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Abstract
Objective Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological 
tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy 
in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation 
effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains 
an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, 
as has been explored for other renal biomarkers.
Materials and methods In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered 
segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled “REnal 
Flow and Microstructure AnisotroPy (REFMAP)”, and a multiply encoded model titled “FC-IVIM” providing estimates of 
fluid velocity and branching length.
Results Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in 
both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) 
of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly 
decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46–0.55, <0.001).
Conclusions These spatial trends might find implications for indirect assessments of kidney physiology and microstructure 
using diffusion MRI.
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Introduction

Quantitative MRI techniques such as diffusion-weighted 
imaging (DWI) have diagnostic and prognostic potential in 
a variety of renal diseases such as chronic kidney disease, 
polycystic kidney disease, and transplant malfunction [1]. 
The diffusion-weighted signal is sensitive to multiple aspects 
of renal function and microstructure, including tubular and 
vascular flow/volume, and renal interstitium [2, 3].

Within the DWI literature, the kidney microstructure 
is less explored compared to other organs such as the 
brain or prostate [4]. This is in part due to image quality 
challenges from echo-planar imaging artifacts [5] in the 
presence of respiratory and cardiac motion [6], in addition 
to the effect of cardiac cycle pulsatility on the diffusion 
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signal [3, 7–12]. By mitigating these artifacts exploration 
of the kidney microstructure might become progressively 
more feasible.

Macroscopically, the kidney anatomy is composed of 
the medulla and cortex, which are tissue types with distinct 
microstructures and microcirculation. Nephrons progres-
sively perform blood filtration and reabsorption, beginning 
at vascular glomeruli, proceeding through the proximal con-
voluted tubules of the cortex, through aligned loops of Henle 
in the medulla, back through the distal convoluted tubules, 
and into the collecting duct [13]. Each of these aspects pos-
sesses features of flow, microstructural diffusion restricting 
features [14], anisotropy, and permeability [15], that impact 
water diffusion as measured in diffusion MRI.

Many studies employed variants of diffusion-weighted 
imaging (DWI) in vivo using intravoxel incoherent motion 
(IVIM), diffusion tensor imaging (DTI), and multi-compo-
nent methods to characterize renal function [3, 6–12, 16–28]. 
IVIM [16] separates and approximates microcirculation (vas-
cular and tubular flow) and microstructure. DTI [29] quanti-
fies fractional anisotropy (FA) which is more prevalent in the 
oriented medullary bundles of tubules and collecting ducts 
than in the randomly oriented tubules and vasculature in the 
“cortical labyrinth” [19–21]. Several recent studies [24–26] 
also observed anisotropy of the flow component. Time-
dependent diffusion MR methods similar to prior work in 
the prostate [30] allowed estimations of tubular diameters 
in combination with Monte Carlo diffusion simulations [3]. 
Finally, a multiple encoded FC-IVIM method [27] includ-
ing a combination of conventional and flow-compensated 
diffusion gradient waveforms, multiple diffusion times, and 
Monte Carlo simulations model might enable a more detailed 
characterization of flow in the renal tissue [31].

Macroscopic segmentation strategies are evolving to 
better assess intra-organ functional variations. Piskunow-
icz et al. [32] performed semi-automated layered segmen-
tations to measure ΔT2* values for blood oxygen level 
dependent (BOLD) imaging for chronic kidney disease 
(CKD) characterization. This was followed by a more 
automated 12-layer concentric object method (TLCO) 

[33], which enabled better differentiation of CKD kidneys 
from controls compared to the classical cortex and medulla 
segmentations [34]. Recently, the TLCO was applied to the 
analysis of apparent diffusion coefficient (ADC) [35] and 
arterial spin labeling (ASL) parameters [36].

In this work, we extended the concentrically layered 
segmentation to DTI and IVIM parameters of the healthy 
human kidney, as well as the multiple encoded FC-IVIM 
approach [27] to investigate their spatial dependency and 
hypothetically interpret tissue features at each concentric 
layer.

Methods

Imaging and preprocessing

In this HIPAA-compliant and IRB-approved prospec-
tive study, seven healthy volunteers (three male, age 
26.8 ± 2.9  years, body mass index 24.2 ± 2.0) provided 
written informed consent prior to imaging. The volunteers 
underwent abdominal imaging in a 3 T MRI system (MAG-
NETOM Prisma; Siemens Healthcare, Erlangen, Germany) 
in supine position with posterior spine array (4–6 elements 
activated) and anterior 18 channel body matrix array receive 
RF coils, 4 ECG chest leads (Siemens Healthineers) for car-
diac gating and scanner body coil RF transmission. Table 1 
summarizes pulse sequence parameters employed in this 
study. Coronal oblique T2-weighted HASTE images were 
collected for anatomical reference. Sagittal phase-contrast 
(PC) MRI images through the left renal artery were col-
lected at multiple cardiac phases to estimate the systolic 
cardiac phase for kidney tissue. A research application 
vendor-provided work-in-progress single shot echo-planar 
imaging sequence with dynamic field correction, and car-
diac triggered oblique coronal was used for DWI acquisi-
tions. Images were aligned to the prior HASTE imaging, 
and acquisitions were at multiple echo times for each of 
bipolar and flow compensated pulse sequences with TR/
TE1/TE2 2800/81/120 ms, matrix 192/192/1, resolution 

