
Vol.:(0123456789)1 3

Journal of Ornithology (2020) 161:1–15 
https://doi.org/10.1007/s10336-019-01696-1

REVIEW

The impact of wind energy facilities on grouse: a systematic review

Joy Coppes1  · Veronika Braunisch1,2 · Kurt Bollmann3 · Ilse Storch4 · Pierre Mollet5 · 
Veronika Grünschachner‑Berger6,7 · Julia Taubmann1,4 · Rudi Suchant1 · Ursula Nopp‑Mayr8

Received: 17 January 2019 / Revised: 1 July 2019 / Accepted: 18 July 2019 / Published online: 1 August 2019 
© Deutsche Ornithologen-Gesellschaft e.V. 2019

Abstract
There is increasing concern about the impact of the current boom in wind energy facilities (WEF) and associated infra-
structure on wildlife. However, the direct and indirect effects of these facilities on the mortality, occurrence and behaviour 
of rare and threatened species are poorly understood. We conducted a literature review to examine the potential impacts 
of WEF on grouse species. We studied whether grouse (1) collide with wind turbines, (2) show behavioural responses in 
relation to wind turbine developments, and (3) if there are documented effects of WEF on their population sizes or dynam-
ics. Our review is based on 35 sources, including peer-reviewed articles as well as grey literature. Effects of wind turbine 
facilities on grouse have been studied for eight species. Five grouse species have been found to collide with wind turbines, 
in particular with the towers. Fifteen studies reported behavioural responses in relation to wind turbine facilities in grouse 
(seven species), including spatial avoidance, displacement of lekking or nesting sites, or the time invested in breeding vs. 
non-breeding behaviour. Grouse were affected at up to distances of 500 m by WEF infrastructure, with indications of effects 
also at bigger distances. In six cases, a local reduction in grouse abundance was reported in areas with wind turbines, which 
possibly affected population size. Due to the differences in study duration and design, we cannot provide general conclusions 
on the effects of WEF on grouse populations. We advise applying the precautionary principle by keeping grouse habitats 
free of wind energy developments, in particular where populations are small or locally threatened. Future studies should 
preferably apply a long-term before-after-control-impact design for multiple areas to allow for more general conclusions to 
be drawn on the effects of WEF on rare and threatened wildlife species.

Keywords Tetraoninae · Collision · Displacement · Habitat suitability · Wind turbine · Before-after-control-impact design

Zusammenfassung
Der Einfluss von Windenergieanlagen auf Raufußhühner: eine systematische Literaturübersicht.
Der fortschreitende Ausbau von Windenergieanlagen und der dazugehörigen Infrastruktur weckt zunehmend Bedenken über 
deren Auswirkungen auf Wildtiere. Allerdings ist über die direkten und indirekten Auswirkungen von Windenergieanlagen 
auf die Sterblichkeitsrate, das Vorkommen und das Verhalten seltener und bedrohter Wildtierarten nur wenig bekannt. 
Wir haben eine systematische Literaturrecherche durchgeführt, um potentielle Auswirkungen von Windenergieanlagen auf 
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Raufußhuhn-Arten zusammenzufassen. Wir analysierten dabei, ob Raufußhühner (1) mit Windenergieanlagen kollidieren, 
(2) Verhaltensreaktionen in Bezug auf Windenergieanlagen zeigen und (3) ob Auswirkungen auf die Populationsgröße 
oder -dynamik dokumentiert sind. Insgesamt flossen 35 Quellen (sowohl begutachtete Artikel als auch graue Literatur) 
in unsere Analyse ein. Die Auswirkungen von Windenergieanlagen auf Raufußhühner wurden bislang für acht Arten 
untersucht. Bei fünf Raufußhuhn-Arten wurden Kollisionsopfer gefunden. Die Vögel kollidierten vor allem mit den 
Türmen der Windenergieanlagen und nicht mit den sich bewegenden Rotorblättern. 15 Studien (über 7 Raufußhuhn-
Arten) berichteten über Verhaltensreaktionen in Bezug auf Windenergieanlagen, hierzu zählten eine räumliche Meidung 
und die Verschiebung von Balz- oder Nistplätzen. Effekte auf Raufußhühner zeigten sich bis zu einer Entfernung von 
500 m von der Windenergieinfrastruktur, was auf weiträumige Auswirkungen hindeutet. In sechs Fällen wurde in Gebieten 
mit Windkraftanlagen ein lokaler Rückgang der Raufußhühner-Abundanz beobachtet. Aufgrund der unterschiedlichen 
Studiendauer und -methoden können wir keine generellen Rückschlüsse auf die Auswirkungen von Windenergieanlagen 
auf Raufußhuhn-Populationen ziehen. Insbesondere bei kleinen oder lokal bedrohten Populationen empfehlen wir, das 
Vorsorgeprinzip anzuwenden und daher Raufußhuhn-Lebensräume frei von Windenergieanlagen zu halten. Zukünftige 
Studien sollten vorzugsweise ein langfristiges Studiendesign anwenden, das Erhebungen vor und nach der Erstellung von 
Windenergieanlagen in mehreren Studiengebieten vorsieht, um allgemein gültige Schlussfolgerungen über die Auswirkungen 
von Windenergieanlagen auf Raufußhühner zu ermöglichen.

Introduction

Concerns about human-induced climate change and resultant 
energy policies around the globe have stimulated progress 
in fostering renewable forms of energy production, with 
wind energy being the fastest increasing part of this sector 
worldwide (Renewable Energy Network 2018). Moreover, 
a further increase in wind energy production is expected in 
the near future (GWEC 2018). Being a renewable energy 
source, wind power is generally considered a ‘green energy’ 
with comparatively low ecological impacts in terms of envi-
ronmental pollution or water consumption (Saidur et al. 
2011). However, deadly collisions between wild animals 
and wind energy facilities (WEF), in addition to their less 
obvious negative effects, have been highlighted as ecologi-
cal drawbacks of their development (Kuvlesky et al. 2007; 
Drewitt and Langston 2008). Numerous animal taxa have 
been shown to be affected by WEF, ranging from insects 
(Long et al. 2011; Elzay et al. 2017) to birds (Drewitt and 
Langston 2006; De Lucas and Perrow 2017; Hötker 2017), 
bats (Rydell et al. 2010; Barclay et al. 2017), and marine 
(Koschinski et al. 2003) and terrestrial mammals (Rabin 
et al. 2006; Heldin et al. 2017). The most obvious impact of 
WEF on animals is death due to collision, as documented 
for birds and bats (Cryan and Barclay 2009; Krijgsveld et al. 
2009; De Lucas and Perrow 2017). Birds have been found to 
collide both with the towers and the moving blades of WEF 
(Krijgsveld et al. 2009). A wide variety of species have been 
reported to collide with wind turbines, with susceptibility 
to collision being linked to morphological and behavioural 
traits (Smallwood et al. 2009; Marques et al. 2014). Mor-
tality rates for animals vary widely between different wind 
parks, ranging from small numbers of deadly collisions for 
birds (De Lucas et al. 2008), which are not expected to affect 

