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Abstract Speciation—the multiplication of species

through the evolution of barriers to reproduction between

populations—plays a central role in evolution since it en-

ables two or more populations to adapt and evolve inde-

pendently. However, mechanisms of speciation are

notoriously difficult to study and poorly understood. Sea-

birds provide useful models to investigate factors that may

promote or inhibit speciation because their ecology and

evolutionary genetics are relatively well understood. Here I

review population genetic studies of seabirds to test the

importance of six factors with the potential to disrupt gene

flow enough to result in speciation. Over 200 studies, in-

cluding over 100 species, have been published to date.

Most show evidence of restrictions in gene flow. Physical

(geographic) barriers to dispersal are clearly important:

conspecific populations that are separated by large ex-

panses of land or ice show evidence of restricted gene flow,

and sister species often are separated by physical barriers to

gene flow. However, many species of seabirds show evi-

dence of restrictions in gene flow in the absence of physical

barriers to dispersal. Study results indicate that differences

in ocean regimes, nonbreeding distributions, foraging dis-

tributions during the breeding season, and breeding phe-

nology also can disrupt gene flow enough to lead to

speciation. Of these, physical isolation and differences in

ocean regime appear to be the most important. Philopatry

alone may be sufficient to result in reproductive isolation,

but usually it acts in combination with other barriers to

gene flow. The effects of many other potential influences

on gene flow need to be investigated more thoroughly,

including colony distribution/location, wind, interspecific

interactions, environmental stability/variability, variation

in phenotypic traits associated with mate choice (mor-

phology, behaviour, vocalisations) and intrinsic (genomic)

incompatabilities. Recent advances in genome sequencing,

especially if used in combination with ecological tools such

as geolocators and new methods for data interpretation, are

opening exiting new avenues to test the importance of

various behavioural, ecological, demographic and genomic

factors in reducing or promoting gene flow and so affecting

speciation.

Keywords Allochrony � Foraging distribution � Gene

flow � Meta-analysis � Nonbreeding distribution � Ocean

regime

Introduction

Speciation—the evolution of reproductive isolation be-

tween populations—allows populations to evolve and adapt

independently and so plays a key role in evolution (Coyne

and Orr 2004; Price 2008; Seehausen et al. 2014). Mayr

stated (1963, p. 621) that ‘‘Without speciation there would

be no diversification of the organic world, no adaptive

radiation, and very little evolutionary progress’’. Further-

more, many aspects of ecology and behaviour relate to

species recognition. Thus, understanding speciation is

fundamental to many aspects of biology. Understanding
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speciation also is critical for conserving biodiversity, to

protect not only the existing diversity but also the diver-

sification process (Rosenzweig 2001; Butlin et al. 2012).

As Soule and Wilcox (1980, p. 8) stated, ‘‘Death is one

thing, an end to birth is something else’’. To protect the

diversification process we need to know how anthro-

pogenic changes are affecting speciation. For example, can

habitat fragmentation potentially promote speciation? And

to what extent does hybridisation inhibit or promote

population differentiation and speciation?

Despite its importance, speciation is poorly understood

(Coyne and Orr 2004; Price 2008; Butlin et al. 2012).

According to the classical, allopatric model of speciation

(‘speciation without gene flow’), a physical barrier to gene

flow is required to initiate genetic divergence of popula-

tions (Fig. 1). With sufficient time, pre- or post-mating

barriers to reproduction evolve through either genetic drift

or selection. This model is well supported by both theory

and empirical evidence. However, the identity and impor-

tance of non-physical barriers to gene flow are less clear.

For example, birds encounter few physical barriers to dis-

persal, yet there are more species of birds than of any other

class of vertebrates except actinopterygiian fishes. Deter-

mining the factors that disrupt gene flow sufficiently to

initiate speciation requires inferring historical processes

from contemporary patterns, which is notoriously difficult.

There are at least two general approaches to study barriers

to gene flow (Nosil 2012), but both have shortcomings:

comparisons of ecological and phenotypic differences

among conspecific populations; and comparisons of eco-

logical and phenotypic differences between sister species.

However, conspecific populations may not ultimately form

new species, and differences between sister species do not

necessarily reflect the barriers that initiated speciation.

Thus, use of these two approaches together may help de-

termine the relative importance of different potential bar-

riers to gene flow.

