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Abstract
Sexually and socially selected signals are predicated to express the present and past condition of individuals and thereby their 
capacity to cope with environmental challenges. The concentration of corticosterone in feathers (CORTf) has been validated 
as a marker of activation of the hypothalamic-pituitary axis in birds during feather development. Measurements of CORTf 
can thus express the physiological stress of migratory birds during non-breeding periods of the annual cycle when feathers 
moulted in the wintering range are analysed. Thus, negative trends of ornament expression with CORTf may be predicted. 
Unpigmented plumage patches may constitute signals of phenotypic quality and are used in many species in social interac-
tions by both sexes. Pied Flycatchers of both sexes Ficedula hypoleuca show white forehead and wing patches during the 
breeding season, of which the forehead and part of the wing patch (tertials) are moulted on the wintering grounds before 
spring migration. These patches are used as signals in social and sexual interactions and their expression has been previ-
ously related to several indicators of physiological status. We collected tertials of females during nestling provisioning in a 
Spanish population and determined their CORTf in the laboratory. CORTf was thus measured in some of the prenuptially 
moulted feathers used as signals of social dominance by breeding females. According to AICc model selection, CORTf 
turned up in all the best models explaining forehead patch size and in most best models for wing patch size when controlling 
for age and size. Both forehead and wing patch sizes were negatively related to CORTf, although the trend for wing patch 
size was not significant. This indicates that breeding females expressing large unpigmented patches experienced low levels 
of stress during the prenuptial moult in their winter quarters, or that strongly signalling individuals present a lower level of 
activation of the HPA axis.
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Zusammenfassung
Das Ausmaß der weißen Flecken im Gefieder von weiblichen Trauerschnäppern (Ficedula hypoleuca) korreliert 
negativ mit der Kortikosteronkonzentration in teilweise pigmentfreien Federn.
Soziale und für das jeweilige Geschlecht selektierte Signale sollen die gegenwärtige und vorangegangene Verfassung von 
Individuen anzeigen und damit ihre Fähigkeit, mit den Herausforderungen der Umwelt fertigzuwerden. Die Konzentration 
von Kortikosteron in den Federn (CORTf) wurde bei Vögeln während der Federentwicklung als Marker für die Aktivierung 
der Hypothalamus-Hypophysen-Achse validiert. Messungen des CORTf können daher den physiologischen Stress von 
Zugvögeln im Jahreszyklus außerhalb der Brutzeiten ausdrücken, wenn man im Überwinterungsgebiet bei der Mauser aus-
gefallene Federn analysiert. Somit können möglicherweise negative Trends im gesamten Federkleid vorhergesagt werden. 
Unpigmentierte Stellen im Gefieder können Signale der phänotypischen Qualität darstellen und werden bei vielen Arten 
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in sozialen Interaktionen von beiden Geschlechtern verwendet. Trauerschnäpper (Fidecula hypoleuca) beider Geschlechter 
zeigen während der Brutzeit weiße Stirn- und Flügelflecken; die Federn an Stirn und Teilen der Flügel mausern im Win-
terquartier vor Beginn des Frühjahrszuges. Die Flecken werden in sozialen Interaktionen und zwischen den Geschlechtern 
als Signal eingesetzt, und ihr Ausprägungsgrad wurde bislang mit mehreren Indikatoren für die physiologische Verfassung 
in Verbindung gebracht. Wir sammelten die Federn von Weibchen einer spanischen Population während des Nestbaus und 
bestimmten deren CORTf im Labor. Somit wurde CORTf in Federn aus der Mauser vor der Begattung gemessen, die von 
brütenden Weibchen als Zeichen ihrer sozialen Dominanz benutzt werden. Bei der Prüfung des Alters und der Körpergröße 
tauchte unter den AICc-Modellen die CORTf zur Erklärung der Größe des Stirnflecks in allen bestgeeigneten Modellen auf, 
zur Erklärung der Größe der Flügelflecken in den meisten bestgeeigneten Modellen. Die Größe sowohl der Stirn- als auch 
der Flügelflecken korrelierte negativ mit CORTf, letztere allerdings nicht signifikant. Dies deutet darauf hin, dass brütende 
Weibchen mit großen pigmentfreien Flecken während der ersten Mauser im Winterquartier einem niedrigen Stresslevel 
ausgesetzt waren, oder dass starke Signale aussendende Einzeltiere ein niedrigeres Aktivitätsniveau der Hypothalamus-
Hypophysen-Achse aufweisen.