population size, to higher numbers that possibly affect local 
population persistence (Hunt and Hunt 2006; Everaert and 
Stienen 2007). However, even low rates of mortality might 
yield distinct consequences at population levels in the case 
of K-strategists like vultures (Carrete et al. 2009), or for 
species of high conservation concern. A less obvious way in 
which wildlife are affected by wind turbines is a disturbance 
effect (Drewitt and Langston 2006; Hötker 2017). Here, we 
define as ‘disturbance’ when animals change their behaviour 
or are absent or less abundant in the presence of WEF than in 
their absence, e.g. based on areas with similar habitat condi-
tions. Behavioural responses linked to WEF include changes 
in anti-predator behaviour (Rabin et al. 2006), territorial 
behaviour (Zwart et al. 2016) and habitat use (Hötker 2017). 
In the short term, animals may avoid the close vicinity of 
moving wind turbine blades, and thus, potentially, collision 
(Hoover and Morrison 2005); in the long term, habitats in 
the wider surroundings of a WEF may be avoided(Pearce-
Higgins et al. 2009). Any avoidance of otherwise suitable 
habitat causes net habitat loss (Drewitt and Langston 2006; 
Plumb et al. 2018), and may result in reduced local popula-
tions (Pearce-Higgins et al. 2009). There is particular con-
cern about such negative effects of WEF in locations where 
this is spatial overlap between areas which are highly suit-
able for wind power development with habitats of threatened 
species (Tabassum-Abbasi et al. 2014), especially in cases 
where alternative suitable habitat is not available or scarce.

Grouse (Tetraoninae) species have been shown to be 
particularly prone to collision mortality, including col-
lisions with fences, power lines and ski lift cables (Catt 
et al. 1994; Baines and Summers 1997; Bevanger 1999; 
Bevanger and Brøseth 2004; Nopp-Mayr et al. 2016). 
Given the sensitivity of grouse to human recreational 
disturbances (Summers et al. 2007; Thiel et  al. 2008, 
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2011; Braunisch et al. 2011; Storch 2013; Immitzer et al. 
2014; Coppes et al. 2017, 2018) and to oil- and gas-pro-
ducing facilities (Walker et al. 2007; Hovick et al. 2014; 
Bartuszevige and Daniels 2016), concerns about their 
response to WEF have arisen within the last decade (Pru-
ett et al. 2009a, b; Braunisch et al. 2015). This is partially 
related to the fact that grouse habitats frequently overlap 
spatially with areas suitable for wind turbine development 
(Bright et al. 2008; Strickland et al. 2011; Braunisch et al. 
2015). In conflicts between wind farm developers and 
nature conservationists, evidence-based risk assessments 
are needed. Despite extensive literature reviews on the 
general effects of WEF on birds and other wildlife (Kuv-
lesky et al. 2007; Drewitt and Langston 2008; Powlesland 
2009; Marques et al. 2014; Wang and Wang 2015; Perrow 
2017), a comprehensive review of the existing evidence 
on the effects of WEF on grouse is lacking. In this paper, 
based on a systematic search, we combined peer-reviewed 
literature with unpublished sources to explore whether 
grouse are affected by WEF. In this systematic review, 
we addressed the following questions: (1) are grouse sus-
ceptible to collisions with wind turbines? (2) Do grouse 
species show any behavioural responses to wind turbines, 
such as avoidance of areas close to wind turbine facili-
ties? (3) Is there evidence of negative impacts of WEF on 
grouse populations? (4) Which recommendations can be 
derived from the existing literature with regard to miti-
gation of the negative effects of WEF on grouse, and for 
future impact assessments?

Methods

Study species

Grouse are galliformes of the Phasianidae family, com-
prising 20 species inhabiting a wide range of habitats 
across the northern hemisphere (Potapov and Sale 2013). 
As they are habitat specialists with requirements for a 
large habitat (Storch 1995), grouse have often been used 
as model species to study wildlife-habitat relationships, 
population dynamics, disturbance ecology and landscape 
ecology (Storch 2007). According to the International 
Union for Conservation of Nature (IUCN) Red List of 
Threatened Species, seven grouse species are considered 
‘near threatened’, ‘vulnerable’ or ‘endangered’ (BirdLife 
International 2016) (Table 1). Due to the large distribu-
tion range of most grouse species, they are not threatened 
on a global scale; however, the populations of 18 out of 
20 species are considered to be decreasing (Table 1), with 
habitat deterioration and loss, as well as over-hunting, 
being major causes of population decline in several spe-
cies (Storch 2007; BirdLife International 2016). Many 
grouse species show strong population declines leading 
to local extinctions, thus many are listed in national red 
data books (Storch 2007). There is a long history of grouse 
management with considerable efforts to protect local and 
national populations (Braun et al. 1977; Connelly et al. 
2000; Hagen et al. 2004; Mollet et al. 2008; Suchant and 
Braunisch 2008; Braunisch and Suchant 2013), as well as 

Table 1  All grouse species 
listed in taxonomical order, 
their International Union for 
Conservation of Nature (IUCN) 
Red List of Threatened Species 
category (version 3.1; BirdLife 
International 2016) and their 
worldwide population trend 
as listed by the IUCN [Data 
compiled from http://www.iucnr 
edlis t.org]

Species IUCN Red List category Population trend

Siberian Grouse Falcipennis falcipennis Near threatened Decreasing
Spruce Grouse Falcipennis canadensis Least concern Stable
Franklin’s grouse Falcipennis franklinii Least concern Stable
Dusky Grouse Dendragapus obscurus Least concern Decreasing
Sooty Grouse Dendragapus fuliginosus Least concern Decreasing
Willow Ptarmigan Lagopus lagopus Least concern Decreasing
Rock Ptarmigan Lagopus muta Least concern Decreasing
White-tailed ptarmigan Lagopus leucura Least concern Decreasing
Black Grouse Tetrao tetrix Least concern Decreasing
Caucasian Black Grouse Tetrao mlokosiewiczi Near threatened Decreasing
Black-billed Capercaillie Tetrao urogalloides Least concern Decreasing
Western Capercaillie Tetrao urogallus Least concern Decreasing
Hazel Grouse Bonasa bonasia Least concern Decreasing
Chinese Grouse Bonasa sewerzowi Near threatened Decreasing
Ruffed Grouse Bonasa umbellus Least concern Decreasing
Greater Sage-grouse Centrocercus urophasianus Near threatened Decreasing
Gunnison Sage-grouse Centrocercus minimus Endangered Decreasing
Sharp-tailed Grouse Tympanuchus phasianellus Least concern Decreasing
Greater Prairie Chicken Tympanuchus cupido Vulnerable Decreasing
Lesser Prairie Chicken Tympanuchus pallidicinctus Vulnerable Decreasing

http://www.iucnredlist.org
http://www.iucnredlist.org
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reinforcements to support small populations or reintroduc-
tions in areas where the species became extinct (Reese 
and Connelly 1997; Snyder et al. 1999; Seiler et al. 2000; 
IUCN/SSC 2013; Siano and Klaus 2013).

