum’ along the second axis between habitats 
A2.6111, A2.242 and A2.313. Differences in the proportion 
of each habitat in the FCA confirmed a specific pattern of 
habitats combination for each individual, all-different from 
each other (Fig. 7).

Discussion

This study on Bar-tailed Godwits, enabled by GPS-tracking 
technology recently adapted to medium size shorebirds, 
highlighted the individual use of foraging patches during 
the almost entire non-breeding period, sometimes consistent 
from year to year, and showing a specific combination of 
habitats used among all suitable ones. Although our analy-
sis was based on six birds, thus calling for further research 

to strengthen our conclusions, it underlines the high fidel-
ity of some individuals of godwits to their feeding grounds 
during the non-breeding period. Indeed, on a small winter-
ing site, tracked godwits were restricted to small foraging 
areas and did not exploit all suitable areas. In addition, at 
least three of the six monitored birds used the wintering 
site for two consecutive year, and with a high fidelity for 
their respective foraging home ranges. It also demonstrates 
a specific combination of foraging habitats used by each 
bird monitored, supporting the idea of a specialization on 
preys at the individual scale (Sutherland et al. 1996; Durell 
2000). Previous studies showed that during winter, godwits 
feed predominantly on worms, wherever their distribution 
along the European costs (Evans 1976; Scheiffarth 2001; 
Duijns et al. 2013). On Ré Island, other studies confirmed a 
diet largely composed of worms, whether on the site of ‘La 
Loge’ or ‘Fier d’Ars’ (Aubouin 2014; Bocher et al. 2014; 
Duijns et al. 2014). Consequently, the spatial distribution 
of birds on mudflats could be linked to a specialization on 
feeding habitats, and more precisely on particular species of 
annelids, the largely dominant prey in their diet.

Adult godwits were overwintering on Ré Island between 
August and March. The peak number of birds at the study 
site was observed in mid-January, with a mean of 641 ± 85 
individuals (over the period 2000–2016). Considering a total 
feeding functional area estimated to 900 ha on Ré Island 
(Aubouin 2014), the density of godwits on the island is 
then estimated to ca. 0.7 ind  ha−1 in the middle of winter. 
This density is the highest (by 2–7 times) of the four main 
wintering sites located inside the Pertuis Charentais area: 
Aiguillon Bay (0.3 ind  ha−1), Yves Bay (0.1 ind  ha−1) and 
Marennes–Oléron Bay (0.3 ind  ha−1). The mean godwit den-
sities measured in the Dutch sectors of Wadden Sea was 
estimated to 9.5 ± 1.5 ind  ha−1 in May (Duijns and Piersma 
2014) and around 1.5–4.5 ind  ha−1 between July and Sep-
tember (Folmer et al. 2010, van den Hout and Piersma 2013). 
During these pre- and post-migration periods, both subspe-
cies are present and denser than during the winter period. 
Therefore, although the carrying capacity appears lower 
than observed at other times of the year in the Wadden Sea, 
the site of Ré Island seems to offer habitats of good qual-
ity for godwits at the local scale. More specifically, despite 
the restricted surface of sand and mudflat areas, quality and 
availability of trophic resources on Ré Island appears high 
enough to allow high bird densities. The observed fidelity of 
individuals to their feeding grounds on such a small site with 
a patchwork of diversified habitats suggests that birds spe-
cialize in prey species to maintain sufficient energy intake 
rates and ensure their survival (Catry et al. 2014; Ceia and 
Ramos 2015). Indeed, such a specialization could reduce 
intraspecific competition and restrict individuals to specific 
FCA, explaining the low overlap observed (48%) between 
our tagged birds (Kouba et al. 2017). A higher number 

Fig. 2  Feeding home range (FHR) of three Bar-tailed Godwits during 
two successive wintering periods on Ré Island. Home ranges were 
calculated as 50% (core area) and 95% (Home Range) kernel density 
contours

◂
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Fig. 3  Feeding home range (FHR) and roosting home range (RHR) of six Bar-tailed Godwits monitored during the non-breeding period on Ré Island. Home ranges 
were calculated as 50% (core area) and 95% (home range) kernel density contours
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of birds monitored would most likely have resulted in an 
increased overlap between individual FHR. This is sup-
ported by the density of birds observed on site during the 
winter, especially on ‘La Loge’ were godwits are usually 
observed in flocks, unlike in the ‘Fier d’Ars’ (P. Bocher, 
com. Pers.). Nevertheless, the distinct feeding distribution 
observed on six birds using the same roosts confirms the 
non-gregarious pattern of foraging godwits, at least inside 
the ‘Fier d’Ars’.

