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Abstract
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already 
plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements 
in radiomics and artificial intelligence are being tested to potentially improve detection, assessment of aggressiveness, and 
provide usefulness as a prognostic marker. MRI can improve pretreatment risk stratification and therefore selection of and 
follow-up of patients for active surveillance. MRI can also assist in guiding targeted biopsy, treatment planning and follow-up 
after treatment to assess local recurrence. MRI has gained importance in the evaluation of metastatic disease with emerg-
ing technology including whole-body MRI and integrated positron emission tomography/MRI, allowing for not only better 
detection but also quantification. The main goal of this article is to review the most recent advances on MRI in prostate cancer 
and provide insights into its potential clinical roles from the radiologist’s perspective. In each of the sections, specific roles 
of MRI tailored to each clinical setting are discussed along with its strengths and weakness including already established 
material related to MRI and the introduction of recent advancements on MRI.
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Introduction

There has been an increasing role of magnetic resonance 
imaging (MRI) in the management of prostate cancer with 
advances in technology. These include the introduction of 
functional sequences (e.g., dynamic contrast-enhancement 
[DCE] MRI and diffusion-weighted imaging [DWI]), high-
field magnets (e.g., 3-Tesla), whole-body MRI, and hybrid 
imaging (e.g., integrated positron emission tomography 
[PET]/MRI). MRI plays key roles in many steps of pros-
tate cancer management, including detection and diagnosis, 
MRI-guided biopsy, staging, active surveillance, treatment 
planning, evaluation of biochemical recurrence, and assess-
ment of metastatic disease. In the following sections, the 
role of MRI in each clinical setting is discussed along with 
its strengths and weaknesses. The scope of this article is to 
review not only already established material related to MRI 
but also introduce the recent advancements on MRI and pro-
vide insights into its potential clinical roles.

Detection and diagnosis of prostate cancer

Limitations of conventional modalities

Traditionally, abnormal digital rectal exam (DRE) results 
and elevated serum prostate-specific antigen (PSA) levels 
have often been used to diagnose prostate cancer. How-
ever, these approaches are neither sensitive nor specific. 
For example, 70–80% of patients with elevated PSA levels 
(>4 ng/mL) do not have prostate cancer [1]. Ultrasound (US) 
has a limited role in detecting prostate cancer as focal lesions 
are visible only in a small proportion of patients (11–35%). 
Among them, only a small proportion (17–57%) are sub-
sequently revealed to be tumors. Therefore, the US is cur-
rently used to visualize the prostate (but not the prostate 
cancer itself, unless there is a sonographic correlate that 
matches the location of the focal lesion seen on MRI during 
cognitive fusion biopsy) during transrectal or transperineal 
US-guided biopsies. Computed tomography (CT), although 
some studies have demonstrated a potential role for detecting 
very high-grade tumors given its high specificity, is not an 
optimal imaging tool for diagnosing prostate cancer due to 
its lack of soft tissue detail and molecular information [2].

Role of MRI as a standard of care

When compared to the above methods, magnetic resonance 
imaging (MRI) has superior ability in detecting the index 
primary prostatic lesion. Especially with the advances in 
technology and the currently established multiparametric 

MRI (mpMRI) protocol (which is discussed in detail below) 
is now commonly used for detecting, staging, and planning 
treatment of prostate cancer. The PROMIS study on prostate 
magnetic resonance imaging (MRI) is a compelling exam-
ple with mpMRI showing significantly higher sensitivity for 
identifying clinically significant cancer: 93% for MRI and 
48% for transrectal US-guided biopsy. Recent research find-
ings are already being used in medical practice [3].