Literature search

By applying a systematic literature search, our goal was 
to locate results from both peer-reviewed and unpublished 
sources, to synthesize evidence to answer our main ques-
tions. The search routines followed the guidelines of Pul-
lin and Stewart (2006). We performed a search with a low 
specificity and sensitivity to include a wide variety of 
potentially relevant articles. We used a range of Boolean 
search terms to search the databases Google Scholar (URL 
https ://schol ar.googl e.com/) and the ISI Web of Knowledge 
(URL https ://webof knowl edge.com) and sorted the search 
results according to ‘relevance’. We selected and combined 
terms that covered parts of the names of all grouse species 
(e.g. grouse, Ptarmigan, Capercaillie and Prairie Chicken) 
as well as terms including those relevant to wind energy 
developments (i.e. ‘wind’, ‘turbine’, ‘energy’, ‘farm’). The 
search terms, listed as follows, were applied to all relevant 
search fields (title, abstract, full text, keywords): ‘grouse* 
AND wind* AND energy*’, ‘grouse* AND wind* AND 
farm*’, ‘grouse* AND wind* AND turbine*’, ‘Ptarmigan* 
AND wind* AND energy*’, ‘Ptarmigan* AND wind* 
AND farm*’, ‘Ptarmigan* AND wind* AND turbine*’, 
‘Capercaillie* AND wind* AND energy*’, ‘Capercaillie* 
AND wind* AND farm*’, ‘Capercaillie* AND wind* AND 
turbine*’, ‘Prairie Chicken* AND wind* AND energy*’, 
‘Prairie Chicken* AND wind* AND farm*’, ‘Prairie 
Chicken* AND wind* AND turbine*’.

In a second step, we read the abstracts of the publica-
tions listed in the results of each search engine to determine 
if the source was relevant to our study. A publication was 
considered relevant when a grouse species was mentioned in 
relation to wind power developments (both existing as well as 
new developments) and when it included new data (i.e. was 
not a review). If one search yielded more than 2000 results, 
only the abstracts of the first 2000 sources were read. The 
bibliographies of all relevant sources were searched for fur-
ther relevant information and sources [i.e. constrained snow-
ball sampling (Lecy and Beatty 2012)]. In cases of unpub-
lished reports of which the results were published later in 
peer-reviewed literature, only the peer-reviewed articles were 
included. If reviews on the topic were found, these were read 
and checked for new relevant sources; when no new data 
were included in a review, it was not included in our study.

Results

The literature search yielded 35 sources relevant to our 
research questions. The majority of sources were articles 
in peer-reviewed journals (n = 19, 54%), ten (29%) were 
unpublished reports, two (6%) were non-peer-reviewed 
M.Sc. theses and two (6%) were non-peer-reviewed pub-
lications. Furthermore, we included information from one 
(3%) online database and one (3%) website in the review 
(Table 2). The sources cover a wide geographic range in 
Europe and North America, and include data for eight 
different countries and eight grouse species. Four stud-
ies investigated two grouse species simultaneously, which 
resulted in a total number of 39 case studies. The major-
ity of studies (n = 31, 89%) were conducted in one single 
study area, whereas in the other four cases data of two to 
18 study areas were included. The studies cover differ-
ent time periods: one-third (n = 13, 37%) of the studies 
were only carried out for 1 year, approximately another 
third (n = 10, 29%) included data from 2 to 4 years, and 
the remaining studies (n = 12, 34%) covered 5–15 years. 
Of the total studies on collision mortality (n = 13, 37%), 
nine (69%) were conducted in a single year, and four 
(30%) were based on anecdotal observations (Fig. 1). The 
methods also distinctly varied between studies. For the 
assessment of collision mortality, standardized, systematic 
searches were applied in most (69%) cases; other methods 
included counting the number of males at lekking sites 
(n = 7, 20%), searches for indirect signs of presence (i.e. 
feathers and droppings; n = 3, 9%), bird censuses (n = 8, 
24%) or fitting birds with transmitters for telemetry (n = 9, 
26%) (Table 2).

Twenty-four studies investigated avoidance behaviour 
of grouse towards wind turbines, four of which included 
multiple grouse species. In 13 (46%) of the case studies 
investigating avoidance behaviour, data collection was 
done only after the construction of wind turbines, five 
thereof compared data from intervention (construction) 
areas with non-intervention areas (Table 2). In six cases 
(21%) the situation before and after the construction of a 
wind turbine tower at a given location was compared, while 
the remaining nine cases (32%) relied on a before-after-
control-impact (BACI) design. Twenty-six studies (27 case 
studies) found a negative effect of wind turbines on grouse, 
nine studies (12 case studies) did not prove any effect of 
WEF on grouse. Eleven studies (11 case studies) exclu-
sively investigated survival and vocalizations, or searched 
for collision victims after construction of wind turbines. In 
six case studies, the latter was combined with an avoidance 
behaviour study.

https://scholar.google.com/
https://webofknowledge.com


5Journal of Ornithology (2020) 161:1–15 

1 3

Ta
bl

e 
2 

 A
ll 

stu
di

es
 in

cl
ud

ed
 in

 th
e 

sy
ste

m
at

ic
 re

vi
ew

 (n
 =

 35
), 

an
d 

th
e 

re
su

lti
ng

 n
um

be
r o

f s
pe

ci
es

-s
pe

ci
fic

 c
as

e 
stu

di
es

 (n
 =

 39
) f

or
 d

iff
er

en
t g

ro
us

e 
sp

ec
ie

s i
nc

lu
de

d 
in

 a
 se

pa
ra

te
 so

ur
ce

Sp
ec

ie
s

C
ou

nt
ry

St
ud

y 
 de

si
gn

a
Ye

ar
s (

n 
)

St
ud

y 
si

te
s (

n)
M

et
ho

ds
b

D
at

ac
Eff

ec
t

Im
pa

ct
d

Ty
pe

So
ur

ce
Sa

m
e 

 so
ur

ce
e

B
la

ck
 G

ro
us

e
A

us
tri

a
A

1
2

Se
ar

ch
A

N
C

ol
lis

io
n

N
eg

at
iv

e
N

P
D

eu
tz

 a
nd

 G
rü

ns
ch

ac
h-

ne
r-B

er
ge

r (
20

06
)

B
la

ck
 G

ro
us

e
A

us
tri

a
A

1
1

Pr
es

en
ce

 m
ap

pi
ng

S
A

vo
id

an
ce

N
eg

at
iv

e
PR

G
rü

ns
ch

ac
hn

er
-B

er
ge

r 
an

d 
K

ai
ne

r (
20

11
)

B
la

ck
 G

ro
us

e
A

us
tri

a
BA

8
1

Le
k 

co
un

ts
S

A
vo

id
an

ce
, c

ol
lis

io
n

N
eg

at
iv

e
PR

Ze
ile

r a
nd

 G
rü

ns
ch

ac
h-

ne
r-B

er
ge

r (
20

09
)

A

B
la

ck
 G

ro
us

e
Sc

ot
la

nd
BA

15
7

Le
k 

co
un

ts
S

A
vo

id
an

ce
N

eg
at

iv
e

PR
Zw

ar
t e

t a
l. 

(2
01

5)
B

la
ck

 G
ro

us
e

Sc
ot

la
nd

BA
4

1
Le

k 
co

un
ts

S
A

vo
id

an
ce

N
eg

at
iv

e
R

Pe
rc

iv
al

 e
t a

l. 
(2

01
8)

D
C

ap
er

ca
ill

ie
G

er
m

an
y

A
1

1
Se

ar
ch

A
N

C
ol

lis
io

n
N

eg
at

iv
e

N
P

La
ng

ge
m

ac
h 

an
d 

D
ür

r 
(2

01
9)

C
ap

er
ca

ill
ie

Sw
ed

en
A

5
1

Le
k 

co
un

ts
, s

ea
rc

h
S,

 A
N

A
vo

id
an

ce
, c

ol
lis

io
n

N
eg

at
iv

e
W

Rö
nn

in
g 

(2
01

7)
-h

ttp
://

w
w

w.
tja

de
 ro

bs
.se

C
ap

er
ca

ill
ie

Sp
ai

n
BA

C
I

5
1

Pr
es

en
ce

 m
ap

pi
ng

S
A

vo
id

an
ce

N
eg

at
iv

e
PR

G
on

zá
le

z 
et

 a
l. 