Introduction

Sexually and socially selected signals are predicated to 
express the present and past condition of individuals and 
thereby their capacity to cope with environmental challenges 
(Andersson 1994; West-Eberhard 1979). Glucocorticoid 
hormones mediate relationships between an organism and its 
environment and their activity could be related to signaling 
strength. The main glucocorticoid in birds, corticosterone 
(CORT), has been related to the capacity to sustain envi-
ronmental and nutritional stress (Wingfield 2013; Sapolsky 
et al. 2000). Potential or actual adverse environmental con-
ditions requiring reallocation of resources or functions to 
immediate survival usually result in activation of the hypo-
thalamic-pituitary axis (HPA) and thus in elevated CORT 
(Wingfield 2013; but see Dickens and Romero 2013). Usu-
ally CORT has been measured in plasma of wild birds imme-
diately or sometime after capture (Sapolsky 1982; Wingfield 
et al. 1982; Wingfield and Romero 2001), although con-
centration in faeces and other biological materials includ-
ing feathers has also been estimated (e.g.,Möstl et al. 2005; 
Bortolotti et al. 2008). Measuring corticosterone in feathers 
(CORTf) has become a useful method for studying responses 
to environmental conditions during moult (Romero and Fair-
hurst 2016), although some problems have been noted with 
this technique (e.g., Harris et al. 2016). CORTf has been 
experimentally shown to be the best feather steroid marker 
for detecting nutritional stress in young (Will et al. 2019) 
and adult birds (Grunst et al. 2015). In general, CORTf 
has shown negative associations with fitness-related traits 
(Harms et al. 2015; Lodjak et al. 2015; Mougeot et al. 2016).

CORTf denotes conditions during moult of ornamental 
plumage in conditions which may be similar or different 
from the mating period when signals are exhibited (Jenkins 
et al. 2013). This variation may relate to migratory strat-
egy and environmental variability in relation to timing of 
moult. In general, a poor condition during moult may imply 
impaired ability to cope with the environment at that time, so 

CORTf should be related to conditions at the time of moult 
of analyzed feathers (Romero and Fairhurst 2016). For plum-
age signals to be informative about individual condition or 
quality in the mating season, CORTf should show a negative 
association with the ornamental plumage trait that includes 
the analyzed feathers if condition at moult has some predic-
tive value for breeding condition.

There is yet scant information on the association of 
CORTf with other than carotenoid-based plumage col-
ours of adult birds. The extent of white plumage patches 
has been shown to be condition-dependent (D’Alba et al. 
2011) and predict reproductive success (Doucet et al. 2005). 
White patches in otherwise melanised feathers are common 
across many avian taxa and have been negatively related to 
feather resistance to mechanical stress (Bonser 1996) and 
to microbial degradation because of their lack of melanin 
(Ruiz-de-Castañeda et al. 2012, 2015). Larger white patches 
or spots may therefore be costly and evolve as honest sig-
nals of plumage quality in both sexes (Hegyi et al. 2008; 
Zanollo et al. 2012). The capacity to moult partly unpig-
mented feathers may be related to nutritional stress or to 
the capacity to sustain such stress during moult itself. If 
large white patches constitute honest signals of stress avoid-
ance capacity, we should expect the extent of such patches 
to be negatively related to levels of stress during moult as 
expressed by CORTf.