Multiparametric MRI protocol and interpretation

MpMRI protocols for detecting/diagnosing prostate cancer 
consist of the following sequences, to increase sensitiv-
ity and specificity by combining anatomical sequences of 
T1-weighted images (T1WI) and multiplanar T2-weighted 
images (T2WI) with functional sequences of DWI and DCE-
MRI. The anatomical detail of the prostate can be clearly 
depicted by MRI, with superior soft tissue resolution T1WI 
for prostate vs periprostatic fat) and zonal anatomy (T2WI 
imaging for differentiating peripheral, transition, and cen-
tral zones). Recent guidelines such as the prostate imag-
ing reporting and data system (PI-RADS), now with the 
most recent version 2.1, make the use of endorectal coils 
optional, provided that MRI parameters are optimized on 
scanners with 1.5- or 3-Tesla magnets with multichannel 
pelvic phased-array receiver coils [4]. MR spectroscopy 
(MRS) is no longer routinely recommended due to its tech-
nical challenges and difficulty in widespread usage across 
academic and community-based practices. In addition, there 
has been downgrading in the importance of DCE-MRI with 
a merely positive vs negative assessment recommended in 
the PI-RADS guidelines. Some further advocate the usage 
of biparametric MRI using only T2WI and DWI owing to 
the minimal added benefit of DCE-MRI in the pretreatment 
setting considering added time, cost, and potential contrast 
reactions [5]; whereas, others still support its usage for bet-
ter diagnosis and characterization of focal lesions and are 
investigating ways to optimize the interpretation of DCE-
MRI (e.g., optimal cut-off timing and shape to determine 
positivity) [6–8]. Nevertheless, acquisition with multi- or 
bi-parametric MRI and interpretation with a standardized 
scheme of PI-RADS has accelerated the widespread adop-
tion of prostate MRI at many leading centers and commu-
nity-based practices. A recent meta-analysis concluded 
that the PIRADS v2 has a good sensitivity of 0.89 (95% CI 
0.84–0.92) and specificity of 0.73 (95% CI 0.46–0.78) for 
detecting prostate cancer [9]. Nevertheless, there is still a 
large degree of variation (even amongst centers with high 
expertise) as shown in a recent multicenter study: positive 
predictive value of PI-RADS score of ≥3 for detecting clini-
cally significant prostate cancer (csPC) ranging from 27% to 
48% in 26 centers [10].
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MRI‑targeted biopsy

The ability of MRI to improve prostate cancer detection over 
the past few decades has allowed MRI to play a greater role 
in diagnosis rather than just staging. This additionally led 
to a "paradigm shift" from TRUS-guided biopsy to MRI-
targeted- or guided-biopsy (MRI-Tb). The rationale for MRI 
being used for targeted biopsy is its high negative predictive 
value (89%) for the diagnosis of csPCa [11]. In addition, 
randomized controlled trials including the PRECISION trial 
have shown that MRI-stratified pathways, either by using 
MRI-Tb alone or in conjunction with systematic US-guided 
biopsies, detect more csPC with a relative diagnosis rate of 
1.45 compared with transrectal US-guided biopsy [12, 13]. 
The PROMIS trial suggests that approximately a quarter of 
men could avoid prostate biopsy if mpMRI were used as a 
triage test owing to its high negative predictive value (89% 
for mpMRI and 74% for TRUS) [3]. Similar results have 
been shown recently in a population-based noninferiority 
trial of prostate cancer screening where in 1532 men with 
PSA levels of 3 ng/ml or higher (among 12,750 enrolled 
men), MRI-Tb with systematic biopsies performed only in 
those with positive prostate MRI resulted in similar detec-
tion of csPC and decreased detection of insignificant pros-
tate cancer compared with undergoing a systematic biopsy, 
indicating that this MRI-directed pathway may be able to 
have a large impact on management [14]. Nevertheless, a 
non-negligible proportion of csPCa are missed on MRI—
for instance, 16% (26/162) in a study correlating MRI and 
whole-mount radical prostatectomy specimens [15]—and, 
therefore, it should be emphasized that a “safety net” con-
sisting of a combination of clinical, laboratory, and imag-
ing assessments as per local clinical practice needs to be in 
place if a patient opts out of biopsy because of a negative 
MRI result [16].

Radiomics, computer‑aided diagnosis, and artificial 
intelligence

Radiomics models have been extensively evaluated as 
a means to provide a non-invasive tool for detecting and 
determining the aggressiveness of prostate cancer. It obtains 
properties that are undetectable to the human eye (e.g., tex-
tures or features) on various sequences (e.g., T2WI, DWI, 
DCE-MRI, and MRS) that are potentially thought to be 
related to the microstructure and microenvironment, which 
can be used as feedback for traditional classifier models [17, 
18]. Although early results were promising, they have yet to 
be incorporated into routine clinical practice due to many 
reasons. For example, different models yield varying degrees 
of accuracy for different tasks, generalizability is lacking as 
most models are specific to and are overfitted to the popula-
tion that they were developed in [19]. Therefore, many are 

still regarded as “proof-of-concept”, given the small num-
ber of patients and single-center retrospective nature. For 
instance, one prostate computed-aided diagnosis (CADx) 
device reported an extremely high area under the receiver 
operating characteristic curve (AUC) of 0.96 for detecting 
prostate cancer [20]. On the contrary, several other prostate 
CADx systems lower AUCs ranging from 0.80 to 0.89 [21]. 
Most of these systems require manual selection of ROIs to 
produce lesion candidates, and in turn render the results 
specific to the system and the operator. Nevertheless, the 
increasing interest in AI techniques and their applications 
in medicine has influenced the development of computer-
aided diagnosis (CADx) systems for detecting, grading, and 
introducing new classifications of prostate cancer [22–26]. 
With further internal and external validation (potentially in 
multicentral and prospective settings), it is expected that 
in the near future such techniques will make its way into 
our daily clinical practice, increasing our diagnostic perfor-
mance, confidence, and efficiency.