(2
01

6)
C

ap
er

ca
ill

ie
Sp

ai
n

A
1

1
Se

ar
ch

A
N

C
ol

lis
io

n
N

eg
at

iv
e

N
P

G
on

zá
le

z 
(2

01
8)

C
ap

er
ca

ill
ie

Sw
ed

en
BA

C
I

6
1

Pr
es

en
ce

 m
ap

pi
ng

S
A

vo
id

an
ce

N
eg

at
iv

e
R

Fa
lk

da
le

n 
et

 a
l. 

(2
01

3)
B

G
re

at
er

 P
ra

iri
e 

C
hi

ck
en

U
SA

A
5

1
Le

k 
co

un
ts

S
A

vo
id

an
ce

N
o 

eff
ec

t
R

Vo
de

hn
al

 (2
01

1)
C

G
re

at
er

 P
ra

iri
e 

C
hi

ck
en

U
SA

BA
C

I
5

1
Te

le
m

et
ry

S
A

vo
id

an
ce

N
o 

eff
ec

t
PR

M
cN

ew
 e

t a
l. 

(2
01

4)
G

re
at

er
 P

ra
iri

e 
C

hi
ck

en
U

SA
BA

C
I

3
1

Te
le

m
et

ry
S

A
vo

id
an

ce
N

eg
at

iv
e

PR
W

in
de

r e
t a

l. 
(2

01
4a

)
G

re
at

er
 P

ra
iri

e 
C

hi
ck

en
U

SA
BA

C
I

3
1

Te
le

m
et

ry
S

A
vo

id
an

ce
, s

ur
vi

va
l

N
o 

eff
ec

t
PR

W
in

de
r e

t a
l. 

(2
01

4b
)

G
re

at
er

 P
ra

iri
e 

C
hi

ck
en

U
SA

BA
C

I
3

1
Te

le
m

et
ry

S
A

vo
id

an
ce

N
o 

eff
ec

t
PR

W
in

de
r e

t a
l. 

(2
01

5)
G

re
at

er
 P

ra
iri

e 
C

hi
ck

en
U

SA
A

8
1

Le
k 

co
un

ts
, b

eh
av

io
ur

al
S

A
vo

id
an

ce
N

o 
eff

ec
t

PR
Sm

ith
 e

t a
l. 

(2
01

6)
G

re
at

er
 P

ra
iri

e 
C

hi
ck

en
U

SA
A

8
1

Te
le

m
et

ry
S

A
vo

id
an

ce
N

o 
eff

ec
t

PR
H

ar
ris

on
 e

t a
l. 

(2
01

7)
G

re
at

er
 P

ra
iri

e 
C

hi
ck

en
U

SA
A

8
1

B
eh

av
io

ur
S

Vo
ca

liz
at

io
ns

N
eg

at
iv

e
PR

W
ha

le
n 

et
 a

l. 
(2

01
8)

G
re

at
er

 P
ra

iri
e 

C
hi

ck
en

U
SA

A
2

1
Te

le
m

et
ry

S
Su

rv
iv

al
N

o 
eff

ec
t

PR
Sm

ith
 e

t a
l. 

(2
01

7)
G

re
at

er
 S

ag
e-

gr
ou

se
U

SA
A

2
1

Te
le

m
et

ry
S

Su
rv

iv
al

N
eg

at
iv

e
PR

Le
B

ea
u 

et
 a

l. 
(2

01
4)

G
re

at
er

 S
ag

e-
gr

ou
se

U
SA

BA
C

I
1

1
Le

k 
co

un
ts

S
A

vo
id

an
ce

N
eg

at
iv

e
PR

Le
B

ea
u 

et
 a

l. 
(2

01
7a

)
G

re
at

er
 S

ag
e-

gr
ou

se
U

SA
A

C
5

1
Te

le
m

et
ry

S
A

vo
id

an
ce

N
eg

at
iv

e
PR

Le
B

ea
u 

et
 a

l. 
(2

01
7b

)
Ro

ck
 P

ta
rm

ig
an

A
us

tri
a

BA
7

1
Le

k 
co

un
ts

S
A

vo
id

an
ce

N
o 

eff
ec

t
PR

Ze
ile

r a
nd

 G
rü

ns
ch

ac
h-

ne
r-B

er
ge

r (
20

09
)

A

Ru
ffe

d 
G

ro
us

e
U

SA
A

1
1

Se
ar

ch
S

C
ol

lis
io

n
N

eg
at

iv
e

R
Ja

in
 e

t a
l. 

(2
00

9)
Ru

ffe
d 

G
ro

us
e

U
SA

BA
4

1
C

en
su

s
S

A
vo

id
an

ce
N

eg
at

iv
e

R
K

er
lin

ge
r (

20
02

)
Ru

ffe
d 

G
ro

us
e

U
SA

A
1

1
Se

ar
ch

S
C

ol
lis

io
n

N
eg

at
iv

e
R

K
er

ns
 an

d 
K

er
lin

ge
r 

(2
00

4)
Sh

ar
p-

ta
ile

d 
G

ro
us

e
C

an
ad

a
A

1
1

Se
ar

ch
S

C
ol

lis
io

n
N

eg
at

iv
e

R
B

ro
w

n 
an

d 
H

am
ilt

on
 

(2
00

4)
Sh

ar
p-

ta
ile

d 
G

ro
us

e
U

SA
A

5
1

Le
k 

co
un

ts
S

A
vo

id
an

ce
N

eg
at

iv
e

R
Vo

de
hn

al
 (2

01
1)

C
Sh

ar
p-

ta
ile

d 
G

ro
us

e
U

SA
A

1
1

Se
ar

ch
S

C
ol

lis
io

n
N

eg
at

iv
e

T
G

ra
ff 

(2
01

5)
Sh

ar
p-

ta
ile

d 
G

ro
us

e
U

SA
A

1
1

Te
le

m
et

ry
S

A
vo

id
an

ce
N

eg
at

iv
e

T
Pr

oe
t (

20
17

)

http://www.tjaderobs.se
http://www.tjaderobs.se


6 Journal of Ornithology (2020) 161:1–15

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Sp
ec

ie
s

C
ou

nt
ry

St
ud

y 
 de

si
gn

a
Ye

ar
s (

n 
)

St
ud

y 
si

te
s (

n)
M

et
ho

ds
b

D
at

ac
Eff

ec
t

Im
pa

ct
d

Ty
pe

So
ur

ce
Sa

m
e 

 so
ur

ce
e

W
ill

ow
 P

ta
rm

ig
an

N
or

w
ay

A
C

3
1

C
en

su
s, 

se
ar

ch
S

A
vo

id
an

ce
, c

ol
lis

io
n

N
eg

at
iv

e
R

B
ev

an
ge

r e
t a

l. 
(2

01
0a

)
W

ill
ow

 P
ta

rm
ig

an
N

or
w

ay
A

1
1

C
en

su
s, 

se
ar

ch
S

A
vo

id
an

ce
, c

ol
lis

io
n

N
eg

at
iv

e
R

B
ev

an
ge

r e
t a

l. 
(2

01
0b

)
W

ill
ow

 P
ta

rm
ig

an
Sw

ed
en

BA
C

I
6

1
C

en
su

s, 
se

ar
ch

S
A

vo
id

an
ce

, c
ol

lis
io

n
N

eg
at

iv
e

R
Fa

lk
da

le
n 

et
 a

l. 
(2

01
3)

B
W

ill
ow

 P
ta

rm
ig

an
Sc

ot
la

nd
BA

C
I

9
1

C
en

su
s

S
A

vo
id

an
ce

N
o 

eff
ec

t
PR

M
ee

k 
et

 a
l. 