Some migratory birds moult their nuptial plumage at 
the winter quarters prior to migrating to the breeding range 
(Ginn and Melville 1983). Measuring CORTf in these nup-
tial feathers thus gives an indication of stress experienced 
in the wintering range before migration in these species. In 
some species like the Pied Flycatcher Ficedula hypoleuca, 
both males and females acquire in Africa part of their body 
plumage, including the forehead, and the tertials, before 
migration (Lundberg and Alatalo 1992). The extent of the 
achromatic forehead patch and of the white parts of tertials 
differs between sexes and populations, with males presenting 
much larger patches and larger tertials overall than females 
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(in some populations, no female presents a forehead patch, 
Lundberg and Alatalo 1992) and birds of southern popula-
tions presenting larger unpigmented patches than in north-
ern ones (Curio 1960; Alatalo et al. 1984; Lehtonen et al. 
2009; Laaksonen et al. 2015; Cantarero et al. 2017). The 
extent of achromatic plumage patches in females is pheno-
typically plastic (Morales et al. 2007a; Moreno et al. 2019) 
and has been related to age (Morales et al. 2007a; Potti et al. 
2013), reproductive success (Morales et al. 2007a), social 
dominance (Cantarero et al. 2017; Plaza et al. 2018), health 
(Morales et al. 2007a), testosterone levels (Moreno et al. 
2014; Cantarero et al. 2017) and oxidative stress (Moreno 
et al. 2013; López-Arrabé et al. 2014). A large part of the 
white wing patch is composed by the unpigmented parts of 
the ornamental tertials (60% on average in our population, 
Cantarero et al. 2017), while the rest is composed of the 
white bands on primaries and secondaries which are moulted 
in the postnuptial moult in the breeding range (Cantarero 
et al. 2017). While other studies have measured the UV 
reflectance of these patches as part of its signaling value 
(e.g., Cantarero et al. 2017), here we will only consider their 
size.

In the present study, we have measured concentration of 
CORTf in tertials of females captured during the breeding 
season while provisioning young at the nest in a Spanish 
population of Pied Flycatchers. We have also measured 
in these females the size of the white forehead and wing 
patches. Thus CORTf is estimated in some of the feathers 
moulted in Africa prenuptially, the extent of whose white 
patches is also measured. Our prediction is that females with 
the largest white patches on forehead and wing in the breed-
ing season will present low levels of CORTf in prenuptially 
moulted feathers.

Material and methods

General field methods

The study was carried out in 2019 at the Lozoya study site 
(central Spain, 40°58′N, 3°48′W, 1400–1500 m a.s.l), where 
a long-term study of Pied Flycatchers is being conducted 
(Moreno 2015, 2020). The habitat is montane deciduous 
forest of Pyrenean Oak Quercus pyrenaica, where 100 nest-
boxes were installed in an area covering roughly 85 ha (for 
size and other properties on nest-boxes see Lambrechts et al. 
2010). Nest-box occupation has been checked every year 
since 2001. The breeding period of the species lasts from the 
middle of April when the first males arrive from migration, 
to the beginning of July when most chicks have fledged. We 
clean all nest-boxes every year after breeding is over. Regu-
lar checking from April 15 to the end of the breeding period 

is done to detect the presence and settlement of every fly-
catcher breeding pair. The number of Pied Flycatcher nests 
was 41 in the study year.

Capture and sampling

Females were captured in their nest boxes while feeding 
7–8 days nestlings (fledging takes place 16–19 days after 
hatching, Moreno 2020) during daytime, using conventional 
nest-box traps set at the entrance (Moreno 2020). The trap 
was removed once both adults were trapped or after a maxi-
mum of 1 h. All females were ringed or identified by their 
rings. Tarsus length was measured with a digital calliper 
and wing length with a stopped ruler following Svensson 
(1984). Digital photographs of the forehead patch, if present, 
and of the right white wing patch were taken from above at 
distances of 10 cm from the bird with a ruler aligned beside 
the head or wing for reference. The wing was completely 
extended when taking the photograph. All photographs were 
taken during the morning hours with the same digital cam-
era and following the method described in previous studies 
(Moreno et al. 2014; Cantarero et al. 2017; Plaza et al. 2018). 
Surfaces of the forehead and wing patches were estimated 
with Adobe Photoshop CS5 v.11.0. following Sirkiä et al. 
(2015). We also estimated the total area of the tertials and 
of their white parts separately. We could establish the exact 
age of individuals only if they had been ringed as nestlings. 
Age for unringed birds was estimated assuming they were 
2 years when captured for the first time as breeders in the 
area, as half of recruits in the population are first captured 
as breeders at this age (Moreno et al. 2015). After measure-
ments and before release, the three tertials on each wing 
were removed with scissors at the rachis. Many males and 
some females overlap moult of wing feathers and nestling-
provisioning (Morales et al. 2007b), so the manipulation can 
be considered mild. Moreover, tertials are less important for 
flight than primaries and secondaries.

Corticosterone extraction

A methanol-based extraction technique was used to extract 
CORTf, since steroid hormones are generally soluble in 
polar alcohols such as methanol (Pötsch and Moeller 1996). 
All glassware used for CORT extraction was silanized 
using 1% v/v dichloromethylsilane ((CH3)2SiCl2) in hexane 
(C6H14), rinsed twice with methanol, and air-dried. Silani-
zation prevents CORT from adhering to glassware and was 
shown to significantly reduce losses of CORT during the 
extraction process (Bicudo et al. 2020; Kouwenberg et al. 
2015).