A few promising examples of radiomic models that have 
been used for initial assessment of prostate cancer include: 
identifying lesions [27, 28], distinguishing low- from higher-
grade prostate cancer [29], predicting Gleason score (GS) 
[17, 18, 30], and planning radiotherapy [31–33]. Further-
more, radiomics can also be used to better classify PI-RADS 
v2.1 categories [34]. In addition to these, radiomic models 
have recently also been investigated for their association 
with genetic traits (e.g., radiogenomics), further allowing 
the possibility of identifying the inherent biological aggres-
siveness of prostate cancer [35, 36]. For example, MRI was 
able to direct biopsies to the most suspicious regions of the 
prostate, increasing the efficiency and sensitivity of sam-
pling for key molecular markers such as p53, which was 
associated with shorter recurrence-free survival in patients 
after radical prostatectomy. [37].

There have been remarkable advances in “deep learn-
ing” (DL) in the field of medical imaging analysis, and 
early promising results have been published over the past 
few years. Schelb et al. [38] developed a U-net-based DL 
algorithm for detecting suspicious lesions on prostate MRI 
in men suspected of having clinically significant cancer, and 
reported high sensitivities of 92–96%. Vos et al. [39] showed 
that DL-CADx method may be able to assist radiologists in 
selecting locations of prostate cancer and could help direct 
biopsy to the most aggressive area. Winkel et al. [40] found 
that DL-based CADx not only improved the accuracy of 
finding suspicious lesions but also was able to reduce inter-
reader variability. In all the above studies, higher sensitiv-
ity of the DL-based algorithm was associated with higher 
false-positive rates, which is an obstacle that needs to be 
overcome before widespread implementation into clinical 
practice. Furthermore, future studies need to demonstrate 
an agreement between the algorithm and the human reader 
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to be at least comparable to human interobserver metrics 
and develop user-friendly interface and workflow integra-
tion schemes [41].

Another area that future studies could focus on is the 
importance of the zonal location of prostate cancer. Transi-
tion zone and peripheral zone cancers often demonstrate dif-
ferent quantitative features on MRI and, therefore, computer-
extracted parameters from tumors in the peripheral zone may 
be inapplicable for usage in the transition zone. Most of the 
current research up to now focused on entire prostate cancer 
instead of analyzing each zone separately. In addition, future 
research on radiomics and CADx for prostate cancer diagno-
sis needs to focus on comprehensively using the entirety of 
mpMRI data, as opposed to earlier studies assessing single 
sequences (e.g., T2WI). T2WI plus DWI and/or DCE-MRI 
are optimal and popular options, given their potential to pro-
vide both anatomical and functional information [42–44]. 
For example, Chan et al. [45] merged T2W, DWI, proton 
density, and T2 maps to predict the anatomical and textural 
features of the peripheral zone. Based on multichannel sta-
tistical classifiers, they created a summary statistical map of 
the peripheral zone that took into account the textural and 
anatomical features of PCa areas derived from T2W, DWI, 
proton density maps, and T2 maps. DCE-MRI and pharma-
cokinetic parameter maps were added to a CADx system by 
Langer et al. [46] for the detection of prostate cancer at the 
peripheral zone. A two-stage CADx system was developed 
by Vos et al. [39] using a blob detection approach in combi-
nation with segmentation and classification of the candidates 
utilizing statistical region features. Using a combination of 
segmentation, voxel classification, candidate extraction and 
classification, Litjens et al. [47] recently introduced a fully 
automated computer-aided detection system. In these stud-
ies, it was shown that it is feasible to distinguish benign 
tissues from malignant ones successfully [46, 47].

Integrated PET/MRI

A recent development in PET/MRI scanner technology has 
introduced the possibility of combining metabolic/recep-
tor information from PET and anatomical and functional 
imaging from MRI in a multimodal manner. While most of 
the studies on PET/MRI have been on restaging for prostate 
cancer after treatment, diagnosis of the dominant lesion and 
characterization using PET/MRI has been an area of increas-
ing interest in recent years, especially with the development 
of prostate-specific membrane antigen (PSMA) radioligands. 
Studies have shown that using PSMA PET/MRI can improve 
the diagnosis of csPC compared with mpMRI alone. For 
example, Ferraro et al. [48], shows that patient-based sen-
sitivity and specificity were 96% and 81%, respectively. 
Additional studies by Park et al. [49], and Hicks et al. [50] 
showed that 68 Ga-PSMA-11 PET/MRI had a higher PPV 

than mpMRI for bilateral tumors (70% vs. 18%, respec-
tively). Nevertheless, to determine whether PSMA PET/MRI 
should be used for the initial diagnosis and guiding biopsy 
as opposed to the current standard of mpMRI in terms of 
diagnostic accuracy and costs, further research is required.