(1
99

3)
W

ill
ow

 P
ta

rm
ig

an
Sc

ot
la

nd
A

1
1

Se
ar

ch
S

C
ol

lis
io

n
N

eg
at

iv
e

R
B

io
sc

an
 (2

00
1)

W
ill

ow
 P

ta
rm

ig
an

Sc
ot

la
nd

A
C

N
A

12
C

en
su

s
S

A
vo

id
an

ce
N

o 
eff

ec
t

PR
Pe

ar
ce

-H
ig

gi
ns

 e
t a

l. 
(2

00
9)

W
ill

ow
 P

ta
rm

ig
an

Sc
ot

la
nd

A
C

3
1

C
en

su
s

S
A

vo
id

an
ce

N
o 

eff
ec

t
PR

D
ou

gl
as

 e
t a

l. 
(2

01
1)

W
ill

ow
 P

ta
rm

ig
an

Sc
ot

la
nd

BA
4

1
Le

k 
co

un
ts

S
A

vo
id

an
ce

N
o 

eff
ec

t
R

Pe
rc

iv
al

 e
t a

l. 
(2

01
8)

D
W

ill
ow

 P
ta

rm
ig

an
Sc

ot
la

nd
A

C
3

18
C

en
su

s
S

A
vo

id
an

ce
N

eg
at

iv
e

PR
Pe

ar
ce

-H
ig

gi
ns

 e
t a

l. 
(2

01
2)

N
P 

N
on

-p
ee

r-r
ev

ie
w

ed
 a

rti
cl

e,
 P

R 
pe

er
-r

ev
ie

w
ed

 a
rti

cl
e,

 R
 re

po
rt,

 T
 th

es
is

, W
 w

eb
si

te
a  St

ud
y 

pe
rfo

rm
ed

 a
fte

r t
he

 c
on

str
uc

tio
n 

of
 w

in
d 

tu
rb

in
es

 (A
); 

be
fo

re
 a

nd
 a

fte
r c

on
str

uc
tio

n 
(B

A)
; a

fte
r c

on
str

uc
tio

n 
w

ith
 a

 c
on

tro
l a

re
a 

(A
C

); 
be

fo
re

, a
fte

r a
nd

 w
ith

 a
 c

on
tro

l a
re

a 
(b

ef
or

e-
af

te
r-

co
nt

ro
l-i

m
pa

ct
; B

AC
I)

b  Se
ar

ch
 fo

r c
ol

lis
io

n 
vi

ct
im

s 
(S

ea
rc

h)
, h

ab
ita

t u
se

 m
ap

pe
d 

us
in

g 
ev

id
en

ce
 o

f p
re

se
nc

e 
(P

re
se

nc
e 

m
ap

pi
ng

), 
nu

m
be

r o
f b

ird
s 

at
 a

 le
kk

in
g 

si
te

 c
ou

nt
ed

 (L
ek

 c
ou

nt
s)

, b
ird

s 
fit

te
d 

w
ith

 tr
an

sm
itt

er
s 

(T
el

em
et

ry
), 

be
ha

vi
ou

ra
l o

bs
er

va
tio

ns
 re

co
rd

ed
 (B

eh
av

io
ur

al
), 

bi
rd

 c
en

su
se

s c
ar

rie
d 

ou
t (

C
en

su
s)

c  Sy
ste

m
at

ic
 (S

) s
ur

ve
y 

de
si

gn
 v

s. 
no

n-
sy

ste
m

at
ic

, a
ne

cd
ot

al
 (A

N
) r

es
ul

ts
e  N

eg
at

iv
e 

im
pa

ct
 o

f w
in

d 
en

er
gy

 o
n 

gr
ou

se
 (e

.g
. a

vo
id

an
ce

 o
r c

ol
lis

io
n;

 N
eg

at
iv

e)
; n

o 
eff

ec
t o

f W
EF

 o
n 

gr
ou

se
 fo

un
d 

(N
o 

eff
ec

t)
e  W

he
re

 tw
o 

gr
ou

se
 sp

ec
ie

s w
er

e 
in

ve
sti

ga
te

d 
in

 th
e 

sa
m

e 
stu

dy
, t

he
 so

ur
ce

 is
 li

ste
d 

tw
ic

e 
an

d 
is

 in
di

ca
te

d 
by

 th
e 

sa
m

e 
le

tte
r



7Journal of Ornithology (2020) 161:1–15 

1 3

Collisions

Our literature search yielded 12 reports and one publicly 
available database (Langgemach and Dürr 2019) address-
ing collisions of five grouse species with wind turbines 
(Table 3). Overall, as inferred from the locations of car-
casses, grouse have been found to collide with turbine tow-
ers rather than rotor blades.

Six Black Grouse collision victims, including both males 
and females, were reported for Austria (Deutz and Grün-
schachner-Berger 2006; Zeiler and Grünschachner-Berger 
2009; Langgemach and Dürr 2019). All the carcasses were 
found very close to the towers of wind turbines indicating 
that the birds flew against the tower and not against the mov-
ing rotor blades (Zeiler and Grünschachner-Berger 2009). 

In two Black Grouse, post-mortems revealed typical signs 
of collision traumata [e.g. blunt trauma and internal bleed-
ing (Deutz and Grünschachner-Berger 2006)]. In two coun-
tries, Western Capercaillie (henceforth ‘Capercaillie’) were 
found dead close to wind turbine towers: in Spain, a female 
Capercaillie (Tetrao urogallus cantabricus) was found next 
to a turbine tower by wind park workers (González 2018); 
in Sweden, six Capercaillies, both males and females, that 
had collided with WEF, were detected in four different wind 
parks in different locations (Rönning 2017). The remains 
of a Capercaillie female were found close to a wind tur-
bine tower in Brandenburg, Germany (Langgemach and 
Dürr 2019), where collision with the wind turbine tower 
was suspected. However, this could not be verified due to 
the state of decomposition of the carcass (Zimmermann, 

Fig. 1  Overview showing the 
number of studies with different 
study designs (after, after-
control, before-after or before-
after-control-impact) and the 
recorded effects of wind energy 
facilities [with effect (black), 
without effect (grey)] separated 
by the type of impact (collision, 
lekking behaviour or number of 
individuals at the leks, breeding 
ecology, survival or habitat use)

Table 3  Grouse species which have been found to collide with wind turbine towers

a Willow Ptarmigan includes three subspecies (Lagopus lagopus lagopus, Lagopus lagopus scotica, Lagopus lagopus variegatus)

Species Countries No. of documented 
collisions

Source

Black Grouse Austria 6 Deutz and Grünschachner-Berger (2006); Zeiler and Grün-
schachner-Berger (2009); Langgemach and Dürr (2019)

Capercaillie Germany, Sweden, Spain 8 Rönning (2017); González (2018); Langgemach and Dürr 
(2019)

Ruffed Grouse USA 3 Kerns and Kerlinger (2004); Jain et al. (2009)
Sharp-tailed Grouse USA 6 Brown and Hamilton (2004); Graff (2015)
Willow  Ptarmigana Sweden, Norway, Scotland 74 Bioscan (2001); Bevanger et al. (2010a, b); Falkdalen et al. 