Seabirds provide good models for studying speciation

because they encounter very few physical barriers to dis-

persal, so non-physical barriers that can promote diversi-

fication across a range of organisms may be more evident

in seabirds than in less mobile organisms. Seabirds also are

generally well studied, and so these barriers should be

relatively easy to identify. Friesen et al. (2007a) and other

researchers (e.g., Gomez-Diaz et al. 2009) identified sev-

eral factors that may inhibit gene flow sufficiently to ini-

tiate speciation in seabirds. In the present review I update

and extend the previous study of Friesen et al. (2007a) to

explore the importance to speciation in seabirds of six

potential barriers to gene flow: physical (geographic) iso-

lation; philopatry; and differences in ocean regime, non-

breeding distribution, foraging distribution and breeding

phenology. For each factor I present the rationale, an ex-

ample, support from population genetic studies and support

from comparisons of sister species. Several of these factors

may be inter-related: for example, species that forage close

to colonies also tend to stay near colonies when not

breeding; the timing of breeding may differ between

colonies that occur in different ocean regimes, even if the

colonies are geographically proximate; and wintering areas

often occur in different ocean regimes. Analyses also are

partially confounded by phylogeny; e.g., albatrosses tend to

range widely both seasonally and while foraging. Disen-

tangling these factors will ultimately require more studies

and a multivariate meta-analysis.

Methods

Population genetic studies of seabirds were collated from

the primary literature, including any study that incorpo-

rated at least one molecular marker and that compared two

or more colonies (Supplementary Table 1). The existence

of restrictions to gene flow was inferred either from evi-

dence of strong population genetic or phylogeographic

differences (Wright 1969) or from direct estimates of gene

flow [e.g., from programmes such as IMa (Hey and Nielsen

2007)]. The potential factor(s) restricting gene flow were

inferred from either the original studies or other literature

sources. Studies that covered only a small portion of the

species’ range were not included, and not all information

?
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Fig. 1 Schematic diagram of the evolution of reproductive isolation

(speciation). Coloured dots represent alleles in the gene pool of a

species, and lines represent ancestor/descendent relationships; a

change in colour represents a mutation. The black box represents a

barrier to gene flow that eventually results in reproductive isolation

even if the barrier disappears. The question mark indicates that the

nature of the barrier that initiates speciation. Investigations into these

barriers can involve (1) comparisons of conspecific populations, but

these populations may not form new species if the barrier does not last

sufficiently long for reproductive isolation to evolve, or (2) compar-

isons of sister species, but differences between sister species may not

represent the barriers that initiated speciation is often unknown
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could be collated for all species. Populations or species for

which population genetic structure and gene flow appear

to have been strongly affected by human activities (e.g.,

overexploitation or transplantation; e.g., Short-tailed Al-

batross Phoebastria albatrus, Eda et al. 2012) or that

breed primarily inland (i.e., not in association with marine

waters; e.g., White Pelican Pelecanus erythrorhynchos)

also were not included. Interpretations were sometimes

complicated by taxonomy, especially as subspecies are

sometimes elevated to full species based on molecular

data.

Results and discussion

Over 200 population genetic studies of seabirds, covering

over 100 species, have been published since the initial al-

lozyme studies in the 1990s (Supplementary Table 1). Of

86 species included in the present analyses, 64 showed

evidence of restrictions in gene flow. Support was found

from the literature for potential roles in speciation for each

of the six factors investigated.

Physical isolation

Rationale

Although most seabirds are strong fliers, most pelagic and

coastal species will not fly over large stretches of either

land or ice. Thus, Atlantic and Pacific populations of

holarctic and north temperate species may be isolated by

arctic ice in the north and continental landmasses in the

south. Similarly, Atlantic and Indopacific populations of

tropical and subtropical species may be isolated by Africa

and the Isthmus of Panama; and populations of species that

breed and feed along coastlines may be isolated by open

ocean. For example, Brown Boobies (Sula leucogaster)

breed on islands throughout the tropical Atlantic, Pacific

and Indian oceans. Variation in both mitochondrial and

nuclear DNA among Brown Boobies sampled throughout

their range indicate that Atlantic and Indo-Pacific popula-

tions are strongly differentiated and have been genetically

isolated for approximately 350,000 years (Morris-Pocock

et al. 2011).

Support from the literature

All of the 16 species whose distributions are fragmented by

large expanses of land or ice show evidence of restrictions

in gene flow between oceans, and in most cases the

populations are highly differentiated (Supplementary

Table 1a). Even the Isthmus of Panama, which is only

35 km wide at its narrowest, appears to present a

significant barrier to gene flow in most seabirds; this is

probably due to its elevation (Steeves et al. 2005), which

ranges up to 3500 m. Population genetic structure in at

least nine additional species appears to represent secondary

contact between two or more populations that differenti-

ated in Pleistocene refugia (Supplementary Table 1b).