To measure CORTf levels, we followed the protocol of 
Bortolotti et al. (2008) with some modifications as described 
below. Concentrations were normalized by mass of feathers 
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allowing for the representation of CORT levels per unit mass 
(pg/mg) (Freeman and Newman 2018), and controlling that 
we obtained a small range of pooled feather masses per indi-
vidual (11.2 ± 1.9 (Mean ± SD) mg) to avoid potential con-
founding effects on CORTf (Romero and Fairhurst 2016). 
Although Bortolotti et al. (2008) suggested that CORT val-
ues should be corrected for the length of the feathers rather 
than mass, all the feathers from the same individual were 
pooled before extraction and the sum of lengths could be 
estimated less reliably than the pooled mass (Koren et al. 
2012; Lendvai et al. 2013; Sepp et al. 2018). The calamus 
was removed and the feather vanes and the rachis cut into 
small pieces (< 5 mm) with scissors. All feathers per individ-
ual were pooled and weighed in tared silanized glass tubes. 
To these were added 6 ml of methanol, after which the tubes 
were capped with a rubber plug crossed with two syringe 
needles and parafilm to avoid evaporation, and incubated 
for 30 min in an ultrasound water bath at room temperature. 
The tubes were left overnight (around 19 h: from 15:00 to 
10:00) in a shaking (60 rpm) water bath at 50 °C. They were 
then decanted into a syringe. Tubes were then washed with 
2 additional ml of methanol, vortexed and to them added the 
previous extract, after which they were filtered using a nylon 
syringe filter (0.45 µ). They were placed in a heated block at 
50ºC under a stream of nitrogen until evaporation which took 
approx. 50 min. The dried extracts were then resuspended 
in 150 µl of steroid-free serum (DRG, Germany) and vigor-
ously vortexed for 10 min. The reconstituted samples were 
frozen at –20° in microtubes.

Corticosterone quantification

To measure CORTf concentrations we used an enzyme 
immunoassay (EIA-4164 DRG, Germany) following kit 
protocol. Inter-assay variability was assessed using the coef-
ficient of variation (CV) of two known controls. Samples, 
controls and standards were run in duplicate across nine 
assays with a mean intra-assay CV of 14.65% and interas-
say CV of 7.321%. All samples were above detection lim-
its (1.1 pg/ml). Serial dilutions of an extraction pool were 
included in the assay to test the linearity with the correlation 
line between expected and observed concentration of CORT 
in the dilutions using the set ratios performed (y = 1.382×—
0.709, r2 = 0.969). A Synergy HT Multi-Mode Microplate 
Reader (Biotek, USA) at 450 nm was used. All samples, 
standards and controls were measured in duplicate to calcu-
late intra- and inter-plate % CV.

Assay plates can differ in factors, such as temperature, 
which in turn can affect the amount of hormone found in 
each feather (Bosholn et al. 2020). There was a significant 
association of CORTf with plate (F2,32 = 4.07, p = 0.026). 

There was no significant association of CORTf with the 
mass of the tertials analysed (r33 = 0.028, p = 0.873).

Statistical analyses

We hypothesized that the size of the white patches should be 
related to CORTf when controlling for age and size of the 
female. As plumage traits we included the size (cm2) of the 
forehead patch and the first Principal Component extracted 
from the following variables related to the size of the wing 
patch: total area of the white patch including flight feathers 
(cm2), total area of the tertials including melanised parts 
(cm2), size of the white parts of tertials (cm2), proportion 
of the total wing patch made up by the white parts of ter-
tials and the proportion of tertials that were white. The first 
proportion estimates the relative importance of tertials as 
part of the signal made up by the flicking wing, while the 
second addresses the relative importance of the achromatic 
part of the feathers in which CORTf is measured. The main 
axis (WPC1) explained 54.4% of the total variation and 
showed strong negative associations with total wing patch 
area (r = − 0.95) and tertial white patch area (r = − 0.97), and 
less strong with total tertial area (r = − 0.67) and proportion 
white on tertials (r = − 0.64). It can be defined as an inverse 
index of investment in wing patches.