Primary tumor staging

Upon diagnosis of a prostate lesion, the next step is staging. 
MRI is increasingly being used for staging prostate cancer, 
especially to improve the identification of extraprostatic 
extension (EPE) and seminal vesicle invasion (SVI). It is 
vital to accurately stage locally invasive prostate cancer 
through mpMRI. The presence of extraprostatic extension 
manifests as T2WI as broad capsular contact, capsular bulg-
ing and irregularity, rectoprostatic angle obliteration, and 
neurovascular bundles asymmetry [51] (Fig. 1). Features 
of the seminal vesicle invasion include homogeneous T2 
signal hypointensity of the seminal vesicle, tumor location 
at the prostate base, loss of standard seminal vesicle tubular 
geometry, and related diffusion restriction [52] (Fig. 2). As 
reported by de Rooij et al. [53], mpMRI has a moderately 
high sensitivity, but very high specificity (0.61 and 0.88, 
respectively) when it comes to determining EPE and SVI. 
Most of the evidence has been based on qualitative analysis, 
including a Likert scale for the probability of EPE, and it 
has been suggested that accuracy is affected by the level of 
expertise [54, 55]. In addition to the detection of EPE and 
SVI (T3 stage), MRI is also useful for identifying invasion 
to adjacent structures such as external sphincter, rectum, 
bladder, levator muscles, and/or pelvic wall (T4 stage) [56] 
(Fig. 2). 

Recent efforts have concentrated on identifying quantita-
tive and more reproducible methods for assessing EPE and 
SVI. Tumor size (>12–14 mm) and volume assessed by not 
only MRI but also the US have been found to be independ-
ent predictors of EPE [57, 58]. Increasing capsular contact 
length has also been shown to be associated with a higher 
risk of EPE. Optimal threshold values for predicting EPE 
were >14, >13, >12, and >14 mm using the capsular con-
tact length on T2WI, apparent diffusion coefficient (ADC) 
maps, DCE-MRI, and the maximum values among them, 
respectively [57]. In several studies, tumor ADC values have 
been shown to estimate EPE more accurately than T2WI 
alone [59]. Quantitative parameters from DCE-MRI, such 
as plasma flow and mean transit time have also shown prom-
ising results. Additionally, using standardized interpreta-
tion schemes such as the PI-RADS v2.1 has been shown to 
increase diagnostic accuracy and improve inter-reader agree-
ment [60]. More recently, integrated PSMA PET/MRI has 
been gaining interest as a multimodal approach to improve 
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Fig. 1   Coronal (a) and axial 
T2-weighted images (b), DWI 
(c), and ADC (d). MRI of 
68-year-old man with PSA of 
7.73 ng/ml shows a 1.7-cm T2 
hypointense lesion with marked 
restricted diffusion (arrow) in 
the left mid-gland peripheral 
zone with broad capsular con-
tact and bulging (arrowheads). 
At radical prostatectomy, 
pathology revealed Gleason 
4 + 3 prostate cancer with 
extraprostatic extension

Fig. 2   Axial T2-weighted 
images (a,b), DWI (c), and 
ADC (d). MRI of 77-year-old 
man with a PSA of 123.97 ng/
ml shows bilateral multifocal 
peripheral zone lesions with a 
4.9 cm dominant lesion (aster-
isk) in the left prostate demon-
strating multifocal extraprostatic 
extension, left seminal vesicle 
invasion (broken arrows), and 
invasion of the posterior blad-
der wall (black arrowheads), 
left anterolateral rectal wall 
(black arrow) and left levator 
ani (white arrow). Additional 
smaller prostate tumors are 
highlighted on the diffusion-
weighted images (white arrow-
heads). At biopsy, pathology 
revealed prostate cancer in 12 
out of 12 cores with thw high-
est Gleason score of 5 + 4 and 
maximum percentage of cancer 
core of 100%
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the detection of EPE and SVI, with especially improved per-
formance in the assessment of SVI [61].