Sister species also are often separated by large expanses of

land or ice. For example, speciation in the white-headed

gulls (Larus spp.) appears to be due partially to fragmen-

tation of an ancestral species into multiple refugia by

Pleistocene glaciers (Liebers et al. 2004; Sonsthagen et al.

2012; Sternkopf et al. 2014).

However, 56 species of seabirds show evidence of re-

strictions in gene flow that are not associated with any

obvious contemporary or historical physical barrier to

dispersal (Supplementary Table 1c, d). For example, gene

flow appears to be restricted between Cassin’s Auklets

(Ptychoramphus aleuticus) breeding in Baja California/

Guadalupe Island and those farther north (Wallace et al.

2015). Furthermore, sister species often are not separated

by any obvious physical barrier to dispersal. For example,

Scripps’s and Guadalupe Murrelets (Synthliboramphus

scrippsi and S. hypoleucus respectively) diverged very re-

cently and have small breeding ranges that overlap off Baja

California (Birt et al. 2012). Thus, factors additional to

physical isolation must restrict gene flow in seabirds, po-

tentially sufficiently to lead to reproductive isolation. To

help identify these factors, the analyses below are based on

populations within ocean basins only (Supplementary

Table 1c, d).

Philopatry

Rationale

In theory, philopatry (defined here as the tendency to return

to the natal site to breed) may restrict gene flow sufficiently

to lead to reproductive isolation given sufficient time.

Seabirds are well known for their philopatric behaviour

(Coulson 2002), and although strong philopatry is not

universal, it is probably the second most obvious potential

barrier to gene flow in seabirds. For example, no ecological

differences or physical barriers to dispersal occur among

breeding colonies of Shy Albatrosses (Thalassarche cauta),

which are noted for strong philopatry (e.g., Sagar et al.

1998), yet Shy Albatrosses from three Tasmanian colonies

differ at mitochondrial and nuclear markers (Abbott and

Double 2003a, b).

Support from the literature

Of 36 species for which there is independent evidence of

strong philopatry (usually from ring returns), 27 (75 %)
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have restrictions in gene flow in at least part of their

breeding range, sometimes even within archipelagoes

(Fig. 2). In addition, there are many examples of sister

species that are not separated by any obvious physical or

ecological barrier to dispersal, arguing against a role for

physical isolation or ecological segregation in these cases.

For example, New Zealand has very high endemicity, with

closely related but reproductively isolated species some-

times breeding on neighbouring islands [Fig. 3; e.g., shags

(Phalacrocoracidae), del Hoyo et al. 1996; Rawlence et al.

2004]. Similarly, islands off the west coast of Baja

California have several endemic species and subspecies of

seabirds, especially storm-petrels (del Hoyo et al. 1992,

1996).

However, 12 (75 %) of 16 species that are not strongly

philopatric also show evidence of disruptions to gene

flow (e.g., Magnificent Frigatebirds Fregata magnificens

in the Galapagos compared to the rest of the range,

Hailer et al. 2011). Furthermore, in most cases where

gene flow is restricted in philopatric species, populations

differ in one or more ecological features. And nine

strongly philopatric species show no evidence of restric-

tions in gene flow (e.g., Grey-headed Albatross Thalas-

sarche chrysostoma, Burg and Croxall 2001). Thus,

additional barriers to gene flow must be involved in

speciation in seabirds.

Differences in ocean regime

Rationale

Local differences in selection pressures can disrupt gene

flow and potentially lead to reproductive isolation (‘‘eco-

logical speciation’’; Coyne and Orr 2004; Hendry et al.

2007; Nosil 2012). Such differences could result from any

of a myriad of environmental variables, including (but not

limited to) climate, prey species, predators, competitors,

parasites and disease (reviewed in Karvonen and
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Fig. 2 Proportions of studies showing evidence of strong, weak or no

interruptions in gene flow given various potential barriers to gene

flow. Collated from Supplementary Table 1c, d (populations with no

evidence of historical or contemporary physical barriers to gene flow).

Dark shades Species showing strong population genetic or phylo-

geographic structure; intermediate shades species with populations

that differ in allele or haplotype frequencies only; white species with

little or no geographic variation in allele or haplotype frequencies.

