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Magnetic resonance imaging (MRI) phantoms are routinely 
used for calibrating MRI machines and characterizing the 
MRI system performance, such as resonance frequency, 
spin–spin and spin–lattice relaxation times, signal-to-noise 
ratio, image uniformity, spatial resolution, and phase related 
image artifacts [1]. Phantoms should be non-toxic, stable, 
inexpensive, easy to use and desirably having relaxation 
times comparable to those of human tissues. Two types 
of MRI phantoms are commonly used: aqueous solutions 
and gels. The aqueous solutions of paramagnetic salts such 
as  CuSO4,  NiCl2,  MnCl2, or  GdCl3 exhibit homogene-
ous spin–lattice (T1) and spin–spin (T2) relaxation times 
throughout the phantom and long-term stability. Herewith, 
the liquid phantom needs some stabilization time before the 
measurement. Gel phantoms include agarose, agar, polyvinyl 
alcohol, gelatin, gelatin-agar, or some other medium with 
the addition of paramagnetic substances (usually  GdCl3) to 
adjust the relaxation time [2]. However, the aforementioned 
compounds are toxic [3–6], and their handling, shipping and 
disposal are questionable owing to possible contamination of 
the MRI equipment and personnel. Therefore, the scientific 
community continues to develop new phantoms that would 
be free of the aforementioned disadvantages and would vali-
date the accuracy of the in vivo measurements, as well as 
repeatability and reproducibility of measurements across 
imaging platforms and time.

To this end, Sękowska et al. have recently reported on 
the eventual application of detonation diamond nanoparti-
cles in phantoms for MRI [7]. The phantoms were produced 
using distilled water, agar (1.413%) and carrageenan (2%) 
with addition of the detonation nanodiamond (DND) par-
ticles of the average size of 4–5 nm suspended in dimethyl 
sulfoxide (DMSO) and treated by 5-min-long high-power 
ultrasound sonication. The content of the DND-DMSO 

suspension in prepared phantoms was set to 0%, 8%, 10% 
and 12%, respectively. The contents were thoroughly mixed, 
poured into molds and placed to congeal. Surprisingly, the 
authors obtained a linear dependence of the spin–lattice (T1) 
and spin–spin (T2) relaxation times of the phantoms on the 
nanodiamond concentration (See Figures 3 and 5 in ref [7].). 
This result contradicts our recent experimental nuclear mag-
netic resonance (NMR) data on DND suspensions [8–10], 
as well as some fundamentals of the relaxation phenomena 
in nuclear spin systems [11, 12].

Let us now analyze the nuclear relaxation data in our 
DND suspensions and discuss whether these compounds 
can be used as MRI phantoms. As it is well known, DND 
particles exhibit intrinsic localized paramagnetic defects: (i) 
P1 nitrogen paramagnetic defects distributed throughout the 
diamond core and (ii) unpaired electron spins of dangling 
bonds positioned mainly in the near-surface layer [13–15]. 
The overall defect density in the DND particles measured by 
EPR is around 6 ×  1019 spin/g [13–15]. In DND suspensions, 
the relaxation of the proton nuclear spins of the solvent is 
accelerated owing to the interaction of protons with unpaired 
electron spins of the aforementioned paramagnetic defects 
[8–10]. The contributions of the DND-inherent paramag-
netic defects to the experimentally measured proton spin–lat-
tice and spin–spin relaxation rates Rexp

1
 and Rexp

2
 in suspen-

sions are described by the second term of equations [8]
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acteristics of the specific liquid solvent used and, therefore, 
are constant for all measurements.

