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Abstract Parasites can have strong effects on host

life-history and behaviour, and result in changes in host

population dynamics and community structure. We applied

a PCR-based technique and examined prevalence of

malaria and related haemosporidian parasites in two arctic

breeding shorebird species: the Semipalmated Sandpiper

(Calidris pusilla) and the Pectoral Sandpiper (C. melano-

tos). During the non-breeding season, Semipalmated

Sandpipers inhabit coastal marine habitats, whereas Pec-

toral Sandpipers are found in inland areas. In accordance

with the hypothesis that the risk of parasite infection is

higher in a species wintering in freshwater areas, we found

Plasmodium sp. infection during the breeding season only

in Pectoral Sandpipers, whereas Semipalmated Sandpipers

were parasite free. However, even in Pectoral Sandpipers

sampled in the arctic, prevalence of malaria parasites was

very low (\3% of individuals, n = 114). Overall, three

different Plasmodium sp. lineages were found, one of

which has never been described before.

Keywords Avian malaria � Haemosporidian parasites �
Shorebirds

Introduction

Seasonal movement of the host from parasite-rich to

parasite-free habitats, or the other way round, is expected

to shift the co-evolutionary dynamics in host–parasite

relationships (Gomulkiewicz et al. 2000; Forde et al. 2004,

Morgan et al. 2005). One of the partners (host or parasite)

that is either pre-adapted to the new environment or is more

flexible for faster adaptation to novel conditions is expec-

ted to have the upper hand in the arms race. Hence, the

general host–parasite interactions may be directly affected

by species range distributions and migration patterns.

Often, natural populations of hosts and parasites are

spatially separated at least during part of the year, so that

some areas of a host’s range are parasite-poor. Some long-

distance migratory species, such as high-arctic breeding

shorebirds, appear to avoid parasite-prone areas (e.g.

freshwater inland habitats) but instead rely strictly (year-

round) on haemosporidian parasite-poor habitats such as

high arctic tundra, coastal sand beaches, mudflats

and lagoons, and saltwater marshes. Yet, breeding and

overwintering in these habitats require energetically and

time-demanding migratory journeys and living in often

harsh environmental conditions. Thus, physiological trade-

offs between immunological investment and energetically

costly life history-traits related to long-distance migration

(e.g. fattening, sustained flight) and breeding in climatically

adverse conditions (thermoregulation, fast chick growth)

were proposed as possible driving factors behind the use of

specific habitat types by migrating shorebirds (Piersma

1997, 2003).
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Based on the dichotomy of habitat distribution observed

in migrating shorebirds, it has been suggested that habitat

selection might be related to the different habitat-related

disease-risks (e.g. Piersma 2003). The idea is supported by

a study that examined the prevalence of avian malaria

infection in 31 shorebird species sampled in the arctic, in

Europe and in marine and inland West Africa (Mendes

et al. 2005). This study showed significantly higher prev-

alence of malaria parasites in species that rely on

freshwater inland habitats (mostly tropical wetlands) than

in species that occur in marine habitats (9.6% of a total of

501 vs 0.7% of 816 individuals screened).

We applied a PCR-based technique and examined the

prevalence of avian haemosporidian infections in two

shorebird (Calidris) species that breed sympatrically in the

high arctic, but differ in habitat choice during the non-

breeding season (Fig. 1). The Semipalmated Sandpiper

(Calidris pusilla) migrates to South America through the

prairies. The northward migration from the wintering

ground is believed to be along the Atlantic coast (mainly for

the eastern breeding population) and through interior North

America. The species winters along northern and central

coasts of South America and relies mainly on shallow

lagoons, low tidal zones and coastal marine habitats. The

Pectoral Sandpiper (C. melanotos) is usually found in

freshwater habitats and migrates across mid-continental

North America (Fig. 1). Its main wintering area is spread

across the interior of mid-continental South America and

consists primarily of wet marshlands and grassy areas,

usually far from tidal areas and occasionally higher into

alpine puna zone (for details on migration, distribution and

habitat, see: de Hoyo et al. 1996; Holmes and Pitelka 1998;

Myers and Myers 1979; Parker et al. 1982; Stotz et al.

1996).

Thus, based on potential exposure to vectors, we pre-

dicted relatively higher prevalence of malaria parasites in

Pectoral Sandpipers compared to Semipalmated Sandpip-

ers. Semipalmated Sandpipers have not been investigated

for blood parasites, whereas Mendes et al. (2005) reported

the absence of malaria parasites (Plasmodium sp.) in a

single Pectoral Sandpiper caught along the East Atlantic

Flyway.

Materials and methods

The study was conducted near Barrow, Alaska, (71�180N,

156�440W) the northern tip of the Arctic Coastal Plain (for

details of the study site, see Ashkenazie and Safriel 1979).

Both species arrived on the breeding grounds between the

end of May and the beginning of June. Semipalmated

Sandpipers were studied between 5 June and 13 July 2004

and between 9 June and 10 July 2005. Pectoral Sandpipers

were studied between 26 May and 4 July 2006.