Numbers numbers of studies. ‘Strong philopatry’ = few records of

adults or juveniles changing breeding colonies despite extensive

banding records; ‘weak philopatry’ = generally philopatric but

evidence of individuals changing breeding colonies or of metapopula-

tion dynamics; ‘none’ = extensive records of individuals changing

breeding colonies or of colonies changing locations. ‘Resident’ = little

or no dispersal of adults from colonies during nonbreeding season;

‘multiple areas’ = seasonal connectivity between colonies and two or

more discrete nonbreeding areas; ‘1 area’ = birds from all breeding

colonies migrate to a common nonbreeding area; ‘wide-ranging’ =

wide-ranging dispersal during the nonbreeding season; ‘mixed’ = a

combination of nonbreeding distributions (e.g., some colonies

resident; others migratory)
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Seehausen 2012). Ocean regimes can exert very different

selective pressures (Fig. 4). For example, they can differ in

sea surface temperature, productivity, seasonality, up-

welling, prey, competitors and food web complexity. These

differences could inhibit gene flow either by reducing the

fitness (survival or reproductive success) of migrant indi-

viduals or simply by deterring dispersal. For example,

Gomez-Diaz et al. (2009) provided evidence that the

Almeria-Oran Oceanographic Front is a barrier to gene

flow in Cory’s Shearwaters (Calonectris diomedea).

Similarly, ocean surface temperature north and south of the

Subtropical Convergence differs by 10 �C, and Rockhop-

per Penguins (Eudyptes chrysocome) breeding in these two

areas have distinct mitochondrial DNA (mtDNA; Jouventin

et al. 2006). They also differ in vocalisations and facial

ornaments, and are now classified as separate species (E.

chrysocome and E. moseleyi).

Support from the literature

Of 39 population genetic studies that include populations

that breed in two or more ocean regimes within an ocean

basin, 34 (85 %) found evidence of restricted gene flow

(Fig. 2). Furthermore, sister species often occur in different

ocean regimes (e.g., Blue-footed and Peruvian boobies

Sula nebouxii and S. variegata). Ocean differences in five

areas in particular appear to restrict gene flow enough for

speciation in seabirds (Supplementary Table 1c, d): ocean

currents around the Galapagos (five species with ge-

netically distinct populations; several endemic species such

as the Nazca Booby Sula granti with sister species in the

eastern tropical Pacific; four species with restrictions in

gene flow among islands within the Galapagos); the

Almeria-Oran Oceanographic Front (three species with

genetically differentiated populations in the Mediterranean

versus the Atlantic; several endemic Mediterranean species

such as the Yelkouan Shearwater Puffinus yelkouan with

sister species in the eastern Atlantic); the Subtropical

Convergence [three species with genetically differentiated

populations north versus south of the Convergence; several

pairs of species such as White-chinned and Spectacled

Petrels Pterodroma conspicillata and P. aequinoctialis

(Techow et al. 2009) distributed north versus south of the

Convergence]; the Equatorial Counter-current (e.g., one

pair of boobies Sula spp. and two pairs of storm-petrels

Oceanodroma spp. distributed north versus south of the

Counter-current; S. Wallace et al., unpubl. data); and ocean

currents around Cape Verde (several endemic procellari-

iform species; e.g., Cape Verde Petrel Pterodroma feae,

Gangloff et al. 2013).

Despite these results, evidence for restrictions in gene

flow also exists in 22 (59 %) of 37 species that breed (or

were sampled) within a single ocean regime (Supplemen-

tary Tables 1c, d). Furthermore, sister species often co-

exist within the same ocean regime. For example, four

species of auklets (Aethia spp.), which appear to have

Fig. 3 Numbers of species and subspecies of seabirds endemic to single islands or archipelagos. Volumes of circles are proportional to numbers

of species or subspecies. Collated from del Hoyo et al. (1992, 1996)
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arisen from a common ancestor within a very short time

interval (Humphries and Winker 2010; Smith and Clark

2014), coexist within the North Pacific Ocean and Bering

Sea areas, often breeding in the same colonies. Thus, ocean

regime alone does not explain speciation in seabirds.