(2013)
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personal communication). In Scotland, three Willow Ptar-
migan (previously Red Grouse Lagopus lagopus scotica) 
collision victims were found near wind turbines. Examina-
tion of the bodies indicated that two had flown into the tur-
bine tower and one most likely collided with moving turbine 
blades (Bioscan 2001). Three Ruffed Grouse individuals 
were recorded as collision victims in the state of New York, 
USA (Jain et al. 2009), three Sharp-tailed Grouse in North 
Dakota, USA (Graff 2015), and a further three Sharp-tailed 
Grouse in a wind park in Canada (Brown and Hamilton 
2004). Willow Ptarmigan have been documented to collide 
with wind turbine towers in Sweden (Falkdalen et al. 2013), 
Norway (Bevanger et al. 2010a, b) and Scotland (Bioscan 
2001). With a total number of 74 individuals involved in col-
lisions, Willow Ptarmigan was the most common collision 
victim of a total of 26 bird species found in a Norwegian 
study (Bevanger et al. 2010a).

Behavioural responses and population dynamics

Lek site selection and lekking behaviour

Seven studies (ten case studies) examined the effects of 
WEF on grouse by counting them at lekking sites. During 
the construction work of a wind park in the Austrian Alps 
(performed during the lekking season), Zeiler and Grün-
schachner-Berger (2009) reported only a minimal behav-
ioural response of male Black Grouse to construction activi-
ties near a lekking site (Zeiler and Grünschachner-Berger 
2009). However, the number of males on the same lekking 
site was reported to decrease from 12 males before turbine 
construction to zero over a 2-year period after construction 
(Zeiler and Grünschachner-Berger 2009). The authors also 
suggested that sounds produced by the wind turbines masked 
the singing of cocks, reducing the distance at which Black 
Grouse display calls could be heard (Zeiler and Grünschach-
ner-Berger 2009). Zwart et al. (2015) did not find a signifi-
cant decrease in the total number of displaying males after 
WEF construction at seven Black Grouse lekking sites in 
Scotland over a period of 1–7 years before and 2–8 years 
after construction. However, they did find that lekking sites, 
initially located within 500 m of the wind turbines (n = 4 
lekking sites), were further from them after construction, 
from a median distance of 250 m before construction to 
803 m after construction. Interestingly, even lekking sites 
located at about 1000 m were found further away from the 
turbines after construction (Zwart et al. 2015). In a different 
wind park in Scotland, Black Grouse numbers were higher 
before construction (nine lekking males) and in the year of 
construction (eight males), compared to 2 years after con-
struction (four females and zero males, respectively) (Per-
cival et al. 2018). In the same wind park, Willow Ptarmi-
gan (Lagopus lagopus scotica) numbers fluctuated between 

years, with low numbers both before and after the construc-
tion of the wind park (Percival et al. 2018). In Sweden, the 
number of males at a Capercaillie lekking site decreased 
from ten to four over a 7-year time period after construction 
of wind turbines in its direct vicinity, and was also relocated 
600 m away from the nearest wind turbine (Rönning 2017). 
The number of displaying Rock Ptarmigan decreased from 
three before construction to zero after construction of a wind 
park over a period of 3 years in the Austrian Alps (Zeiler and 
Grünschachner-Berger 2009).

Vodehnal (2011) documented counts of displaying Greater 
Prairie Chickens after the construction of a wind park in 
Nebraska, USA, where the number decreased by 34% over 
a 5-year time period. Winder et al. (2015) observed a lower 
probability of lek persistence within 23 investigated leks in 
Kansas, USA; the probability of lek persistence was ~ 0.5 for 
leks within a 1-km zone around WEF, ~ 0.9 for leks within 
a 3-km zone, and 0.95 for leks farther than 6 km away, indi-
cating that wind turbines caused Greater Prairie Chickens 
to abandon leks close to wind turbines. Based on detailed 
behavioural observations at Greater Prairie Chicken leks 
near an existing wind park in Nebraska, Smith et al. (2016) 
found no differences in the number of females close to the 
wind park (minimum distance between a lek and a wind tur-
bine = 700 m) compared to areas located further away. How-
ever, male behaviour was affected at the lekking site: more 
non-displaying behaviour (i.e. standing, running, walking, 
flying, feeding, preening) was found with increasing dis-
tance from wind turbines, which might have been caused by 
reduced avian predator densities closer to the wind turbines 
(Smith et al. 2016). At the same wind park, Whalen et al. 
(2018) found vocalisations of males at lekking sites within 1 
km of wind turbines to have higher sound pressure levels and 
shorter durations compared to those of males at lekking sites 
further away. However, LeBeau et al. (2017a) did not detect 
significant differences in numbers of Greater Prairie Chicken 
males at lekking sites compared with control sites before and 
after the construction of a wind park in Wyoming, USA.

Nest site selection and survival

Twelve studies investigated the effects of WEF on grouse 
nest site selection, breeding densities or survival rates. When 
combining bird survey data from 12 study sites, Pearce-Hig-
gins et al. (2009) did not discover a significant reduction of 
breeding densities of Willow Ptarmigan (L. lapogus scotica) 
across Scotland. Similarly, Douglas et al. (2011) reported 
no significant change in breeding densities of Willow Ptar-
migan after construction of a wind park and no differences 
between a control site and a wind park site. Tagging Willow 
Grouse with radio transmitters on the Norwegian island of 
Smøla revealed unexpectedly low survival rates of tagged 
birds (n = 34) in the wind park, compared to other areas; the 
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majority of deaths, however, were attributed to avian preda-
tors (Bevanger et al. 2010a).

Six studies in the USA surveyed Greater Prairie Chickens 
via telemetry to study potential effects of wind turbines on 
this species (McNew et al. 2014; Winder et al. 2014a, b, 
2015; Harrison et al. 2017; Smith et al. 2017). In Kansas, 
no difference in nest site selection or nest survival was found 
when comparing nests before and after the construction of 
wind turbines (McNew et al. 2014). Although the behav-
iour of females was affected in terms of increased home 
range sizes after construction of the wind turbines and an 
increasing avoidance of areas at decreasing distance to the 
turbines (Winder et al. 2014a), no effect on the survival of 
adult females could be found (Winder et al. 2014b). By tag-
ging 64 Greater Prairie Chickens and searching for nests 
near the same wind park, Harrison et al. (2017) found that 
the main drivers of nest site selection and nest survival were 
habitat and landscape predictors and not parameters related 
to the wind turbines. They did, however, find that Greater 
Prairie Chicken avoided nesting close to roads, which might 
be more numerous in the course of wind turbine construction 
(Harrison et al. 2017). Smith et al. (2017) used telemetry to 
study spatial variation in the survival of 62 female Greater 
Prairie Chickens, and camera traps as well as point counts 
to monitor mammalian as well as avian predator occupancy 
within a 10-km radius around a wind park in Nebraska. At 
this scale, neither spatial avoidance of avian predators nor 
differences in daily survival rates of female Prairie Chickens 
were related to the WEF were found. Although the capture 
index for mammals was significantly lower with increasing 
proximity to the WEF, the capture frequency of the most 
important predator of adult chickens, the Coyote (Canis 
latrans), was not affected by wind turbines. In a study in 
Wyoming, LeBeau et al. (2014) tagged 31 female Greater 
Sage-grouse with radio transmitters to study potential effects 
of an already existing wind park. Whereas increased preda-
tion rates of nests and broods were found with increasing 
vicinity to the wind park, no effect on female survival was 
found. During summer, 346 females seemed to increase their 
distance to the wind turbines over the study period (6 years), 
indicating a possible time lag in their response; contrary, for 
nest site selection, habitat conditions were decisive while it 
was not influenced by the wind park when compared to a 
control site (LeBeau et al. 2017b). Female survival tended 
to decrease with the percentage of area, in a 1.2 km2 sur-
rounding, covered by the wind park, indicating that the sur-
face occupied by a construction might be more important 
than the pure distance to the nearest wind turbine (LeB-
eau et al. 2017b). By tagging 135 Columbian Sharp-tailed 
Grouse (Tympanuchus phasianellus columbianus) with radio 
transmitters, Proet (2017) studied whether the number of, 
and distance to, WEF affected nest site selection, nest sur-
vival and chick survival. No effect on nest site selection or 