Table 1  MR acquisition parameters of this study

EPI echo-planar imaging, DWI diffusion-weighted imaging, PC-MRI phase contrast MRI, T2w T2-weighted, TR repetition time, TE: echo time, 
venc velocity encoding

Scan TR/TE (ms) Flip angle (º) Matrix Resolution (mm) Orientation Encodings Notes

T2w HASTE 1000/91 120 320/320/20 1.1/1.1/5 Oblique coronal – –
PC-MRI 32.82/3.56 26 198/256/1 1.6/1.6/10 Oblique sagittal 24–27 phases Venc: 80 cm/s
EPI-DWI 2800/(81 or 120) 90 192/192/1 2.2/2.2/5 Oblique coronal b-values: 0, 10, 30, 

50, 70, 80, 100, 
120, 200, 400, 600, 
and 800 s/mm2

12 directions

- At the systolic 
cardiac phase

- Bipolar/flow 
compensated 
pulse sequences



Magnetic Resonance Materials in Physics, Biology and Medicine 

2.2/2.2/5 mm, GRAPPA acceleration factor 2, bandwidth 
2170 Hz/pixel, and b-values of 0, 10, 30, 50, 70, 80, 100, 
120, 200, 400, 600, and 800 s/mm2 in 12 directions. The 
four DWI acquisitions (two echo times for each of bipolar 
and flow-compensated acquisitions) were each performed 
in 6 min totaling 24 min. Additionally, to correct for motion 
and field inhomogeneity, 16 right-to-left and 16 left-to-right 
phase-encoding b = 0 images were acquired sampling the 
full range of motion for each kidney. Marchenko-Pasteur 
principal component analysis (MPPCA) [37] was performed 
for denoising. The kidneys were registered retrospectively 
to correct for breathing and cardiac motion. The processing 
for the left and right kidney was performed independently 
to better mitigate asynchronous left and right kidney motion 
and left-sided cardiac signal drop-out. In order to correct for 
field-inhomogeneity artifacts, the images were inputted into 
FSL TOPUP [38]. The processing flowchart was a replica of 
the one in Gilani et al. [6]. Image by image inspections were 
performed to exclude corrupted images for DTI and IVIM 
analysis. 3 left kidneys were excluded due to substantial sig-
nal loss [39] or unsuccessful FSL TOPUP correction, result-
ing in the inclusion of 11 out of 14 kidneys in the analysis.

Layered segmentation

The four DWI acquisitions were registered together with a 
rigid body mutual information-based algorithm and under-
went a six-layer segmentation implemented as multiple 
zones concentric objects (MZCO) generation; both of these 
steps used the freely available software package FireVoxel 
(build 421, https:// firev oxel. org/). The inner and outer bor-
ders of the kidney were manually prescribed and the MZCO 
algorithm mapped layers of equal thickness. The contours 
for these layers smoothly varied parallel to the prescribed 
inner and outer borders for segmentation of the kidney 
images containing both the medulla and cortex. Addition-
ally, another layered segmentation mask was generated by 
the overlap of the layers derived above with a highly inclu-
sive medulla segmentation based on hyperintense regions 
of the FA map.

Extraction of diffusion parameters

The bipolar diffusion-weighted images were processed in 
custom code written in MATLAB and Statistics Toolbox 
(Release 2022a, The MathWorks, Inc., Natick, Massachu-
setts, United States).

First, average IVIM maps were generated from biexpo-
nential fits of the directionally averaged bipolar gradient 
diffusion-weighted image sets at TE = 81 ms:

where Dt is defined as diffusion coefficient of water in the 
tissue, fp is the fraction of DWI signal that is affected by per-
fusion, and Dp is pseudo-diffusion coefficient which is sensi-
tive to flow speed and architecture [2]. Dt and fp values were 
determined in a first fit to high b-values (b > 200 s/mm2) and 
provided as first estimates. A second fit on all b-values with 
constrained Dt was performed to estimate fp and Dp. This 
approach is defined as segmented biexponential fit.

Secondly, the directional DWI signals from the bipolar 
acquisition at TE = 81 ms were processed analogously to 
the Renal Flow and Microstructure AnisotroPy (REFMAP) 
approach [3] to extract DTI, IVIM, and directional IVIM 
parameters: FA, mean (MD), axial (D∥), radial (D⊥) diffusiv-
ities, scalar f with the same definition as fp, and mean (D*), 
axial (D*

∥), radial (D*
⊥) pseudodiffusion coefficients. First, 

the b-value dependence of each voxel and direction was fit to 
a biexponential model in a segmented fashion as above. The 
structural diffusivities (Dt) were fit to a standard diffusion 
tensor model to derive D∥, D⊥, and MD as well as FA [40, 
41]. Next, at each voxel, pseudo-diffusion coefficient (Dp) 
were projected along the already derived axial and radial 
eigenvectors for Dt to derive its axial (D*

∥), radial (D*
⊥), and 

mean (D*) versions. The final parameter set included DTI 
metrics (MD, FA, D|| , D⊥) from the Dt, as well as the scalar 
f, in addition to D*, D*

∥, and D*
⊥.