Nonbreeding distribution

Rationale

Species that are resident at colonies year-round, or that

migrate to population-specific nonbreeding areas (i.e. that

have high seasonal connectivity), may have less opportu-

nity for gene flow than those that have a single common

nonbreeding area or that simply disperse in the nonbreed-

ing season. For example, Brünnich’s Guillemots (Uria

lomvia) from throughout the North Atlantic tend to con-

gregate in the northwest Atlantic during winter and are

genetically panmictic (Birt-Friesen et al. 1992; Tigano

et al. 2015); in contrast, Black Guillemots (Cepphus grylle)

tend to winter near colonies and have a marked population

genetic structure (Kidd and Friesen 1998). Correspond-

ingly, Friesen et al. (2007a) found that nonbreeding dis-

tribution correlated with the extent of geographic variation

in mtDNA in seabirds. Similar associations have been

found in landbirds (Kelly and Hutto 2005) and waterbirds

(Kraaijeveld 2008). For example, a recent migratory divide

in European Blackcaps (Sylvia atricapilla) in Germany

correlates with rapid morphological divergence and assor-

tative mating between individuals wintering in different

areas (Bearhop et al. 2005; Rolshausen et al. 2009).

Support from the literature

In population genetic studies for which data on nonbreed-

ing distributions are available, restrictions in gene flow

occur in 34 (67 %) of 51 species that are resident at

colonies year-round, that migrate to population-specific

nonbreeding areas or that have mixed nonbreeding strate-

gies (Fig. 2). Furthermore, sister species often differ in

© 2011 Encyclopaedia Britannica, Inc

Fig. 4 World ocean currents. Thick lines represent ocean fronts that

appear to present significant barriers to dispersal in seabirds: red

Almeria-Oran Oceanographic Front; yellow Equatorial Counter-

current; green currents around the Galapagos; blue Subtropical

Convergence; purple currents around Cape Verde. Modified from

map provided by courtesy of Encyclopaedia Britannica, Inc., � 2011;

used with permission
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nonbreeding distributions [e.g., Cape vs. Australasian

Gannets (Sula capensis vs. S. serrator); Ismar et al. 2011;

Patterson et al. 2011].

However, nonbreeding distribution alone does not ex-

plain restrictions in gene flow in seabirds. Of 35 species

whose breeding populations mix in the nonbreeding area,

22 (63 %) show evidence of restrictions in gene flow.

Additionally, sister species often overlap in the nonbreed-

ing area (e.g., Common U. aalge and Brünnich’s Guille-

mots; McFarlane Tranquilla et al. 2014).

Foraging distribution during the breeding season

Rationale

Burg and Croxall (2001) argued that species with population-

specific feeding areas have less opportunity for gene flow

among colonies than if foraging ranges overlap among colo-

nies. For example, stable isotopes indicate that Hawaiian pe-

trels (Pterodroma sandwichensis) breeding on Hawaii versus

Kauai forage in different areas, and analyses of molecular

genetic variation using coalescent theory indicated that fewer

than 1 migrant is exchanged per 1000 generations between

these breeding sites (Welch et al. 2011; Wiley et al. 2012).

Similarly, Friesen et al. (2007a) argued that inshore-feeding

species should have less potential for gene flow among colo-

nies and found that all of seven inshore-feeding species had

population genetic or phylogeographic structure in their

mtDNA. As a corollary, Taylor et al. (2011a) proposed that

species that feed at upwellings have to change distributions

periodically to track foraging areas, and so have more op-

portunity for gene flow. Accordingly, gene flow appears to be

higher within Blue-footed and Peruvian Boobies and Peruvian

Pelicans (Pelicanus thagus), all upwelling specialists, than

within any other tropical seabird species (Taylor et al. 2011a,

b; Jeyasingham et al. 2013)

Support from the literature

The possibility that foraging distribution affects gene flow

and potentially leads to speciation is supported by the ob-

servation that, of 22 species that have been studied that

either feed inshore or have population-specific foraging

areas, 20 (91 %) show evidence of restrictions in gene flow

(Fig. 2). Also, many sister species differ in foraging dis-

tributions (e.g., Black-browed vs. Campbell Island Alba-

trosses Thalassarche impavida; Burg and Croxall 2001).

Furthermore, strong population genetic structure has been

found in only 1 (8 %) of 12 upwelling specialists that have

been studied (Fig. 2).

However, the relationship between foraging distribution

and gene flow is not strong: 23 (74 %) of 31 species that feed

offshore also show restrictions in gene flow. And sister species

often have similar foraging distributions (e.g., Common and

Brunnich‘s Guillemots; Gaston and Jones 1998).

Breeding phenology

Rationale

According to theory, differences in breeding phenology

(allochrony) can reduce or eliminate gene flow between

populations, even in the absence of selection, provided that

breeding time is heritable (Hendry and Day 2005). Many

convincing examples of speciation by allochrony exist in

plants, insects and fishes (Hendry and Day 2005; e.g.,

Ording et al. 2010). The possibility that allochrony alone

can restrict gene flow is supported by examples of sym-

patric seasonal populations that differ genetically, since

restrictions in gene flow for ecological reasons are unlikely

in these cases. Geographic variation in breeding phenology

is common in birds including seabirds (del Hoyo et al.