nest survival was found, but chick survival was affected: 
when ≥ 10 wind turbines were within 2.1-km of the nest, 
chick survival was reduced by 50% (Proet 2017).

Habitat use and population densities

Nine studies (ten case studies) focussed on the effects of 
WEF on grouse habitat use and population densities. Grün-
schachner-Berger and Kainer (2011) mapped indirect evi-
dence of Black Grouse (i.e. feathers, droppings) for a wind 
park in the Austrian Alps to study the effects of a WEF on 
habitat use. They found less use of highly suitable habitat 
within 500 m of the wind turbines than expected based on 
a Black Grouse habitat model (Grünschachner-Berger and 
Kainer 2011).

In Spain, transect counts during winter revealed reduced 
numbers of indirect signs (i.e. feathers, droppings) of Caper-
caillie compared to the pre-construction year in the 4 years 
after the construction of a wind park (González and Ena 
2011; González et al. 2016). In the control area (i.e. sim-
ilar habitat without WEF) 1.5 km away, the numbers did 
not change over the same time period (González and Ena 
2011; González et al. 2016). Falkdalen et al. (2013), using 
pointing-dogs, found reduced numbers of Capercaillie after 
construction of a wind park in Sweden compared to a control 
area.

Using systematic counts on line transects, Bevanger et al. 
(2010a) found no significant differences in the spring and 
autumn densities of Willow Ptarmigan between a wind park 
and a control area (i.e. without wind turbines) on the Norwe-
gian island of Smøla. Furthermore, Willow Ptarmigan used 
areas within the wind park and did not leave the wind park 
after construction (Bevanger et al. 2010a). Similarly, no dif-
ferences in Willow Ptarmigan densities were found between 
a wind park and the reference area in another Norwegian 
study area (Bevanger et al. 2010b). Using bird census data 
from before and after the construction of a wind park in 
Sweden, Falkdalen et al. (2013) found reduced numbers of 
territorial Willow Ptarmigan after construction. In contrast, 
no negative effect of a wind park on Willow Ptarmigan (L. 
lapogus scotica) was found using bird census on the Orkney 
islands in Scotland (Meek et al. 1993). In another Scottish 
study, however, Pearce-Higgins et al. (2012) reported that 
the number of Willow Ptarmigan significantly decreased 
during the construction of a wind park. However, the num-
bers returned to pre-construction levels within 1 year after 
construction (Pearce-Higgins et al. 2012), suggesting only 
short-term avoidance of the WEF during the construction 
phase. A single Ruffed Grouse was detected in bird cen-
suses before the construction of a wind park in Vermont, 
USA, which then disappeared from the area (Kerlinger 
2002). Whether this disappearance was related to the wind 
turbine construction, however, was unclear. Numbers of 
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male Sharp-tailed Grouse were also found to decrease over 
a 6-year time period after construction of a wind park in 
Nebraska (Vodehnal 2011).

Discussion

Our literature review highlights documented grouse collisions 
with wind turbine towers and behavioural effects of WEF on 
grouse such as changes in their vocalisations or habitat use. 
Some studies have even ascribed negative effects on popula-
tion size to wind turbines. However, it is important to note 
that the results between studies differ, and that some studies 
did not yield any evidence for negative effects of WEF on 
grouse. This might be partly due to the large range of sample 
sizes, study methods, study duration and study design, which 
have implications for the significance and informative value 
of the studies. Consequentially, considerable uncertainty 
remains about the generality of the conclusions and their 
significance for population biology when drawn from local-
scale, short-term studies (Stewart et al. 2007). Apart from 
these methodological factors, the wide variety of habitats 
occupied by different species, ranging from prairie to forest 
and tundra ecosystems, as well as differences in local habi-
tat conditions (i.e. habitat quality, amount and connectivity), 
have to be considered when evaluating the impacts of WEF 
on grouse. Furthermore, there is a wide variety of response 
types, which might be related to differences in the different 
grouse species’ life histories and ecology.

Collisions

At least five species of grouse have been reported to collide 
with wind turbines (Table 3). Because grouse generally fly 
at a relatively low height above the ground, and thus mainly 
stay below the area covered by a wind turbine’s rotors, they 
are reportedly more prone to collision with turbine tow-
ers than with the rotor blades. Poor visibility of the towers 
due to weather conditions [e.g. fog (but see Falkdalen et al. 
2013)] or tower colour (T. Nygard, personal communication) 
may affect collision risk. The higher mortality compared 
to that recorded for natural conditions reported for Willow 
Ptarmigan on a Norwegian island might have had negative 
effects at the population level. For other species, only low 
numbers of collision victims were found. However, the study 
designs and protocols were inconsistent, and in cases of non-
systematic, anecdotal reports of collisions, information on 
scavenger impacts on detection rates and other biases (see 
Bevanger 1995; Brown and Drewien 1995) is lacking. Thus, 
it remains unclear under what conditions and how often col-
lisions occur, and if even a low reduction in survival rate of 
grouse associated with WEF can have a significant impact 

on a population, as observed in other long-lived bird species 
(Carrete et al. 2009).

Behavioural responses and population dynamics

A wide range of behavioural responses of grouse to WEF 
has been found in different studies, which is in line with 
reviews on other bird taxa (Hötker 2017). These responses 
include differences in vocalisations, which are most likely 
due to noise caused by wind turbines, increased home range 
sizes and avoidance behaviour. Reduced use of areas within 
500 m of WEF was reported for Black Grouse in Austria and 
in Scotland. Contrary to the situation in Austria, the number 
of lekking males was not negatively affected in Scotland. 
This might be explained by differences in landscape patterns. 
in the Alps, Black Grouse mainly live around the upper tree 
line (Patthey et al. 2012; Sachser et al. 2017), a relatively 
narrow altitudinal zone where conditions 500 m up or down 
the slope are unsuitable for lekking. As a consequence, birds 
avoiding the immediate vicinity of WEF at this altitude for 
lekking lacked alternative nearby sites and leks were aban-
doned. This suggests that landscape characteristics might 
largely determine how grouse populations are affected by 
WEF. Hitherto observed distances of displacement of grouse 
species due to WEF range between 500 and 600 m. For most 
other bird species (i.e. 44 of 47 species), the median avoid-
ance distance of WEF ranges between 0 (no avoidance) and 
200 m (Hötker 2017). There are even indications that grouse 
are affected over distances of more than 1000 m; this is par-
ticularly likely for grouse species with relatively large home 
ranges [e.g. Capercaillie and Black Grouse can have home 
ranges of several hundreds of hectares (e.g. Storch 1995; 
Watson and Moss 2008; Coppes et al. 2017)]. Differences 
between grouse and other species might also be caused by 
differences in habitat or study design. The contradictory 
findings on temporally variable effects of WEF on grouse 
indicate that their impact could be species specific and differ 
in magnitude according to their construction and operation.