Male and female Semipalmated Sandpipers were caught

using walk-in traps during incubation. Incubating female

Pectoral Sandpipers were caught on the nest using spring

traps. Male Pectoral Sandpipers were caught using mistnets.

Each bird was banded with a unique combination of colour

bands and an aluminum US Fish and Wildlife Service band.

Genomic DNA was extracted from bird blood samples

stored in Queens’s Lysis buffer (0.01 M Tris–HCl, 0.01 M

NaCl, 0.01 M EDTA, 1% n-Lauroylsarcosine, pH 8.0;

Seutin et al. 1991) using the GFX Genomic Blood DNA

Fig. 1 The breeding, migration

and wintering distribution range

of the Pectoral Sandpiper

(Calidris melanotos) and the

Semipalmated Sandpiper

(C. pusilla). The intensity of the

green colour within each

migration range reflects relative

densities of individuals

observed at stop-over sites (pale
green correspond to low

densities; see ‘‘Materials and

methods’’ for details)
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Purification Kit (GE Healthcare Europe, Freiburg,

Germany).

Samples from 114 Pectoral Sandpipers (20 males and 94

females) and 84 Semipalmated Sandpipers (23 males and

25 females in 2004, and 16 males and 20 females in 2005)

were screened for parasites using a nested PCR protocol

(primer pair 1: HAEMNFI and HAEMNR3 for Haemo-

proteus, Plasmodium and Leucocytozoon; primer pair 2a:

HAEMF and HAEMR2 for Haemoproteus and Plasmo-

dium; primer pair 2b: HAEMFL and HAEMR2L for

Leucocytozoon) targeting a 479-bp fragment (excluding

primers) of the parasite cytochrome b gene (Hellgren et al.

2004). Direct sequencing of positive reactions was per-

formed using the HAEMF primer and these were loaded on

an ABI PRISM 3100 sequencing robot (Applied Biosys-

tems). This procedure also permits precise identification of

parasitic lineages when identical parasites occur in differ-

ent avian host species (Hellgren et al. 2007a).

We compared the blood parasites detected in the sand-

pipers with blood parasites from our unpublished database

(available on request from S. Bensch) using local BLAST

search in BioEdit (Hall 1999). Lineages are defined by

their cytochrome b haplotype of the 479 bp sequence

between the primers HAEMF and HAEMR2. This database

contains 216 unique Plasmodium lineages, 325 Haemo-

proteus lineages and 89 Leucocytozoon lineages.

Maps (Fig. 1) were generated with R 2.6.2 (R Devel-

opment Core Team 2007) using species distribution ranges

available in digital format from Nature Serve (Ridgely

et al. 2007). Relative densities of individuals observed at

stop-over sites (both in spring and autumn migration;

indicated on the maps in green) were estimated using a

gaussian smoothing kernel (Baddeley and Turner 2005)

applied on individuals’ resighting data (Pectoral Sandpiper,

n = 1,558, time span 1911–2008; Semipalmated Sand-

piper, n = 9,067, time span = 1932–2007) from the Avian

Knowledge Network (Cornell Laboratory of Ornithology,

http://www.avianknowledge.net).

Results and discussion

We detected no infections by parasites from the genera

Haemoproteus and Leucocytozoon in either of the species.

Hence, these birds may not be exposed to parasites trans-

mitted by biting midges, Hippoboscid flies or black flies

(Valkiunas 2005). The 84 Semipalmated Sandpipers were

also negative for Plasmodium parasites and hence com-

pletely free of haemosporidian parasites. Among the 114

Pectoral Sandpipers screened, 3 individuals (2.6%; 1 male,

2 females) scored positive for Plasmodium infection. These

represented three different Plasmodium lineages. In one

individual (male), we detected a new lineage PESA01

(GenBank accession number EU684543), which was most

similar to a Plasmodium lineage retrieved from a Brown

Hawk Owl (Ninox scutulata) from Singapore (AY099035),

Asia (Perkins and Schall 2002). A sequence closely

matching PESA01 has been recorded in a White-tipped

Dove (Leptotila verreauxi) (GenBank DQ241521) from

Uruguay (Durrant et al. 2006). Two other individual Pec-

toral Sandpipers were screened positive for two different

Plasmodium lineages each: BT7 (AY393793) and SW5

(AF495574). The lineage BT7 was first described for

Bluethroats (Luscinia svecica) from Sweden (Hellgren

2005), but has also been detected in Great Tits (Parus

major) and Blue Tits (Cyanistes caeruleus) from the UK

(Wood et al. 2007), in Pacific Golden Plovers (Pluvialis

fulva) from Hawaii (Beadell et al. 2006), in the Common

Rosefinch (Carpodacus erythrinus) from Korea (Beadell

et al. 2006), in the Red-flanked Bluetail (Tarsiger cyanu-

rus) from Myanmar (Ishtiaq et al 2007), and in the

Common Buzzard (Buteo buteo), the Rough-legged Buz-

zard (Buteo lagopus) and the Eurasian Sparrowhawk

(Accipiter nisus) from Germany (Krone et al 2008). The

SW5 lineage has previously been found in two migratory

warbler species of the genera Acrocephalus: the Sedge

Warbler (A. schoenobaenus) from Nigeria (Waldenström

et al. 2002) and the Great Reed Wwarbler (A. arundinac-

eus) from Sweden (Bensch et al. 2007).