1992, 1996), and seasonal populations have been reported

within archipelagos and even within breeding colonies of

seabirds (e.g., Galapagos Petrels Pterodroma phaeopygia,

Tomkins and Milne 1991; Herald Petrels, Pterodroma

heraldica, Brooke and Rowe 1996). Furthermore, evidence

for restrictions in gene flow between sympatric seasonal

populations has been found in storm-petrels (Oceanodroma

spp.): seasonal races appear to have arisen independently

and sympatrically at least five times in the Madeiran

(Band-rumped) Storm-petrel species complex (O. castro/

Monteiroi/jabejabe) and Leach’s Storm-petrel (O. leu-

corhoa, Friesen et al. 2007b, unpubl.), leading to repro-

ductive isolation at least once (Bolton et al. 2008).

Support from the literature

All but one of at least nine species of seabirds that have

geographic variation in breeding phenology also show

evidence of restricted gene flow (Supplementary Table 1c),

and three species also show evidence of restrictions in gene

flow among allochronic populations within archipelagos

(Supplementary Table 1d). Furthermore, sister species

often differ in breeding chronology (e.g., Spectacled and

White-chinned Petrels, Techow et al. 2009; Scripps’s and

Guadalupe Murrelets, reviewed in Birt et al. 2012).

Although results for storm-petrels suggest that spe-

ciation by allochrony is possible in seabirds, it is probably

not common. Few other possible cases of population dif-

ferentiation due to allochrony have been reported, and most

populations that differ in breeding phenology also differ in

other features such as ocean regime (e.g., South American

Tern Sterna hirundinacea; Faria et al. 2010). Furthermore,

many colonies show strong breeding synchrony, and al-

lochrony cannot occur in strongly seasonal ocean regimes.
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Synthesis and future studies

Results of this review indicate that all of the six factors

investigated have the potential to restrict gene flow in

seabirds, potentially enough for speciation (Fig. 2). Phy-

sical isolation clearly can lead to speciation. Of the re-

maining factors, ocean regime has the strongest

relationship to gene flow: 85 % of 39 conspecific popula-

tions that breed in different regimes show evidence of re-

stricted gene flow (and those that do not are primarily

upwelling specialists), and 15 (39 %) of 38 species that

occur in only one regime appear to be genetically pan-

mictic. Nonbreeding distribution also appears to be im-

portant, and the effect of wintering in different ocean

regimes merits further investigation. However, none of

these factors provides a complete model of speciation in

seabirds. Generally, disruptions in gene flow appear to be

associated with two or more factors, one of which is usu-

ally strong philopatry (Fig. 2): only 5 (31 %) of 16 species

that are influenced by only one feature (aside from physical

isolation) show interruptions in gene flow, and only one of

these has strong population genetic differentiation. In

contrast, 44 (85 %) of 52 species that are affected by two

or more factors show evidence of restricted gene flow. Of

the eight exceptions, four involve upwelling specialists,

one has a very restricted range (two islands off New

Zealand), three are not strongly philoaptric, and one was

only studied with allozymes.

Other factors that may contribute to, or inhibit, the

evolution of reproductive isolation need to be tested

broadly. These can be classified generally into environ-

mental features (additional to those outlined above), factors

affecting mate choice, and intrinsic (genomic) isolating

mechanisms (Table 1).

Other environmental features

Peripheral isolation

Mayr (1963) and subsequent researchers argued that pe-

ripheral isolation is an important mechanism of speciation.

Populations on the edge of a species’ range may be ge-

netically isolated from central populations because of

lower immigration rates and/or because of selection asso-

ciated with suboptimal habitat (Eckert et al. 2008). Alter-

natively or additionally, small population size often

associated with peripheral populations could induce suffi-

cient genetic drift to lead to reproductive isolation (see

Intrinsic genetic isolation, below). Accordingly, Liebers

et al. (2001) argued that the Armenian Gull (Larus ar-

menicus) is a relict of an ancient colonisation of Armenia

from the Atlantic by Yellow-legged Gulls (Larus spp.),

probably associated with a population bottleneck.