Both forehead patch size and WPC1 were normally dis-
tributed (Kolmogorov–Smirnov, p > 0.20). Model selection 
in the GLIM module of the STATISTICA package was 
conducted independently for the two plumage patches (nor-
mal distribution, identity link function), using AICc (AIC 
corrected for small sample sizes) to estimate the relative 
strength of the associations with individual female traits 
including CORTf. To estimate body size, we used the first 
PC derived from wing length and tarsus length as these vari-
ables were positively correlated (r33 = 0.63, p < 0.001). PC1 
Size accounted for 81% of the variation in both size esti-
mates and showed positive correlations with both tarsus and 
wing length (r = 0.90 in both cases). The independent traits 
included in GLIM analyses were thus age, SizePC1 and 
CORTf. Two and three-way interactions between independ-
ent variables were included in model selection. Correlations 
between the independent variables were lower than 0.27 and 
non-significant. Only models showing differences in AICc 
lower than 2 with the best model (that with the lowest AICc 
value) will be presented in "Results". The significance of 
the models was estimated through the p value associated 
with the associated Log-likelihood ratio χ2. The sign of the 
associations of the size of the two patches with CORTf was 
obtained from linear correlation analysis.

To control for effects of plate, model selection without 
interactions was conducted on data on age, size and CORTf 
from the two most common plates separately (n = 19 and 
n = 14, respectively).
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Results

T h e  m e a n  m a s s  o f  t e r t i a l s  a n a ly z e d  wa s 
11.57 ± SD1.56 mg. The mean concentration of CORT in 
tertials was 24.25 ± SD10.81 pg/mg (n = 35).

The ten best models (deltaAICc < 2) for forehead patch 
size incorporated CORTf (Table 1). In seven of these, interac-
tions between factors were included, with CORTf interacting 
with other variables in five of them. The fourth best model 
included only CORTf. In contrast, body size was included 
in five best models and age only in one. All selected models 
according to AICc were significant (Table 1). For the most 

common plate, the three best models included CORTf. For 
the second most common plate, two of the three best models 
included CORTf and it were the first and second best models.

CORTf was included in the 2 models with lowest AICc 
and in 15 of the 21 best models (deltaAICc < 2) for  WPC1 
(Table 2). Of the 18 models including interactions between 
variables, 14 included interactions involving CORTf 
(Table 2). In contrast, age and body size were included in 
only 8 resp. 6 best models (Table 2). The model with lowest 
AICc included CORTf and was very close to significance 
(Table 2). For the most common plate, one of the three best 
models included CORTf. For the second most common 

Table 1   Selection of 
generalized linear models 
with normal distribution 
and identity link function of 
forehead patch size using AICc 
to estimate the relative strength 
of associations with CORTf, 
female age, individual size 
and their interactions (1 = Age, 
2 = PC1Size, 3 = CORTf)

Only models with AICc differences less than 2 from the best are presented

df AICc χ2 p

PC1Size CORTf 2 − 64.112 9.873285 0.007180
CORTf 2*3 2 − 63.872 9.63189 0.008100
CORTf 1*2*3 2 − 63.458 9.21799 0.009962
CORTf 1 − 63.169 6.92947 0.008479
CORTf 1*2 2 − 63.047 8.80746 0.012232
Age PC1Size CORTf 3 − 62.315 10.07554 0.017935
PC1Size CORTf 1*2 3 − 62.315 10.07525 0.017937
PC1Size CORTf 1*3 3 − 62.249 10.00961 0.018485
PC1Size CORTf 2*3 3 − 62.194 9.95438 0.018958
PC1Size CORTf 1*2*3 3 − 62.117 9.87737 0.019638

Table 2   Selection of 
Generalized Linear Models 
with normal distribution and 
identity link function of wing 
patch size (WPC1) using AICc 
to estimate the relative strength 
of associations with CORTf, 
female age, individual size 
and their interactions (1 = Age, 
2 = PC1Size, 3 = CORTf)