In addition to use the same restricted feeding area during 
the non-breeding period, godwits which provided locations 
for two consecutive winters (n = 3) showed a high inter-
annual overlap in their FHR. Previous studies have reported 

fidelity of shorebirds to their non-breeding site but only a 
few highlighted faithfulness to specific feeding and roosting 
sites, both within and between winters (Conklin and Battley 
2011; Coleman and Milton 2012). Based on GPS telemetry, 
our study help to fill this gap at the patch scale. Indeed, in 
this study, we show a high fidelity of godwits to their roost-
ing and feeding home ranges, with a less marked but still 
important inter-annual fidelity to feeding core areas. This 
highlights the abilities of godwits to specialize on particular 
set of foraging habitats, and calls for future research stud-
ies to explore the high degree of individual specialization 
on preys, all along their life in long-lived species such as 
shorebirds.

Fig. 4  Proportion of time spent 
by six Bar-tailed Godwits on 
mudflats, i.e., feeding, during 
the tidal cycle

Fig. 5  Size of individual 
feeding core area (FCA—core 
area) as a function of the mean 
polychaete biomass at each 
individual core area
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Fig. 6  Habitat typology at a Ré Island, b ‘La Loge’ and c the ‘Fier d’Ars’

Fig.7  Proportion of habitat types in feeding core area (FCA) of each 
Bar-tailed Godwit. The FCA estimated through the kernel method, 
was crossed with the typology of habitats, and give the surface pro-

portion (%) of each habitat in this main spatial delimitation of for-
aging. This description of represented habitats inside the FCA is a 
proxy of the foraging habitat selection by each godwit
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Our results also highlight that the surface of wintering 
home ranges for godwits wintering on Ré Island was small 
(< 600 ha) in comparison to others shorebirds species as 
Dunlin Calidris alpina and Red Knot Calidris canutus. For 
instance, the home range of dunlin ranged from 1080 to 
56,470 ha according to the study area (Sanzenbacher and 
Haig 2002; Shepherd and Lank 2004; Taft et al. 2008; Choi 
et al. 2014) and the home range of red knot could range 
from 1000 to 80,000 ha (Piersma et al. 1993; Leyrer et al. 
2006). This large home range size variability among dunlin 
and red knot are due to differences in habitats and feeding 
conditions (Piersma et al. 1993; Choi et al. 2014). Neverthe-
less, these species foraged in large flocks and birds moved 
according to group decision from one place to another (van 
Gils et al. 2015). Among close related species of godwit, the 
feeding home range of the Marbled Godwit Limosa feoda 
was estimated to 672 ha on Larnack Reef, a stable island 
near a highly dynamic intertidal area (Gulf of Mexico; Gab-
bard et al. 2001). In this study, the home range estimation 
was produced with convex polygons, which differ from our 
method (kernel home range), but the order of magnitude is 
more similar to our results. FHR of godwits wintering on 
Ré Island thus appeared spatially restricted, reinforcing the 
idea of bird fidelity to their foraging areas and a supposed 
specialization on foraging habitats and prey species at the 
individual scale at Ré Island.

Estimation of FHR also showed a strong variability 
between individuals with low overlaps highlighting distinct 
areas prospected by godwits, while RHR showed a large 

mean inter-individual overlap (69%). Roost sites located at 
Western side of the study site mainly corresponded to for-
mer saltpans inside the Nature Reserve (‘Lilleau des Niges’), 
known to hold most of the shorebirds at spring high tide 
(J-C. Lemesle, com. Pers.). Roosting areas located at the 
Eastern side are not protected, and birds no longer use them 
during high water levels of spring tide. The alternating use 
of these roosts likely depends on the accessibility during the 
tidal cycle, as the roosts at Eastern side are located closer to 
the foraging sites. The short distances between roosting and 
feeding grounds could be one of the main factors driving 
the spatial distribution of wintering shorebirds (Morrison 
and Harrington 1979), reducing flight distanceand associ-
ated loss of energy and predator exposure (Si et al. 2011; 
Novaes and Cintra 2013). Our results suggest similar pro-
cesses in godwits on Ré Island. Feeding patterns identified 
in our study confirm that godwits start to feed between two 
and three hours after high tide, present on feeding areas for 
four to six hours before to join roosting areas (Lindisfarne, 
Northumberland—England; Smith and Evans 1973). Despite 
spatially restricted home ranges, godwits devote almost 
all of their time for foraging (> 85%) during the complete 
access to mudflat, both day and night. This result suggests 
that birds have to optimize prey collection throughout their 
accessibility to achieve a sufficient intake rate and satisfy 
their energy needs.