Finally, both bipolar and flow-compensated diffusion sig-
nals at both echo times, were averaged over all directions and 
used to generate signal intensity curves from each layer for 
input into the multiple encoded FC-IVIM method to estimate 
flow velocity v, vessel segment length l, and f [27] for each 
layer. In this process, high b-values from the bipolar TE 
81 ms acquisition were again fitted to generate estimates 
of Dt, and fp which initialized their values in a combined fit 
of the FC-IVIM expression to all b-values. A laminar flow 
description was adopted for the distribution of velocities in 
each segment of the circulatory network, and the bulk dif-
fusivity value for flowing spins was set to 2.15 µm2/ms. This 
higher value was chosen over that of pure blood (1.6 µm2/
ms [42]) to reflect the significant contribution from tubu-
lar fluid. This selection, while approximate, is also deemed 
acceptable given the typically much larger pseudodiffusion 
coefficients (by a factor of 10) to which this term serves as 
a background.

Statistical analysis

Spearman correlations were used to assess the association of 
the parameters with layers. All statistical tests in this study 
were conducted at the two-sided 5% significance level using 
SAS 9.4 software (SAS Institute, Cary, NC).

(1.1)
S

S0
= fp exp

(

−b ⋅ Dp

)

+

(

1 − fp
)

exp
(

−b ⋅ Dt

)

https://firevoxel.org/
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Results

Figure 1 shows a sample kidney divided into six layers using 
the multiple zones concentric objects generation method in 
both full parenchymal and medullary only segmentations. 
Figure 2 shows a b = 0 image, and maps of IVIM (Dt, fp, and 
Dp) and DTI (MD, FA, D∥, and D⊥) parameters correspond-
ing to the same subject. Similar maps for another kidney 
are shown in Supplementary Fig 1. Figure 3 shows boxplots 
of the group distribution of values of DTI (a), IVIM (b), 
and FC- IVIM (c) parameters against cortex and medulla 
inclusive parenchymal kidney layers (increasing layer # cor-
responding to outward layer progression). Figure 4 shows 
variation of the same parameters within medulla segmenta-
tions (derived from the FA maps) on the same kidney layers.

Table 2 summarizes Spearman correlations of the param-
eters separately in parenchyma (including both medulla and 
cortex) and pure medulla against the six layers. Most of 
the parameters showed significant changes from the inner 
to outer layers with a few exceptions. These trends can be 
summarized as microstructural parameters (D, MD, Dt, D∥, 
D⊥, FA, l) or dynamic flow parameters (fp, f, Dp, D*

∥, D*
⊥, 

and v). The structurally sensitive diffusivities D, MD, Dt, 
and most pronouncedly perpendicular diffusivity D⊥, all 
increased from the inner layers to the outer layers of the 
kidney, while FA decreased from the inner to outer layers. 
These trends were similar in the whole parenchymal and 
medullary segmentations, but the structural diffusivity cor-
relations (MD, Dt, D, and especially D⊥) were stronger, and 
the FA correlations weaker, in the medullary segmentation 
case. Conversely, in both the parenchymal and medullar lay-
ers, D|| and l were not significantly associated with layers. 
Dynamic IVIM parameters fp and Dp, and FC-IVIM param-
eters f and flow velocity v had decreasing trends from the 
inner to outer layers.

Figure 5 summarizes the values of Spearman correlation 
coefficients (r) for each parameter for both the parenchymal) 
and the medullary segmentations. The figure highlights that 
Dp derived from IVIM, its directional variants D*

∥ and D*
⊥, 

and v derived from the FC-IVIM model have the highest 
correlations ranging from 0.46 to 0.55 in the category of 
dynamic parameters [2]. FA in both the parenchymal and 
medullary segmentations are highly layer dependent [3].

Discussion

There is a well-developed literature on preclinical murine 
and excised human kidney microstructure using in vivo 
or ex vivo modalities and their combinations such as MRI 

Fig. 1  (a) A sample kidney divided into six layers using the multi-
ple zones concentric objects generation method of FireVoxel. (b) The 
same kidney and layers limited to a medullary region of interest high-
lighted based on fractional anisotropy (FA) map

Fig. 2  A sample b = 0 image 
(a), IVIM maps Dt (b), Dp (c), 
and fp (d), and DTI maps FA 
(e), MD (f), D∥ (g), D⊥ (h), D*

∥ 
(i), and D.*⊥ (j), all correspond-
ing to the same subject as in 
Fig. 1
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[43–46], 3D x-ray [47], and light sheet microscopy [48]. A 
potential transfer of this knowledge to in vivo human kidney 
imaging and extrapolations to its microstructure could be 
highly impactful in the study of renal dysfunction. However, 
diffusion-weighted MR parameters are generally not specific 
[49, 50] due to the dependency of the diffusion signal on 
different physiological parameters and restriction, as well as 
inter-species variations of microstructural features.