Only models with AICc differences less than 2 from the best are presented

df AICc χ2 p

CORTf 1*2*3 2 92.6620 5.972513 0.050476
Age CORTf 1*2 3 92.8829 7.751609 0.051434
Age 1*2 1*3 3 93.0322 7.602233 0.054989
CORTf 2*3 2 93.0920 5.542434 0.062586
PC1Size CORTf 2 93.1836 5.450845 0.065519
CORTf 1*2 1*3 3 93.2558 7.378677 0.060759
CORTf 1*2 2 93.4268 5.207643 0.073990
Age CORT F 1*2*3 3 93.4659 7.168617 0.066713
CORTf 1*3 1*2*3 3 93.5125 7.121938 0.068111
PC1Size CORT F 1*3 3 93.7367 6.897806 0.075227
Age 1*3 1*2*3 3 93.9599 6.674626 0.083024
Age PC1Size CORTf 3 94.0250 6.609497 0.085443
Age 1*2 2 94.0815 4.553002 0.102643
CORTf 1*3 2*3 3 94.1389 6.495610 0.089836
PC1Size 1 94.3121 2.322342 0.127528
Age CORTf 2*3 3 94.4084 6.226116 0.101113
PC1Size CORTf 1*2*3 3 94.5293 6.105226 0.106601
1*2 1 94.5616 2.072881 0.149938
CORTf 1*2 1*2*3 3 94.5998 6.034719 0.109933
CORTf 2*3 1*2*3 3 94.6617 5.972745 0.112944
Age PC1Size 1*3 3 94.6619 5.972542 0.112954
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plate, three of the four best models included CORTf, includ-
ing the model with lowest AICc.

CORTf was negatively associated with forehead patch 
size (Fig. 1). CORTf was positively although not signifi-
cantly associated with WPC1 (r33 = 0.20, p = 0.27), which 
means a negative association with wing patch size as WPC1 
is an inverse index of wing patch size (see above).

Discussion

Our results indicate that the size of the white forehead patch 
of females is negatively related to levels of CORT in ter-
tial feathers moulted on the wintering grounds. However, 
although CORTf turns up in the best models explaining the 
size of both patches, the association of CORTf with the size 
of the white wing patch is clearly weaker, suggesting that 
other unmeasured factors may be involved in wing feather 
moult.

Several studies have related the coloration of plumage 
ornaments to levels of CORT in adult birds (Kennedy et al. 
2013; Henderson et al. 2013; Saino et al. 2013; Henschen 
et al. 2018; Angelier et al. 2018; Berg et al. 2019; Wind-
sor et al. 2019), or after experimental post-natal exposure 
(Dupont et al. 2019; Fairhurst et al. 2015), although struc-
tural colours have in some cases shown less association with 
CORT (Sarpong et al. 2019). Some of these studies include 
measurements of CORTf. Thus, Grunst et al. (2015) showed 
in Yellow Warblers Setophaga petechia that carotenoid 
hue and chroma correlated negatively with CORTf, while 
phaeomelanin-based pigmentation was unrelated to CORTf. 

Kennedy et al. (2013) showed a negative trend of CORTf 
with the brightness of the red epaulets of male museum 
specimens of Red-winged Blackbirds Agelaius phoeniceus, 
although not with hue and chroma of these ornaments. On 
the other hand, Fairhurst et al. (2014) showed a positive 
association of carotenoid pigmentation and feather quality 
with CORTf in male Common Redpolls Acanthis flammae. 
A similar result was obtained by Lendvai et al. (2013) in 
carotenoid-pigmented House Finch Heamorhous mexicanus 
males. As shown by these disparate results, CORTf can be 
negatively or positively related to signal intensity for carot-
enoid-based signals.

Black, grey, and white plumage (termed achromatic 
plumage) has been shown to have a role in the context of 
status signaling (Senar et al. 2000; Gonzalez et al. 2002). 
The extent of achromatic plumage patches has been related 
to social dominance and mating preferences in both male 
and female birds (Mennill et al. 2003; Woodcock et al. 2005; 
Santos et al. 2011; Crowhurst et al. 2012) and to conspicu-
ousness to predators (Slagsvold and Dale 1996). Due to the 
highly conspicuous contrast between melanistic and white 
body regions, achromatic plumage may be an efficient mode 
of visual communication. Unpigmented feather patches 
may increase conspicuousness towards predators (Dale and 
Slagsvold 1996) or be more easily degradable by bacteria 
because of their lack of melanin (Ruiz-de-Castañeda et al. 
2012). They could thus be costly to maintain and therefore 
represent honest signals of individual quality. If achromatic 
plumage indicates phenotypic quality, white feather patches 
could also be used as signals in social interactions during 
the breeding and non-breeding seasons (Santos et al. 2011). 