Overall, our results are consistent with previous studies

in shorebirds, which showed very low prevalence of

malaria parasites in shore birds (e.g. Peirce 1981; Earlé and

Underhill 1993; Mendes et al. 2005). Earlier studies (that

mainly applied blood smear techniques) also indicate the

absence of blood parasites in the arctic. For instance,

Williams (1978) reported the absence of blood parasites

from Charadrii species sampled in northeastern Greenland.

Likewise, Borg (1992) reported the absence of parasites

from 298 individuals (11 species of Charadrii) on south-

ward migration at Öland, Sweden. No blood parasites were

found in five species of Charadriiformes breeding in the

Asian arctic tundra near Lake Pronchishcheva (75�160N,

112�280E), northeastern Taimyr Peninsula, Russia (Earlé

and Underhill 1993). Among 215 birds (65 marine/saline

and 150 freshwater) examined using PCR-based assays,

Mendes et al. (2005) found no avian malaria in the arctic.

According to Valkiūnas (2005), the scarcity of haema-

tozoa in marine and coastal birds seems to be a general rule

with a few exceptions. The observed absence of blood

parasites in Semipalmated Sandpipers, a species that uses

coastal marine habitats during migration, is in line with the

hypothesis that this species is exposed to low levels of

parasites by employing a marine/saline-dominated migra-

tion route (Piersma 1997, 2003; Figuerola 1999). Pectoral

Sandpipers showed low levels of Plasmodium prevalence,

supporting the idea that they run a relatively higher risk of
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infection by using more freshwater habitats during migra-

tion and overwintering.

The relative low parasite prevalence could be explained

by the scarcity of parasite vectors across a large part of the

distribution of the species, but also by additional factors

such as the immunological fitness of the host and the

absence of alternative hosts that could serve as a reservoir

for the parasite (Cardona et al. 2002; Garvin and Remsen

1997). An optimal condition created by the interaction of

such factors may account for inter- and intra-specific

habitat, geographic and latitudinal variation in parasite

prevalence (e.g. Tella et al. 1999).

With some notable exceptions (Beadell et al. 2006), little

is known about the geographical distribution of lineages of

avian blood parasites. The presence of the two previously

recorded Plasmodium lineages (BT7 and SW5) in Pectoral

Sandpipers emphasizes that some Plasmodium parasites

may be globally distributed (occurring in tropical, temper-

ate and arctic regions), with taxonomically very broad host

distributions, infecting both passerines and shorebirds.

Parasites transmitted during the winter that could not defeat

or escape the immune system of individual birds might have

been removed from the blood circulation before arrival at

the tundra breeding grounds. In Blackcaps (Sylvia atrica-

pilla), it has been shown that some Plasmodium and

Haemoproteus parasites are present in the blood only in the

winter (Pérez-Tris and Bensch 2005). However, the general

pattern seems to be that tropical- and winter-transmitted

parasites are also present in the blood when birds are at

northern breeding latitudes (Hellgren et al. 2007b). Hence,

the absence of parasites observed in Semipalmated Sand-

pipers and the very low prevalence in Pectoral Sandpipers at

their breeding grounds do suggest that winter prevalence

might also be low. In shorebirds, Mendes et al. (2005)

reported that infection rates at the wintering grounds can be

much higher than we found in the arctic breeding grounds.

Hence, with data only from the breeding season we cannot

completely rule out that wintering in freshwater habitats

might lead to higher infection rates. This should be tested by

sampling shorebirds at the wintering grounds.

Zusammenfassung

Vorkommen von Malaria- und Haemosporidia–Parasiten

bei zwei Standläuferarten mit unterschiedlichen

Überwinterungshabitaten

Mit Hilfe von PCR-basierten Methoden wurde das Vor-

kommen von Malariaparasiten bei zwei arktischen

Strandläufern untersucht, beim Sandstrandläufer (Calidris

pusilla) und beim Graubruststrandläufer (C. melanotos).

Außerhalb der Brutzeit nutzen Sandstrandläufer marine

Küstenhabitate, während Graubruststrandläufer in inlän-

dischen Feuchtgebieten zu finden sind. In

Übereinstimmung mit der Hypothese, dass das Infek-

tionsrisiko in Süßwasser-Feuchtgebieten größer ist, wurden

am arktischen Brutplatz Plasmodium-Infektionen nur bei

Graubruststrandläufern festgestellt, während kein einziger

Sandstrandläufer infiziert war. Allerdings war selbst bei

Graubruststrandläufern der Anteil an infizierten Individuen

sehr gering (\3% der Individuen, n = 114). Wir fanden

drei verschiedene Plasmodium-Linien, von denen eine nie

zuvor beschrieben wurde.
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