Active surveillance

The widespread use of screening for prostate cancer using 
the measurement of serum PSA levels has resulted in 
the increased detection (Fig. 3) and treatment of cases of 
low-grade and low-volume cancer, estimated as between 
25–50% of newly diagnosed cases [62]. This has led to wider 
acceptance and adoption of active surveillance, targeted 
at low-risk prostate cancers where the patient undergoes 
a protocol-based surveillance strategy without treatment 
until there is evidence of clinical or radiological progres-
sion. This aims to reduce the drawbacks of overdiagnosis 
and overtreatment of clinically indolent tumors and at the 
same time avoid unwanted side effects of more radical treat-
ments such as radiotherapy, ablative therapy, and radical 
prostatectomy as theoretically these tumors will not lead to 
cancer-related mortality and morbidity during the patients’ 
life expectancy. Although there is an increasing relaxation 
of enrolling patients into active surveillance programs, it 
is recommended by the National Comprehensive Cancer 
Network (NCCN) for men who meet the following defini-
tion of very low-risk prostate cancer: clinical stage ≤T1c, 
Gleason score ≤ 6; <3/12 benign cores on biopsy; <50% 

of cancer-positive tissue in each biopsy core; PSA <10 ng/
ml, and >20 years of life expectancy [63]. Other guidelines 
such as those by the European Association of Urology 
(EAU) are similar in terms of their inclusion criteria with 
mild variation in details [64]. After being included in an 
AS protocol, the patients are recommended to undergo a 
follow-up protocol. For example, according to the NCCN 
guidelines: PSA every six months, a DRE every 12 months, 
and a re-biopsy every 12 months if there are no earlier clini-
cal indications [63]. Cancer progression can be detected 
by increasing PSA (>10 ng/ml) and Gleason score of ≥7 
in repeat biopsy, however as of now imaging progression 
on MRI is not included as a criterion for progression during 
active surveillance [53, 54].

Although clinical and pathological information have tra-
ditionally been the basis of active surveillance, integration 
of MRI findings has been increasingly proposed [65–67]. 
For instance, the European Association of Urology (EAU) 
guidelines recommend mpMRI for patients on active sur-
veillance prior to a confirmatory biopsy or even the initial 
biopsy [68]. This is especially relevant for tumors that are 
located in the anterior prostate which account for 20% [69, 
70], as they are often missed on systematic randomized 
biopsies and even when biopsied, are not so rarely under-
estimated with having fewer positive cores containing can-
cerous tissue and shorter core lengths: median biopsy core 
length of 8 mm vs 1 mm using targeted systematic biopsy 

Fig. 3   Axial T2-weighted 
images (a,b), DWI (c), and 
ADC (d). MRI of 73-year-old 
man with PSA level of 3.77 ng/
ml shows 0.5-cm lesion (arrow) 
in the left posterior base 
peripheral zone demonstrat-
ing hypointense T2 signal on 
axial (a) and coronal plane (b). 
Lesion has marked diffusion 
restriction (image c,d) and was 
reported as PI-RADS v2 score 
of 4. Transrectal ultrasound-
guided biopsy revealed low-
volume Gleason 3 + 4 prostate 
cancer. For 8 years, patient has 
been on active surveillance 
without clinical or radiological 
progression
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versus non-targeted biopsy [69, 70]. In patients that were 
enrolled in active surveillance programs based on a negative 
prior 12-core transrectal US-guided biopsy, the percentage 
of those with cancer of the anterior portion of the gland 
indicated as a suspicious lesion on MRI and diagnosed with 
a targeted biopsy was high, at up to 89% [71]. Regardless 
of the location (anterior vs posterior), MRI has the advan-
tage of targeting suspicious lesions for biopsies [69] and 
achieving better risk stratification based on a more accurate 
assessment of tumor volume and grade [69]. MRI-Tb can be 
done using either cognitive fusion [72] or software-based 
MRI/TRUS fusion [73], and even in-bore direct MRI-guided 
biopsies [74, 75].

In addition to MRI being increasingly used to detect clini-
cally significant disease missed during initial biopsy or to 
prevent the need for a second biopsy [76], there is more 
evidence demonstrating the association between stability on 
MRI and stability of the Gleason score on follow-up biopsies 
during active surveillance [77]. However, the potential role 
and timing of MRI in this field remains to be determined 
in clinical practice owing to the heterogeneity of the inclu-
sion criteria for active surveillance patients, the definition of 
clinically significant disease, and agreement regarding the 
definition of radiologic progression [78]. To address these 
issues, recently an international consensus panel proposed 
a standardized reporting scheme for patients undergoing 
follow-up MRI during active surveillance, namely the Pros-
tate Cancer Radiological Estimation of Change in Sequential 
Evaluation (PRECISE) recommendations [79]. PRECISE 
guidelines facilitate the building of an evidence archive 
for tracking prostate MRI results over time in men under 
active surveillance taking into account measurement error 
inter-scan technical acquisition variability on MRI, and in 
turn identify “true” radiological progression by providing 
a score between 1–5. Although it is unknown whether this 
will be integrated into clinical practice, early studies show 
promising results where PRECISE scores of ≥4 have very 
high negative predictive values of 0.96 for progression on 
biopsy [80] which can serve as evidence to integrate MRI 
in follow-up protocols for patients on active surveillance.