Which particular factors related to WEF development 
influence grouse remains unclear. These could be factors 
related to the actual presence of wind turbines, such as mov-
ing blades, noise or flickering shadows. Experiments with 
captive birds have shown a fear response to novel objects 
(Richard et al. 2008), therefore grouse might be affected by 
the mere presence of a wind turbine in their habitat. Greater 
and Lesser Prairie Chickens have been shown to avoid pow-
erlines, which is suggested to be due to their potential as 
perches for raptors (Pruett et al. 2009b). This might not be 
the case for forest-dwelling grouse, however, since perches 
are abundant in forests. Forest clearings, however, have been 
associated with increased nest predation (King et al. 1998), 
which can be higher in fragmented forests (Van der Haegen 
and De Graaf 1996); both clearings and access roads, which 
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are associated with the construction of wind turbines in for-
ests, can be related to predation. Road construction associ-
ated with WEF can affect animal behaviour and cause frag-
mentation of natural habitats (e.g. Trombulak and Frissell 
2000). Moreover, road construction can lead to additional 
human use of an area for hunting (Gratson and Whitman 
2000), as well as for recreation, which can reduce an ani-
mal’s use of an area due to disturbance (Storch 2013; Coppes 
et al. 2017, 2018). Furthermore, roads can increase the pres-
ence of mesopredators (Frey and Conover 2006), which can 
in turn affect the prey species living in an area (i.e. grouse).

With respect to predators, two different scenarios can 
be proposed with respect to the presence of WEF. On the 
one hand, grouse predator densities might locally increase 
due to enhanced food supply in the form of carcasses of 
collision victims (cf. Bevanger 1994) or habitat alterations 
(i.e. more clearings and roads). On the other hand, raptors 
themselves might undergo distinct declines due to collision 
mortality (Madders and Whitfield 2006; Bellebaum et al. 
2013), or might avoid wind parks (Whitfield and Madders 
2006; Johnston et al. 2014). Whereas the first scenario could 
raise predation rates in local grouse populations, the second 
one may reduce them. Mammalian predators, however, are 
not expected to suffer from higher mortality rates in wind 
parks. This potential difference, along with the locally vary-
ing compositions of raptors and mammalian predators, may 
explain why we did not find consistent effects in the grouse 
literature that we reviewed.

Habitat alteration and loss due to wind energy 
infrastructure

For the construction of WEF, roads have to be constructed 
or widened, and areas for construction of the turbine towers 
are cleared of vegetation (Silva and Passos 2017). This can 
reduce or alter vegetation (Silva and Passos 2017), and lead 
to more edge and openings in a forest. The direct destruc-
tion of habitat due to WEF is usually relatively small (i.e. 
up to 0.5 ha per WEF) (Langston and Pullan 2003; Drewitt 
and Langston 2006). The construction of roads associated 
with WEF might, however, cause fragmentation of habitats, 
changes in human disturbance and changes in predator habi-
tat use. The fact that female Greater Sage-grouse survival 
was affected by the percentage area covered by wind parks 
(LeBeau et al. 2017b) might be attributed to habitat loss; the 
respective effects on grouse population dynamics remain, 
however, unclear.

Recommendations for future studies

Negative effects of WEF are well documented for several 
species of grouse, thus, concerns about wind park construc-
tion within grouse habitats are highly justified. However, 

inconsistencies in applied study methods and designs are 
obvious constraints for deriving general and widely applica-
ble conclusions from the studies that we reviewed, and can, 
in turn, lead to confusing information for land managers or 
the general public (Anderson et al. 1999; Fox et al. 2006). 
Evidence for long-term population level effects of WEF is 
scarce. To provide more widely applicable results, future 
studies should be harmonized with respect to design and 
sampling protocol. Moreover, some of the applied methods 
can be criticized, e.g. lek counts might underestimate grouse 
population numbers (Jacob et al. 2010; Lentner et al. 2018), 
so future studies should preferably use robust methods to 
assess population effects as well as changes in habitat use 
around WEF. There is an urgent need for more studies with a 
BACI design, which is considered to provide more informa-
tive and robust results than studies focusing only on pre- and 
post-construction phases or comparisons with a control site 
(cf. Fig. 1). As there might be a time lag in the reaction 
of grouse to infrastructure developments and related distur-
bances (Harju et al. 2010), it is important that studies are 
performed over a number of years, ideally more than 10, 
to include natural population fluctuations (Lindström et al. 
1996). Short-term studies may not be adequate to record 
the demographic consequences on grouse populations of 
new WEF constructions (Harju et al. 2010). Especially in 
fragmented populations and metapopulations, avoidance 
of wind turbines by grouse on small and isolated habitat 
patches (i.e. stepping stones) could potentially affect the 
exchange of individuals between sub-populations. So far, 
no study has assessed if, and how, wind turbines affect the 
dispersal behaviour of grouse.

Since avoidance behaviour in relation to anthropogenic 
disturbance has been shown to be modulated by habitat suit-
ability (Coppes et al. 2018), studies addressing this issue 
should take into account local habitat suitability, also when 
studying the effects of wind turbines. Contrary to other taxo-
nomic or ecological groups of birds (Hötker 2017), grouse 
are affected by collision mortality and show displacement 
responses. Thus, both these impacts of WEF on grouse pop-
ulations should be better addressed in future studies. Espe-
cially collision fatalities and the resultant consequences for 
population dynamics should be addressed more explicitly 
and be based on systematic surveys in future studies, as the 
current data are quite scarce, anecdotal and fragmentary.

Conclusion

In the northern hemisphere, wind energy is currently a 
central element of many national policies to increase the 
production of renewable energy (GWEC 2018). Thus, the 
currently observed expansion of wind parks is expected to 
continue (GWEC 2018), and will have an impact on wild-
life and their habitats, including grouse. We suggest that 
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mitigating measures aimed at lowering the direct and indi-
rect impacts of existing WEF in grouse habitats should 
account for the conservation status of the affected popula-
tion. The Working Group of German State Bird Conservan-
cies advises that wind turbines should not be constructed 
within 1000 m of areas where grouse (i.e. Capercaillie, 
Black Grouse, Hazel Grouse and Rock Ptarmigan) occur, 
and that corridors between subpopulations should be kept 
free of wind turbines (LAG 2015). For non-threatened popu-
lations, mitigation measures could include habitat improve-
ment to compensate for habitat loss and displacement due 
to WEF construction (e.g. increased use of access roads to 
WEF by hunters and recreationists). Another mitigation 
measure may be painting wind turbine towers black, as this 
was found to reduce Willow Ptarmigan collision numbers in 
Norway (T. Nygard, personal communication). According to 
the precautionary principle (Myers 1993), we recommend 
forgoing planning agreement for wind turbines in areas with 
small or locally threatened grouse populations. Furthermore, 
there should be stringent application of the BACI design in 
studies examining the effects of WEF construction on grouse 
habitats, and the results of these studies should be made 
publicly available.
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