Accordingly, in the present study, we have scruti-
nized the dependence of renal DWI parameters from 

conventional representations (DTI, IVIM), an advanced 
hybrid DTI-IVIM approach [3, 51], and a multiple 
encoded FC-IVIM model [27] on concentric layers in vivo 
in humans. It is worthwhile to first summarize the correla-
tion coefficients numerically and statistically to determine 
the strongest associations of DWI parameters with kidney 
layer. Secondly, we may hypothesize biophysical/micro-
structural features that are consistent with these trends, 
informed by known anatomy and histopathology. Regard-
ing interpretation of the layer trends, we distinguish two 

Fig. 3  Directional diffusion and flow parameters MD, FA, D∥, D⊥, D*
∥, D*

⊥ (a), IVIM parameters Dt, fp, Dp (b), and FC-IVIM parameters D, f, l, 
v (c) vs. kidney layers containing both medulla and cortex
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different sources of layer dependence, as typically required 
in DWI multi-component modeling: (1) variations in dif-
fusion coefficients and (2) variations in signal fraction of 
these components. For our purposes and with guidance 
from literature, the dominant components are (a) vascular, 
(b) tubular, and (c) interstitium and pathologically, fibrotic 
fraction. It is also important to note that the nephron path 
(through the glomerulus, proximal convoluted tubule, 
tubular loops of Henle, distal convoluted tubule, and col-
lecting duct) proceeds back and forth between cortex and 
medulla rather than directly along the radial direction 

considered here. Thus, there is unavoidable averaging of 
multiple elements of the nephron within each layer.

As before, we summarize results in categories of struc-
turally sensitive parameters and dynamic parameters. 
Assuming the tubular fraction dominates the structur-
ally sensitive parameters’ (D, MD, Dt, D⊥) behavior, the 
decreasing trend from outer to inner layers may originate 
from a combination of factors. It is known that the tubular 
volume fraction decreases from 85% in cortex to 60% in 
the medulla [52, 53] and that in deeper layers a larger 
preponderance of thinner tubules (such as the loops of 

Fig. 4  Directional diffusion and flow parameters MD, FA, D∥, D⊥, D*
∥, D*

⊥ (a), IVIM parameters Dt, fp, Dp (b), and FC-IVIM parameters D, f, l, 
v (c) vs. kidney layers in the medulla segmentations
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Henle) was found. Thus, larger average tubule diameters in 
outer cortical layers induce reduced diffusion restrictions. 
Finally, tubule and duct orientation become increasingly 
aligned in the medulla, driving the canonical feature of 
anisotropy (elevated FA and reduced D⊥). D∥ and multiple 
encoded FC-IVIM branching length l follow a relatively 
constant trend. A relatively constant D∥, along with the 
known presence of tubules in all kidney layers, suggests 
diffusion is similarly hindered in the direction along the 
tubule axis (i.e. similar ‘mean free path’) in all layers. 
However, future studies similar to Scott et al. [54] might 
enable better quantification of the diffusion hindrance and 
branching length (l) using alternative modalities to test 
whether there are relatively fixed parameters across all 
kidney layers.

Intramedullary correlations were weaker for FA and l 
than for the full parenchyma; this may originate from a more 

homogeneous tissue sampling in the former case, in particu-
lar with regard to the diameter, degree of alignment, and 
vessel segment length of the tubular structures. However, 
it is notable that FA correlates strongly with layer in both 
parenchymal and medullary segmentations; the latter results 
suggest the limits of treating medulla as uniform entity such 
as in classical cortex and medulla segmentations.

The layered approach is analogous to the laminar analysis 
of the cortical gray matter [55] and superficial white matter 
[56]. However, within human kidneys, there are less dis-
tinct histological layers compared to cerebral tissue which 
complicates interpretations. Nevertheless, spatial profiling 
of DWI metrics throughout the kidney may ultimately yield 
more specific biomarkers of renal tissue microstructure. Fur-
ther studies using in vivo and ex vivo DWI are required to 
establish their connection with human renal function and 
histology.

Regarding dynamics, a first-order physiological intuition 
about the dynamic IVIM parameters fp and Dp, and FC-IVIM 
parameters f and flow velocity v would suggest that dynam-
ics are slow in the inner layers since more exchange of water 
and other ions occurs between vascular and tubular spaces. 
However, the averaging of all dynamic flow systems (vasa 
recta, tubules, collecting ducts) must again be considered 
when interpreting the net higher flow rates evident in the 
inner radial layers. Nevertheless, one interesting result of 
this pilot application of the FC-IVIM model is that it pre-
scribes the majority of this change to dynamics (velocity v) 

Table 2  The Spearman correlations (r) and p-values characterize 
the association of parameters with layer index (1 = inner medulla; 
6 = outer cortex)

The analysis was stratified by kidney segmentation type: paren-
chyma (including both cortex and medulla) or the medulla only, and 
included data from all 6 layers