Treatment planning

MRI of the prostate can assist treatment planning in sev-
eral ways. With regards to surgery, prostate cancer patients 
without a high risk of EPE are typically offered a nerve-
preserving radical prostatectomy which comes with the 
advantage of reducing unwanted postsurgical complica-
tions such as erectile dysfunction and urinary incontinence 
[81]. However, nerve-preserving approaches are associ-
ated with potential positive margins, which introduce risk 
for recurrence and therefore accurate prediction of EPE 

is required to properly plan for radical surgery in terms of 
whether to perform nerve-preserving approaches or not 
[82]. Traditionally available prediction methods includ-
ing DRE, transrectal ultrasound, and clinical nomograms 
based on factors such as PSA are suboptimal. Therefore, 
all available tools need to be used before treatment for 
evaluating the benefits and hazards of nerve-sparing tech-
niques and developing treatment plans specific to each 
patient [83]. MRI has a great advantage in this area by 
being able to detect and localize the dominant lesion and 
by assessing its relationship with the neurovascular bundle 
(NVB). For example, the dominant lesion may be organ-
confined, extending to the capsule, or demonstrating frank 
extracapsular extension with involvement of the NVB. 
Many prior studies have assessed the ability of MRI to 
help plan whether to preserve or resect the NVB. Accord-
ing to Schiavina et  al. [84], using mpMRI altered the 
nerve-sparing strategy in approximately half of the cases 
and it was deemed that in 75% of the cases, the changes in 
strategy were appropriate. In addition, Panebianco et al. 
[85], reported that preoperative mpMRI supports the sur-
geon in selecting the appropriate surgical technique and 
may improve the quality of the excision in up to 96% of 
the patients. Nevertheless, careful consideration of risk 
factors such as older age or higher Gleason grade should 
be considered, as such has been reported to be associated 
with intra-operative aborting of a preoperatively planned 
nerve-sparing strategy [86].

MRI has also become helpful for planning radiation 
treatment owing to several of its advantages when com-
pared with CT, the more conventional anatomical imag-
ing used for treatment planning. Not only does MRI help 
directly visualize the tumor, but also its superior soft-
tissue resolution and anatomical detail allow for better 
involvement of the prostatic apex and the presence of 
EPE and SVI which are crucial for determining the radia-
tion dose and field [87]. More recent investigations are 
attempting to see whether adding focal boost doses to the 
macroscopically visible dominant tumor on MRI results in 
better outcomes where a phase III randomized trial showed 
that it improves biochemical disease-free survival without 
increased toxicity [88].

MRI is also increasingly being used related to focal 
ablative therapies, specifically with regards to patient 
selection, treatment planning, and intra-procedural moni-
toring, usually in the setting of a clinical trial. MRI can 
assist in determining several important factors such as 
bilaterality, localization, size, and extent (e.g., EPE or 
SVI) to determine eligibility and whether to perform 
partial vs total gland ablation [89]. During the ablation 
process, MR thermometry can then be used for real-time 
monitorng of the thermal destruction [90].
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Role of imaging in biochemical recurrence

The definition of biochemical recurrence (BCR) after a 
curative treatment for prostate cancer relies on the initial 
treatment given to the patient. Although there are several 
definitions for BCR, a commonly used one in the setting of 
radical prostatectomy is defined as PSA value of ≥0.2 ng/
ml confirmed by a subsequent PSA value of ≥0.2 ng/ml. 
After radiotherapy, a rise of 2 ng/mL or more above the 
nadir PSA is considered as BCR; the PSA nadir being the 
lowest level of the PSA reached after the treatment and 
usually occurring within the first year after the treatment 
but may occur within 18 to 30 months [91, 92].