Similarly, the Shy Albatross (Thalassarche cauta) puta-

tively arose following range expansion by the White-cap-

ped Albatross (T. steadi; Abbott and Double 2003b). The

general importance of peripheral isolation in speciation in

seabirds remains to be explored.

Pattern of gene flow

In theory, the pattern of gene flow among colonies can affect

the level of genetic divergence and thus the potential for

local adaptation and ultimately reproductive isolation. If

migrants are exchanged at random among colonies (n-island

model of dispersal; Wright 1969), then in theory one migrant

per generation can homogenise colonies genetically. How-

ever, more gene flow is needed to homogenise populations if

migrants are exchanged primarily between neighbouring

colonies (stepping-stone model of dispersal), especially if

colonies are distributed linearly, e.g., along a coastline. The

pattern of gene flow is rarely known for seabirds, but Friesen

et al. (2007a) found a weak effect of colony distribution

(coastal versus offshore islands) on population genetic

structure. In addition, genetic distance correlates with geo-

graphic distance between colonies in many species that have

been studied (reviewed in Friesen et al. 2007a), as would be

expected if dispersal was primarily between neighbouring

colonies. Thus, the influence of dispersal pattern on gene

flow merits further investigation.

Prevailing winds

Winds can have a strong influence on foraging patterns and

migration routes of seabirds (e.g., Weimerskirch et al.

2000; Felicimo et al. 2008; Gonzalez-Solis et al. 2009) and

have the potential to promote gene flow among colonies,

either on an on-going basis or sporadically, during storms.

Ocean currents are often associated with prevailing winds,

and currents may direct gene flow among colonies (e.g., de

Dinechin et al. 2009). However, the effect of wind itself on

gene flow in seabirds is largely unexplored.

Interspecific interactions

The presence of competitors or predators may reduce or

prevent gene flow among colonies. The potential for

competitors or predators to disrupt gene flow and poten-

tially lead to reproductive isolation is unexplored in sea-

birds. In contrast, ectoparasite infestations can lead to

large-scale abandonment of breeding colonies (Duffy

1983) and could promote gene flow if birds relocate to

either new or existing colonies. This possibility also is

largely unexplored, although it may help explain genetic
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panmixia within Peruvian Pelicans and Peruvian Boobies

(Taylor et al. 2011a, b).

Environmental variability

Environmental changes can potentially promote gene flow

due to either improved breeding conditions promoting

colonisation or deteriorating conditions promoting

emigration. Habitat deterioration in turn could result from

either extrinsic forces (e.g., climate change) or the ac-

tivities of the birds themselves (e.g., prey depletion, or

destruction of nesting trees by cormorants). Distributions

of several seabird species have clearly changed as a result

of the climate changes of the Pleistocene. Frequent envi-

ronmental changes could select against philopatry, poten-

tially leading to higher levels of gene flow and lower rates

of speciation. A temporally variable environment also

could favour phenotypic plasticity, which can reduce local

adaptation. In contrast, a stable environment can provide a

species with enough time to adapt genetically to local

conditions and/or develop reproductive isolation (e.g., Al-

derman et al. 2005). The possibility that a temporally

variable environment promotes gene flow needs to be ex-

plored further.

Mate choice

Geographic variation in any feature important for species

recognition during mate choice may inhibit gene flow and

eventually lead to reproductive isolation.

Body colouration

Following a review of the incidence of hybridisation in

sympatric congeneric seabirds, Pierotti (1987) argued that

bill and foot colours are primary isolating mechanisms in

surface-nesting seabirds. In a comprehensive evaluation of

morphology, breeding phenology, breeding success and

variation in neutral molecular markers among Herring

(Larus argentatus) and Caspian Gulls (L. cachinnans) in a

hybrid zone in Poland, Gay et al. (2007) and Neubauer

et al. (2009) inferred that the colour of the orbital ring was

an important, although incomplete, premating barrier.

Many species of seabirds show geographic variation in

plumage and other colouration (e.g., Brown Boobies;

Nelson 1978); however few studies have examined the

influence of this variation on intraspecific gene flow.

Vocalisations

Closely related species of birds often differ in vocalisa-

tions, and changes in these cues can not only reinforce but

also potentially initiate reproductive isolation in landbirds

(Edwards et al. 2005). In seabirds, many sister species

differ in vocalisations (e.g., Rockhopper Penguins, Jou-

ventin et al. 2006; Madeiran Storm-petrels, Bolton 2007;

auklets, Seneviratne et al. 2012), as do some conspecific

populations (e.g., Madeiran Storm-petrels; Bolton 2007).