Segmentation type Model Parameter Spearman

r p

Parenchyma IVIM Dt 0.128 0.307
fp  − 0.378 0.002
Dp  − 0.52  < 0.001

DTI MD 0.185 0.137
FA  − 0.424  < 0.001
D∥  − 0.108 0.388
D⊥ 0.352 0.004
D*

∥  − 0.462  < 0.001
D*

⊥  − 0.549  < 0.001
FC-IVIM D 0.252 0.041

f  − 0.306 0.012
l  − 0.195 0.116
v  − 0.464  < 0.001

Medulla IVIM Dt 0.347 0.004
fp  − 0.35 0.004
Dp  − 0.495  < 0.001

DTI MD 0.291 0.018
FA  − 0.371 0.002
D∥ 0.011 0.928
D⊥ 0.415  < 0.001
D*

∥ − 0.52  < 0.001
D*

⊥  − 0.51  < 0.001
FC-IVIM D 0.347 0.004

f  − 0.364 0.003
l  − 0.061 0.625
v  − 0.535  < 0.001

Fig. 5  Radar plot of Spearman correlation coefficients for each 
parameter, both the parenchymal (including both cortex and medulla) 
and the medulla only layers (i.e. an intersection of FA map and the 
layer masks). If the correlation coefficient was negative the parameter 
was marked with a negative meaning it would decrease from the inner 
to outer layers. Radius of each symbol depicts the magnitude of the 
spearman correlation coefficient r for parameter vs. layer
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and not to architecture (branching length l). Also, the slope 
of these variations of dynamic parameters (fp, Dp, f, v) are 
more significant in the first three inner layers implying these 
flow describing parameters might be affected by the renal 
artery, vein, and pelvis. Conversely, in the outer layers which 
are mostly cortical tissue, there are networks of microvas-
culature and convoluted tubules with decreased velocities.

The FC-IVIM model is one of the few treatments of IVIM 
signal beyond the biexponential representation (e.g. [57–59]) 
and represents potential for biologic specificity. However, 
as with all diffusion MR models, it has its limitations, some 
of which might be better addressable in the future. First, the 
FC-IVIM model [27] assumes only one flow compartment 
with a single branching length and characteristic distribu-
tion of velocities, both of which are approximations. There 
are also no studies yet investigating numerical correlated 
errors between the model parameters velocity and branch-
ing length. These issues might result in biased outputs [50]. 
Again, further microstructural cross-validations are required 
for its features similar to the work by Scott et al. [54] where 
the branching length derivations of the model are compared 
with µCT measurements. Also, the analytical expressions 
and numerical phase distributions underlying the FC-IVIM 
model provide possibilities for the estimation of microstruc-
tural parameters from in vivo data. However, a study of the 
model estimates from simulated MR signals from Monte 
Carlo and/or particle trajectory simulation of water transport 
in relevant microstructural/microcirculatory networks (such as 
anisotropic flow networks as in renal medulla) might further 
illuminate its range of applicability. Interpretations of IVIM 
and DTI parameters would also benefit from such studies. 
Also, the multiple encodings required for the model should 
be considered in light of the balance between accuracy, pre-
cision, and clinically feasible scan times. A recent work has 
proposed optimized acquisitions with this in mind [31]. We 
did not employ these exact optimized acquisitions recom-
mended in [31] but our acquisitions were somehow similar 
and near optimal in the case of b-values, diffusion times and 
pulse sequences used.

There are further limitations to this study. First, we have 
thus far collected the layer trends in young healthy subjects 
only, aiming to improve our understanding of the sources of 
diffusion MR signal in the kidneys. Hence, a natural future 
direction would be to test the layered analysis on DTI or 
IVIM parameters in chronic kidney disease patients or sub-
jects with a wider range of ages [60]. However, a redefinition 
of the layers might be necessary in lesioned or morphologi-
cally abnormal kidneys. Finally, we did not perform a sys-
tematic variation of the number of layers chosen in our ROI 
sampling, nor did we perform an interreader comparison on 
their prescription.

In conclusion, we have performed a preliminary study on 
the dependence of a set of conventional and more advanced 

DWI derived parameters on concentric layers in healthy 
human kidneys. The most significant layer dependence was 
observed for pseudodiffusion parameters and structural 
fractional anisotropy, with weaker dependences observed 
for structural diffusivity parameters. Further validation of 
these trends in comparison with histologic reference, as well 
as correlation with measures of renal function, is required 
to improve our understanding of the sources of the diffusion 
signal in the kidneys. This knowledge might find translations 
into the clinics to optimize acquisition and better understand 
the pathophysiology of kidney diseases in the future.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10334- 024- 01159-6.

Acknowledgements This work was supported by the National Insti-
tutes of Health (NIH) (R01CA245671), and performed under the rubric 
of the Center for Advanced Imaging Innovation and Research  (CAI2R, 
www.cai2r.net), an NIBIB National Center for Biomedical Imaging and 
Bioengineering (NIH P41 EB017183).