The role of imaging in the context of BCR is to deter-
mine whether it represents local or metastatic disease, 
and ideally to detect the disease as early as possible at 
a lower level of PSA to help determine the optimal man-
agement (e.g., salvage radiation treatment in patients that 
underwent prostatectomy or systemic treatment) [91, 93]. 
MpMRI of the pelvis currently plays a role in this set-
ting as it provides superior soft-tissue resolution and ana-
tomical detail of anatomical sequences (e.g., T2WI) when 
compared with CT and by utilizing advanced functional 
sequences (e.g., DWI and DCE-MRI) enabling detection 
of locally recurrent disease in the setting of BCR [91]. 
In addition, when performed together with whole-body 
MRI, this allows detection and quantification of distant 
metastases (e.g., differentiation of oligometastatic from 

polymetastatic disease), including bones, lymph nodes and 
soft tissues, and to potentially guide management.

Also, in relation to BCR MRI is increasingly being inves-
tigated as a prognostic tool to predict BCR prior to definitive 
local therapy. A recent systematic review and meta-analysis 
showed that higher PI-RADS v2 scores were associated 
with increased risk of BCR predominantly in the context of 
radical prostatectomy [94]. Few studies also show that these 
prognostic values translate into higher-level oncological out-
comes (e.g., metastasis and cancer-specific mortality) when 
interrogating MRI that were used prior to the introduction of 
“PI-RADS” and with long-term follow-up (median follow-
up around 10 years) [95, 96]. Similar prognostic value for 
BCR and other oncological outcomes have been reported in 
the context of radiation treatment [87].

Local recurrence after radical prostatectomy

Common mpMRI findings and pitfalls

The most frequent location of local recurrence following 
radical prostatectomy is the vesicourethral anastomosis, 
followed by the anterior or posterior bladder neck [97]. It 
typically manifests as intermediate T2 signal intensity with 
early enhancement and restricted diffusion [97, 98] (Fig. 4). 
Susceptibility artifacts from surgical clips can limit evalu-
ation, especially on DWI [97]. The role of the radiologist 
includes being familiar with common pitfalls that include 
postsurgical fibrosis, residual prostate or seminal vesicles 

Fig. 4   Axial T2-weighted (a), 
DCE (b), DWI (c) and ADC 
(d). 68-year-old man with rising 
PSA (5.78 ng/ml) 6 years after 
radical prostatectomy for Glea-
son score 4 + 4 prostate cancer. 
MRI shows a 2.2-cm T2 inter-
mediate signal mass (arrow) 
in the right prostatectomy bed 
scar tissue demonstrating T2 
low signal (arrowheads). Mass 
shows early enhancement and 
restricted diffusion. Patient was 
started on androgen deprivation 
therapy after which both this 
recurrent tumor on MRI and 
PSA levels decreased
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[97, 99]. Postsurgical fibrosis usually shows a delayed and 
progressive enhancement, T2 hypointense signal, and lack 
of restricted diffusion [97, 98]. Residual prostatic tissue is 
problematic as PSA will remain detectable due to normal 
functional prostate tissue and even clinically false consid-
ered to be “PSA failure” after prostatectomy. Although they 
tend to maintain location and imaging features similar to 
pretreatment prostate, differentiation with recurrent tumor is 
difficult [97]. Most commonly, with residual prostate gland 
tissue, PSA does not drop to undetectable levels after the 
surgery [97]. Remnant seminal vesicles are identified up to 
20% of cases and can be easily characterized by their convo-
luted appearance [98, 100]. An important drawback is that 
detection of recurrent tumor after prostatectomy depends 
on the PSA level, for example only 11% patients had posi-
tive findings on MRI in patients with PSA less than 1 ng/
ml [101].

Performance of MRI for local recurrence

The diagnostic performance of MRI for detecting local 
recurrence varies with sensitivities and specificities rang-
ing from 48 to 100% and 52% to 100%, respectively, 
depending on the combination of MRI sequences used and 
the patient population [102, 103]. DCE-MRI is the most 
valuable sequence for evaluation of biochemical recurrence 
after prostatectomy, with higher sensitivity and specific-
ity (87–100% and 94%, respectively) when compared to 
T2W or DWI alone [104, 105] and this can be improved 
by using a combination of DCE-MRI and T2WI [92, 104, 
106–109]. Panebianco et al. found that the overall accuracy 
of the combination DCE + T2WI was superior to the com-
bination DWI + T2W [106]. Although DWI is commonly 
hampered by artifacts from surgical clips, it increases the 
conspicuity of recurrent tumors, helping avoid pitfalls such 
as misdiagnosing peri-prostatic vessels as enhancing nodules 
in addition to enhancing detection of nodal and bone metas-
tases when image quality is sufficient [92, 106]. Therefore, 
under optimal conditions, a mpMRI protocol consisting of 
T2-weighted imaging, DCE-MRI, and DWI may provide the 
best diagnostic performance [107].