These differences may result from either neutral diver-

gence or adaptation to local acoustic conditions (e.g.,

Thumser et al. 1996; Seneviratne et al. 2012). Whether or

Table 1 Potential for different

factors to restrict gene flow, and

so promote speciation in

seabirds, or to promote gene

flow and so inhibit speciation

Factor Potential effect on gene flow

Environmental factors

Physical (geographic) barriers to dispersal Restrict

Philopatry Restrict

Differences in ocean currents Restrict

Difference in nonbreeding distributions Restrict

Difference in foraging areas Restrict

Specialisation to upwellings Promote

Difference in breeding time Restrict

Peripheral colonies Restrict

Stepping-stone dispersal Restrict

Strong winds Promote

Interspecific interactions Either

Habitat change/disturbance Promote

Mate choice

Differences in morphology (plumage, bare part colouration) Restrict

Differences in vocalisations Restrict

Sexual selection Either

Intrinsic (genomic) reproductive isolation Restrict
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not variation in vocalisations can initiate speciation in

seabirds remains largely unexplored.

Sexual selection

Compelling evidence for sexual selection has been reported

in seabirds (e.g., Jones and Hunter 1993; Torres and Ve-

lando 2005), and differences between avian species, in-

cluding seabirds, often involve sexually selected characters

(Edwards et al. 2005; e.g., Jones and Hunter 1998; Serrano-

Meneses and Szekely 2006). The potential for sexual se-

lection to drive speciation is an area of active research and

controversy (Ritchie 2007; Kraaijeveld et al. 2011; Seddon

et al. 2013). Although sexually selected characters can

show extensive intraspecific variation (e.g., Jones et al.

2000), only a few examples of geographic variation or

divergent selection on sexually selected characters exist in

seabirds (e.g., Snow Petrels Pagodroma nivea, Barbraud

and Jouventin 1998; Brown Boobies, Tershy and Croll

2000), and few studies have analysed the effect of sexual

selection on gene flow or population genetic structure (but

see Pons et al. 2014).

Intrinsic reproductive isolation

Genomic differences between individuals from different

populations have the potential to restrict gene flow and lead

to reproductive isolation (Butlin 2010; Nosil and Feder

2012; Seehausen et al. 2014). Such differences include (but

are not limited to) chromosomal rearrangements and intra-

genomic conflicts such as Dobzansky-Mueller incompata-

bilities. Although little karyotopic or other genomic in-

formation is available for seabirds, and karyotypes tend to

be conserved across birds (Ellegren 2013), genome se-

quencing is revealing that chromosomal rearrangements

are common (Ellegren et al. 2012; Ellegren 2013). Next-

generation sequencing provides exciting new avenues for

exploring the role of intrinsic barriers to reproduction in

seabirds (Ellegren et al. 2012). Genomic differences could

be promoted through population bottlenecks or founder

events, as rearrangements are more likely to become fixed

in small populations (Carson and Templeton 1984). The

origins of at least two species of seabirds have been linked

to population bottlenecks (the Armenian Gull and Shy

Albatross, above), although whether the bottlenecks were

associated with intrinsic genomic changes is unreported.

Synergisms

Studies that combine neutral molecular markers with other

analyses will be especially useful for improving our un-

derstanding of the factors promoting—and reducing—

speciation in seabirds. There are many examples of

research synergisms that result from combining analyses of

neutral markers with data from functional genes, band re-

turns, tracking, quantitative traits, ecology, behaviour,

immunology or endocrinology. The study of Cook’s Petrels

(Pterodroma cookii) by Rayner et al. (2011) provides a

notable example. Cook’s Petrels are philopatric seabirds

that breed on Little Barrier and Codfish Islands, New

Zealand. Rayner et al. combined data from mtDNA, light-

based data loggers, satellite sensing of the environment,

stable isotopes and breeding surveys. They proposed that

differences in nonbreeding distribution are associated with

differences in breeding phenology, which, in combination

with philopatry, reduces gene flow between colonies. New

methods for data analysis (e.g., approximate Bayesian

computation, ecological niche modeling) also promise to

provide useful insights into speciation by enabling rigorous

tests of multiple explicit hypotheses. Application of these

new methods to multi-factorial studies, as well as mate

choice experiments, next-generation sequencing, and meta-

analyses of studies of seabirds and other taxa, should have

many benefits. They should help us to disentangle cause

and effect, to estimate population genetic structure in un-

studied species (especially those of conservation concern),

to predict the potential existence of cryptic species and

ultimately to protect the diversification process.
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