The results of our measurements of the spin–lattice and 
spin–spin relaxation times and rates of water protons in 
aqueous DND suspensions as a function of the DND con-
centration are shown in Figs. 1 and 2. The data show that 
the paramagnetic defects of the DND particles (i) affect the 
relaxation rates of protons in suspension and (ii) reveal linear 
dependence of the relaxation rates RDND

1
 and RDND

2
(not relax-

ation times!) on the DND content, which is fully consistent 
with the fundamentals of the spin relaxation theory [11, 12], 
revealing a linear proportionality of the relaxation rate to the 
concentration of paramagnetic defects. This is a universal 
law, which is valid for liquids, gels, and solids (for example, 
see Reviews [14–16]). Herewith, as it follows from Eqs. 1 
and 2 and the experimental data shown in Figs. 1 and 2, both 
proton spin–lattice and spin–spin relaxation times exhibit a 
hyperbolic dependence on the nanodiamond concentration 
CDND in suspension:

These experimental results are in complete agreement 
with the published literature and the fundamentals of relaxa-
tion phenomena in nuclear spin systems. We note that simi-
lar hyperbolic-like concentration dependence of  T1 was 
recently obtained in measurements of the 1H spin–lattice 
relaxation of aqueous solutions of nanodiamonds of 18 and 
125 nm in diameter, prepared by the high pressure–high 
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temperature (HPT) technique [17]. These results support 
well my above findings.

Recently, Thangavel et al. [18] measured the relaxivi-
ties r1 and r2 in aqueous solutions of common paramag-
netic agents  (CuSO4,  MnCl2, and  NiCl2) at room tempera-
ture and a magnetic field of 3 T. Separate phantoms were 
prepared at various concentrations from 0.05 to 0.5 mM 
for  MnCl2 and from 1 to 6 mM for  CuSO4 and  NiCl2, and 
were reported to reveal relaxivities r1 = 0.602  mM−1   s−1 
and r2 = 0.730  mM−1  s−1 for  CuSO4, r1 = 6.397  mM−1  s−1 
and r2 = 108.266  mM−1  s−1 for  MnCl2, r1 = 0.620  mM−1  s−1 
and r2 = 0.848  mM−1  s−1 for  NiCl2 (Table 1). Our nanodia-
mond suspensions showed relaxivities r1 = 2.1  mM−1  s−1 and 
r2 = 15.8  mM−1  s−1 in B0 = 8 T [8], which are higher than 
those of  CuSO4 and  NiCl2 and lower than that of  MnCl2. We 
note that our measurements were done in in B0 = 8 T, and 
since r1 and r2 increase with decreasing magnetic field [19], 
we expect that the DND suspensions will show several times 
higher relaxivities in magnetic fields from 1 to 3 T used in 
clinical MRI scanners.

In conclusion, we also note that the amount of paramag-
netic defects in DND can be increased by irradiation [20], 
which would lead to higher relaxivities. Herewith the relaxa-
tion time T1 = 805 ms for a DND concentration of 4.64 mM 
in our suspension coincides with the relaxation time of the 

Fig. 1  Dependence of the spin–lattice relaxation rate R1 and spin–lat-
tice relaxation time T1 of water protons in aqueous DND suspensions 
on the concentration of DND particles in suspensions

Fig. 2  Dependence of spin–spin relaxation rate R2 and spin–spin 
relaxation time T2 of water protons in aqueous DND suspensions on 
the concentration of DND particles in suspensions

Table 1  Relaxivities r1 and r2 of several MRI phantoms

Compound r1,  mM−1  s−1 r2,  mM−1  s−1 Magnetic field Reference

CuSO4 0.602 0.730 3 T [18]
NiCl2 0.620 0.848 3 T [18]
MnCl2 6.397 108.266 3 T [18]
DND 2.1 15.8 8 T [8]
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human tissue T1 = 810.5 ms [7]. It is important that the DND 
suspensions are non-toxic, very stable and do not undergo 
noticeable changes and precipitation during several years of 
storage. They are robustly processed, safe, readily available, 
inexpensive and easy to handle. Therefore, summarizing all 
of the above, nanodiamonds can be considered suitable for 
use as MRI phantoms.
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