Author contribution Nima Gilani: Methodology, Software, Writing-
Original Draft. Artem Mikheev and Andreas Wetscherek: Software, 
Writing-Review & Editing. Inge M. Brinkmann and Thomas Benkert: 
Resources, Writing-Review & Editing. Dibash Basukala: Writing-
Review & Editing. James S. Babb: Formal analysis. Malika Kumbella: 
Project administration. Hersh Chandarana: Writing-Review & Edit-
ing, Supervision, Funding acquisition. Eric E. Sigmund: Conceptual-
ization, Investigation, Writing-Original Draft, Supervision, Funding 
acquisition.

Declarations 

Conflict of interest Co-authors Inge M. Brinkmann, PhD and Thomas 
Benkert, PhD are employees of SIEMENS Healthineers.

Ethical standards All enrolled subjects provided written informed con-
sent, and the ethics committee of our hospital approved this prospecr-
tive study (study number s20-01048).

References

 1. Bane O, Seeliger E, Cox E, Stabinska J et  al (2023) Renal 
MRI: from nephron to NMR signal. J Magn Reson Imaging 
58:1660–1679

 2. Le Bihan D (2019) What can we see with IVIM MRI? Neuroim-
age 187:56–67

 3. Sigmund EE, Mikheev A, Brinkmann IM, Gilani N et al (2023) 
Cardiac phase and flow compensation effects on renal flow and 
microstructure anisotropy MRI in healthy human kidney. J Magn 
Reson Imaging 58(1):210–220

 4. Gilani N (2024) Editorial for “Editorial for “Utility of prostate 
health index density for biopsy strategy in Biopsy-Naïve patients 
With PI-RADSv2.1 category 3 lesions”. J Magn Reson Imaging. 
https:// doi. org/ 10. 1002/ jmri. 29269

 5. Pierpaoli C (2010) Artifacts in diffusion MRI. In: DK Jones (ed) 
Diffusion MRI: theory, methods and applications. Oxford Univer-
sity Press, Oxford, pp 303–318

https://doi.org/10.1007/s10334-024-01159-6
https://doi.org/10.1002/jmri.29269


Magnetic Resonance Materials in Physics, Biology and Medicine 

 6. Gilani N, Mikheev A, Brinkmann IM, Basukala D et al (2023) 
Characterization of motion dependent magnetic field inhomogene-
ity for DWI in the kidneys. Magn Reson Imaging 100:93–101

 7. Lanzman RS, Ljimani A, Muller-Lutz A, Weller J et al (2019) 
Assessment of time-resolved renal diffusion parameters over the 
entire cardiac cycle. Magn Reson Imaging 55:1–6

 8. Ito K, Hayashida M, Kanki A, Yamamoto A et al (2018) Altera-
tions in apparent diffusion coefficient values of the kidney dur-
ing the cardiac cycle: evaluation with ECG-triggered diffusion-
weighted MR imaging. Magn Reson Imaging 52:1–8

 9. Wittsack HJ, Lanzman RS, Quentin M, Kuhlemann J et al (2012) 
Temporally resolved electrocardiogram-triggered diffusion-
weighted imaging of the human kidney: correlation between intra-
voxel incoherent motion parameters and renal blood flow at differ-
ent time points of the cardiac cycle. Invest Radiol 47(4):226–230

 10. Milani B, Ledoux JB, Rotzinger DC, Kanemitsu M et al (2019) 
Image acquisition for intravoxel incoherent motion imaging of 
kidneys should be triggered at the instant of maximum blood 
velocity: evidence obtained with simulations and in vivo experi-
ments. Magn Reson Med 81(1):583–593

 11. Heusch P, Wittsack HJ, Kropil P, Blondin D et al (2013) Impact of 
blood flow on diffusion coefficients of the human kidney: a time-
resolved ECG-triggered diffusion-tensor imaging (DTI) study at 
3T. J Magn Reson Imaging 37(1):233–236

 12. Gilani N, Mikheev A, Brinkmann IM, Basukala D et al (2023) 
The effect of cardiac gating on the repeatability of quantitative 
renal diffusion MRI. In: Proceedings of the International Society 
for Magnetic Resonance in Medicine, Toronto, Canada, p 1498

 13. Heptinstall RH (2007) Heptinstall’s pathology of the kidney, vol 
1. Lippincott Williams & Wilkins, Philadelphia

 14. Gilani N, Malcolm P, Johnson G (2017) A monte carlo study of 
restricted diffusion: implications for diffusion MRI of prostate 
cancer. Magn Reson Med 77(4):1671–1677

 15. Gilani N, Malcolm P, Johnson G (2017) An improved model for 
prostate diffusion incorporating the results of monte carlo simu-
lations of diffusion in the cellular compartment. NMR Biomed 
30(12):e3782

 16. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-
Jeantet M (1988) Separation of diffusion and perfusion in intra-
voxel incoherent motion MR imaging. Radiology 168(2):497–505

 17. Thoeny HC, Keyzer FD (2011) Diffusion-weighted MR Imaging 
of native and transplanted kidneys. Radiology 259(1):25–38

 18. Zhang JL, Sigmund EE, Chandarana H, Rusinek H et al (2010) 
Variability of renal apparent diffusion coefficients: limitations 
of the monoexponential model for diffusion quantification. 
Radiology 254(3):783–792