Fig. 1   Association of CORTf 
with forehead patch size 
(r = − 0.42, p = 0.011)
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Because individuals of both sexes risk injury during ago-
nistic encounters, these signals could be socially costly to 
maintain and therefore possibly favored by social selection 
in both sexes (Lyon and Montgomerie 2012). According to 
this scenario, we could expect the extent of white plum-
age patches to relate to competitive potential and aggressive 
predisposition.

Female Pied Flycatchers exhibit a conspicuous white 
patch on the wing based on white edges of tertials, and sec-
ondary coverts and white bands on some secondaries and 
primaries (Lundberg and Alatalo 1992). There is a large 
degree of variation in the extent of the white wing patch 
of females, ranging from highly conspicuous badges to 
barely noticeable feather edges (Moreno et al. 2014; Can-
tarero et al. 2017). Some females also exhibit a white fore-
head patch in some populations (Potti 1993; Moreno et al. 
2013). Wing patches are exhibited in social interactions by 
repeatedly flicking the folded or partly folded wings (Curio 
1959, 1978). Females with larger wing patches breed earlier 
and have a higher hatching success (Morales et al. 2007a). 
The extent of the wing patch in females is also positively 
linked to testosterone levels during incubation (Moreno 
et al. 2014; Cantarero et al. 2017) and is related to oxidative 
stress (Moreno et al. 2013; López-Arrabé et al. 2014). The 
extent of the forehead patch is linked to social dominance in 
female-female competitive interactions (Morales et al. 2014; 
Moreno 2015). Moreover, there is strong female intrasexual 
competition for nest cavities during the incubation stage 
(Moreno 2015) as indicated by the intense aggression of 
territorial females towards female intruders during initial 
breeding stages (Breiehagen and Slagsvold 1988; Lifjeld and 
Slagsvold 1989; Morales et al. 2014; Cantarero et al. 2015; 
Moreno et al. 2016). It is therefore reasonable to consider the 
extent of the white forehead and wing patches as indicators 
of individual quality in female Pied Flycatchers.

The size of achromatic patches is determined during 
the yearly partial moult in the wintering areas when body 
feathers and tertials are moulted prenuptially (Lundberg and 
Alatalo 1992). We could expect that poor condition at the 
time of moult in Africa before migration may affect levels of 
plasma CORT as revealed by CORTf in those feathers. By 
analyzing CORTf in tertials we could thus gauge the stress 
experienced by birds at the time of prenuptial moult. We 
found that CORTf was always included in the best models 
including age, body size and CORTf as explanatory vari-
ables of the size of the forehead patch and in most best mod-
els addressing the size of the wing patch. We also identified 
a significant negative association of CORTf with the size of 
the forehead patch. However, the models were more weakly 
related to the size of the wing patch, and its association with 
CORTf was not significant. The wing patch is composed 
of white patches on feathers moulted both on the breeding 
grounds after the previous reproductive season and on the 

wintering grounds (tertials). Thus, we should expect that 
CORTf in tertials should be more indirectly related to the 
extent of the wing patch. On the other hand, the white patch 
probably functions as a signaling unit during wing flicking 
(Curio 1959) making separate analyses of its constituents 
inappropriate.

Results of a single-year observational study need to be 
interpreted with care. It is possible that the adrenocorti-
cal function (HPA) of individuals with large patches is in 
general lower compared to that of individuals presenting 
smaller patches and is not necessarily reflecting environ-
mental conditions experienced by individuals during feather 
growth (Romero et al. 2009; Lattin et al. 2012). For exam-
ple, conditions during early ontogenetic development might 
affect multiple traits such as HPA, tarsus size, and/or white 
patch size (Spencer et al. 2009; Fairhurst et al. 2015). In this 
scenario, the size of white patches would reflect genetic or 
ontogenetic factors involved in HPA activation.

To conclude, our results suggest that larger achromatic 
patches are developed in the winter quarters in females with 
low CORT concentration in plasma and therefore experienc-
ing a reduced physiological stress (Romero and Fairhurst 
2016). Females in nuptial plumage could thus be expressing 
through the extent of their achromatic patches their physi-
ological state before migrating to the breeding grounds. The 
capacity to cope physiologically when preparing for the 
presumably stressful prenuptial migration may be a crucial 
variable to evaluate in social, including sexual, interactions.
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