Beyond the time spent foraging and according to the 
optimal foraging theory, godwits are predicted to optimize 
their prey intake rate by selecting specific feeding habitats 

Fig. 8  Results of the Eigen 
analysis of selection ratios 
highlighting habitat selection 
by six Bar-tailed Godwits on 11 
habitat types. a Habitat types 
projected along the first two 
factorial axes and b bird scores 
on the first factorial plane. The 
analysis produced two factors 
(the two axis) to explain the het-
erogeneity of habitat selection. 
These two factors constitute the 
first factorial plane on which the 
habitats, which compose it, are 
projected, and birds are posi-
tioned in this plane described by 
habitats
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of higher quality (Evans 1976).Godwits preferentially used 
3 of the 11 identified habitats in our study site. Three birds 
preferentially selected habitat associated with eelgrass beds 
(A2.6111) where annelid abundance is high. Habitat com-
posed mainly of C. edule and polychaetes (A2.242), and 
habitat composed mainly of H. diversicolor, M. balthica and 
S. plana (A2.313), were also selected by most of the birds. 
The inter-individual variability observed in habitat selec-
tion reinforces the hypothesis that individuals may specialize 
in particular polychaete prey species to limit competition 
(Durell 2000) and/or optimize intake rate by experience on 
catching abilities on particular prey species (Bolnick et al. 
2003). Selection of specific prey or substrate could also 
explain the differences observed in the size of feeding core 
areas. However, and conversely to our hypothesis, our results 
did not show a significant negative relationship between the 
biomass of polychaetes and the size of bird feeding areas. An 
alternative hypothesis is that polychaete intake rates could 
not directly reflect worm abundance but rather the availabil-
ity and catchability of certain species in the sediment. Thus, 
it could be more difficult for birds to extract polychaetes in 
some habitats due to the worm depth or the substrate hard-
ness (Finn et al. 2008), or due to prey behavior (Duijns and 
Piersma 2014), which would lead to an increased foraging 
and prospecting effort to achieve sufficient intake rates to 
fulfill bird daily energy requirements.

This study was carried out on female adults only, and 
results cannot be extrapolated to males. Indeed, a large 
sexual dimorphism exists in godwits with females being on 
average 1.25 times larger than males, leading to contrasting 
foraging strategies (Pierre 1994; Duijns et al. 2014). Simi-
larly, juveniles show a lack of experiencewhen arriving for 
the first time on unknown wintering site which might affect 
their foraging behavior and habitat use (Durell 2000; van 
den Hout et al. 2014). Further investigations performed 
on different stages and including both sexes will thus be 
required when the miniaturization of GPS data logger will 
be improved, to have a complete understanding of wintering 
strategies in this near-threatened species (BirdLife Interna-
tional 2017).

Bird specialization on particular prey or habitats implies 
knowledge of their distribution and the way to exploit 
them (Bolnick et al. 2003). Individuals can optimize their 
movement and maximize their foraging gain ratio. Thus, 
important changes in the quality and distribution of trophic 
resources, under the effect of anthropogenic disturbances, 
could modify bird energy intakes and jeopardize their win-
ter survival and subsequent migration and reproduction 
(Gunnarsson et al. 2006). In a context of rapid environmen-
tal modifications of coastal habitats (Ivajnšič et al. 2018; 
Leo et al. 2019), expected degradations could result in an 
increased competition for the remaining resources. Conse-
quently, any increase in bird density may have a marked 

effect on these habitats and individuals with specialized diet 
and feeding methods will be the first impacted, particularly 
if they are of lower social status (Durell 2000). This study 
thus confirms the importance of maintaining a good quality 
of wintering habitats, especially on intertidal habitats fac-
ing high human pressures such as professional or recreative 
on-foot fishing, roost-disturbing hunting activities, nautical 
activities and tourism.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s1033 6-021-01873 -1.
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