 19. Ljimani A, Caroli A, Laustsen C, Francis S et al (2020) Consen-
sus-based technical recommendations for clinical translation of 
renal diffusion-weighted MRI. MAGMA 33(1):177–195

 20. Caroli A, Schneider M, Friedli I, Ljimani A et al (2018) Dif-
fusion-weighted magnetic resonance imaging to assess diffuse 
renal pathology: a systematic review and statement paper. Neph-
rol Dial Transplant 33(2S):ii29–ii40

 21. Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) 
Diffusion tensor MRI of the human kidney. J Magn Reson Imag-
ing JMRI 14(1):42–49

 22. Periquito JS, Gladytz T, Millward JM, Delgado PR et al (2021) 
Continuous diffusion spectrum computation for diffusion-
weighted magnetic resonance imaging of the kidney tubule 
system. Quant Imaging Med Surg 11(7):3098–3119

 23. van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, 
Froeling M (2017) Intravoxel incoherent motion modeling in 
the kidneys: comparison of mono-, bi-, and triexponential fit. J 
Magn Reson Imaging 46(1):228–239

 24. Notohamiprodjo M, Chandarana H, Mikheev A, Rusinek H et al 
(2014) Combined intravoxel incoherent motion and diffusion 

tensor imaging of renal diffusion and flow anisotropy. Magn 
Reson Med. https:// doi. org/ 10. 1002/ mrm. 25245

 25. Hilbert F, Bock M, Neubauer H, Veldhoen S et al (2016) An 
intravoxel oriented flow model for diffusion-weighted imaging 
of the kidney. NMR Biomed 29(10):1403–1413

 26. Van Phi VD, Becker AS, Ciritsis A, Reiner CS, Boss A (2018) 
Intravoxel incoherent motion analysis of abdominal organs: 
application of simultaneous multislice acquisition. Invest Radiol 
53(3):179–185

 27. Wetscherek A, Stieltjes B, Laun FB (2015) Flow-compensated 
intravoxel incoherent motion diffusion imaging. Magn Reson 
Med 74(2):410–419

 28. Stabinska J, Ljimani A, Zollner HJ, Wilken E et al (2021) Spec-
tral diffusion analysis of kidney intravoxel incoherent motion 
MRI in healthy volunteers and patients with renal pathologies. 
Magn Reson Med 85(6):3085–3095

 29. Basser PJ, Pierpaoli C (1996) Microstructural and physiological 
features of tissues elucidated by quantitative-diffusion-tensor 
MRI. J Magn Reson Ser B 111(3):209–219

 30. Lemberskiy G, Rosenkrantz AB, Veraart J, Taneja SS, Novikov 
DS, Fieremans E (2017) Time-dependent diffusion in prostate 
cancer. Invest Radiol 52(7):405–411

 31. Gurney-Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun 
FB, Wetscherek A (2020) Optimal acquisition scheme for flow-
compensated intravoxel incoherent motion diffusion-weighted 
imaging in the abdomen: an accurate and precise clinically fea-
sible protocol. Magn Reson Med 83(3):1003–1015

 32. Piskunowicz M, Hofmann L, Zuercher E, Bassi I et al (2015) 
A new technique with high reproducibility to estimate renal 
oxygenation using BOLD-MRI in chronic kidney disease. Magn 
Reson Imaging 33(3):253–261

 33. Milani B, Ansaloni A, Sousa-Guimaraes S, Vakilzadeh N et al 
(2017) Reduction of cortical oxygenation in chronic kidney dis-
ease: evidence obtained with a new analysis method of blood 
oxygenation level-dependent magnetic resonance imaging. 
Nephrol Dial Transplant 32(12):2097–2105

 34. Li LP, Milani B, Pruijm M, Kohn O et al (2020) Renal BOLD MRI 
in patients with chronic kidney disease: comparison of the semi-
automated twelve layer concentric objects (TLCO) and manual 
ROI methods. MAGMA 33(1):113–120

 35. Zhao K, Li S, Liu Y, Li Q et al (2023) Diagnostic and prognostic 
performance of renal compartment volume and the apparent dif-
fusion coefficient obtained from magnetic resonance imaging in 
mild, moderate and severe diabetic kidney disease. Quant Imaging 
Med Surg 13(6):3973–3987

 36. Sanmiguel Serpa LC, De Visschere P, Speeckaert M, Pullens P 
(2023) A new method to analyse renal perfusion: a proof of con-
cept. In: Proceedings of the International Society for Magnetic 
Resonance in Medicine, Toronto, Canada, p 3803

 37. Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI 
noise mapping using random matrix theory. Magn Reson Med 
76(5):1582–1593

 38. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF et al 
(2004) Advances in functional and structural MR image analysis 
and implementation as FSL. Neuroimage 23(1S):S208–S219

 39. Führes T, Saake M, Szczepankiewicz F, Bickelhaupt S, Uder M 
et al (2023) Impact of velocity- and acceleration-compensated 
encodings on signal dropout and black-blood state in diffusion-
weighted magnetic resonance liver imaging at clinical TEs. PLOS 
ONE 18(10):e0291273. https:// doi. org/ 10. 1371/ journ al. pone. 
02912 73

 40. Jones DK, Basser PJ (2004) “Squashing peanuts and smashing 
pumpkins”: how noise distorts diffusion-weighted MR data. Magn 
Reson Med 52(5):979–993

 41. Hirsch JG, Schwenk SM, Rossmanith C, Hennerici MG, Gass A 
(2003) Deviations from the diffusion tensor model as revealed by 

https://doi.org/10.1002/mrm.25245
https://doi.org/10.1371/journal.pone.0291273
https://doi.org/10.1371/journal.pone.0291273


 Magnetic Resonance Materials in Physics, Biology and Medicine

contour plot visualization using high angular resolution diffusion-
weighted imaging (HARDI). MAGMA 16(2):93–102

 42. Funck C, Laun FB, Wetscherek A (2018) Characterization of the 
diffusion coefficient of blood. Magn Reson Med 79(5):2752–2758

 43. Johnson GA, Benveniste H, Black RD, Hedlund LW, Maronpot 
RR, Smith BR (1993) Histology by magnetic resonance micros-
copy. Magn Reson Q 9(1):1–30

 44. de Rochefort L, Liu T, Kressler B, Liu J et al (2010) Quantita-
tive susceptibility map reconstruction from MR phase data using 
bayesian regularization: validation and application to brain imag-
ing. Magn Reson Med 63(1):194–206

 45. Xie L, Bennett KM, Liu C, Johnson GA, Zhang JL, Lee VS (2016) 
MRI tools for assessment of microstructure and nephron function 
of the kidney. Am J Physiol Renal Physiol 311(6):F1109–F1124

 46. Morozov D, Parvin N, Charlton JR, Bennett KM (2021) Mapping 
kidney tubule diameter ex vivo by diffusion MRI. Am J Physiol 
Renal Physiol 320(5):F934–F946

 47. Taphorn K, Busse M, Brantl J, Gunther B et al (2022) X-ray stain 
localization with near-field ptychographic computed tomography. 
Adv Sci (Weinh) 9(24):e2201723

 48. Puelles VG, Combes AN, Bertram JF (2021) Clearly imaging and 
quantifying the kidney in 3D. Kidney Int 100(4):780–786

 49. Jones DK, Knosche TR, Turner R (2013) White matter integrity, 
fiber count, and other fallacies: the do’s and don’ts of diffusion 
MRI. Neuroimage 73:239–254

 50. Afzali M, Pieciak T, Newman S, Garyfallidis E et al (2021) The 
sensitivity of diffusion MRI to microstructural properties and 
experimental factors. J Neurosci Methods 347:108951

 51. Liu AL, Mikheev A, Rusinek H, Huang WC et  al (2018) 
REnal flow and microstructure anisotroPy (REFMAP) MRI in 
normal and peritumoral renal tissue. J Magn Reson Imaging 
48(1):188–197

 52. Fioretto P, Sutherland DER, Najafian B, Mauer M (2006) Remod-
eling of renal interstitial and tubular lesions in pancreas transplant 
recipients. Kidney Int 69(5):907–912

 53. Kriz W, Napiwotzky P (1979) Structural and functional aspects 
of the renal interstitium. Contrib Nephrol 16:104–108

 54. Scott LA, Dickie BR, Rawson SD, Coutts G et al (2021) Charac-
terisation of microvessel blood velocity and segment length in the 
brain using multi-diffusion-time diffusion-weighted MRI. J Cereb 
Blood Flow Metab 41(8):1939–1953

 55. Gilani N, Hildebrand S, Schueth A, Roebroeck A (2019) Monte 
Carlo simulation of diffusion MRI in geometries constructed from 
two-photon microscopy of human cortical grey matter. bioRxiv. 
https://doi.org/10.1101/626945

 56. Kirilina E, Helbling S, Morawski M, Pine K et al (2020) Superfi-
cial white matter imaging: contrast mechanisms and whole-brain 
in vivo mapping. Sci Adv 6(41):eaaz9281

 57. Ahlgren A, Knutsson L, Wirestam R, Nilsson M et al (2016) 
Quantification of microcirculatory parameters by joint analysis 
of flow-compensated and non-flow-compensated intravoxel inco-
herent motion (IVIM) data. NMR Biomed 29(5):640–649

 58. Fournet G, Li JR, Cerjanic AM, Sutton BP, Ciobanu L, Le Bihan 
D (2017) A two-pool model to describe the IVIM cerebral perfu-
sion. J Cereb Blood Flow Metab 37(8):2987–3000

 59. Kennan RP, Gao JH, Zhong J, Gore JC (1994) A general model 
of microcirculatory blood flow effects in gradient sensitized MRI. 
Med Phys 21(4):539–545

 60. Weinstein JR, Anderson S (2010) The aging kidney: physiological 
changes. Adv Chronic Kidney Dis 17(4):302–307

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney
	Abstract
	Objective 
	Materials and methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Imaging and preprocessing
	Layered segmentation
	Extraction of diffusion parameters
	Statistical analysis

	Results
	Discussion
	Acknowledgements 
	References