DCE Semiquantitative, quantitative, and automated 
detection

Semiquantitative and quantitative DCE analyses have been 
extensively evaluated in the postoperative setting of BCR. 
Examples of semiquantitative parameters are peak enhance-
ment, time to peak, washout slope, area under the contrast 
enhancement curve, and quantitative parameters include 
Ktrans, Ve, and Kep [104, 110]. Most of the local recur-
rences after prostatectomy demonstrate early enhancement 
with rapid or plateau/slow washout after intravenous contrast 

administration (44% and 50%, respectively) [111]. Investiga-
tors have also developed automated software for the detec-
tion and delineation of suspicious lesions in the prostate bed 
using DCE-MRI [112].

MRI findings after radiotherapy and local 
recurrence

Common mpMRI findings and pitfalls

Radiotherapy causes atrophy, inflammation, and fibrosis, 
which manifests as a smaller, diffusely T2 hypointense pros-
tate gland with decreased contrast between the treated tumor 
and the background prostate tissue on MRI [98]. Recurrent 
tumor after radiotherapy most frequently is located at the 
site of the treated initial tumor, therefore, it is crucial for the 
radiologist to take into account the pre-treatment imaging 
studies where available [98]. If the patient has received low-
dose-rate brachytherapy, the seeds typically appear as small-
signal voids scattered throughout the gland, causing suscep-
tibility artifacts and hampering the performance of DWI. 
This is not the case for high-dose-rate brachytherapy since 
no permanent seeds are implanted. Local recurrence usually 
manifests with restricted diffusion and early enhancement. 
Postradiation inflammatory changes can also mimic these 
findings leading to false-positive interpretations; hence cau-
tion is warranted for performing MRI within the first three 
months [98].

Performance of mpMRI sequences

Usage of functional MRI sequences are crucial in the radi-
ologist’s perspective for detecting recurrent tumor after 
radiation treatment (Fig. 5). In a meta-analysis by Wu et al. 
[103], DCE imaging significantly increased the sensitivity 
and specificity of MRI when compared to T2W alone (sen-
sitivity and specificity 60–97% and 64–93% for T2W + DCE 
versus 39–85% and 51–88% for T2W alone, respectively). 
In addition, Donati et al. [113] reported that DWI with T2W 
imaging was superior to T2W imaging alone. Using a full 
mpMRI with DWI, DCE-MRI and T2WI to further improve 
detection has been controversial; for example, Roy et al. 
[104] found that all three sequences resulted in high accu-
racy in identifying recurrence (e.g., sensitivity of 100%), 
whereas Donati et al. did not observe any benefit of adding 
DCE-MRI to DWI and T2WI [113].

ADC values

Studies have reported a correlation between ADC values 
and treatment response after radiotherapy, suggesting that 
ADC value may be helpful as an imaging biomarker for 
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monitoring the therapeutic response and identifying a 
recurrence of prostate cancer. For example, tumor ADC 
values increase when compared to pretreatment values, 
while that in the benign prostate tissue decrease, ulti-
mately making treated tumor indistinct [114, 115]. Pas-
quier et al. [116] demonstrated that early ADC changes 
correlated with late PSA decrease for patients treated by 
external beam radiation treatment. Morgan et al. [117] 
have shown that an ADC was useful in detecting local 
tumor recurrence larger than 0.4 cm2, with a cutoff ADC 
of 1216 × 10−6 mm2/s showing sensitivity and specificity 
of 100% and 96%, respectively.

Radiomics after radiotherapy

Radiomics have been shown to be a potential biomarker in 
the context of radiotherapy response assessment. Lee et al. 
[118] reported that first and second-order features of gross 
tumor volume and prostate utilizing T2WI and ADC map 
have significant changes during radiotherapy; for example, 
an increase of tumor ADC mean and reduction of entropy 
and contrast on ADC map were observed, probably repre-
senting a reduction on tumor cellularity and heterogene-
ity. Whether this will translate into clinical practice, in 
the radiologists’ perspective, will require validation and 
standardization.

MRI findings after focal therapies

Focal therapies, including cryotherapy, high-intensity 
focused ultrasound, and photodynamic therapy, have 
increasingly been used as an alternative treatment for low 
and intermediated risk, organ-confined prostate cancer 
to avoid common morbidities associated with standard 
radical therapies (e.g., prostatectomy and radiotherapy) 
[119]. Focal therapies treat the tumor through necrosis 
via their own specific mechanism, therefore, manifesting 
with expected MRI findings of a non-enhancing area at the 
site of the treated tumor [120]. Tumor recurrence typically 
appears as an early enhancing focal lesion with restricted 
diffusion in or adjacent to this region as T2WI offers lim-
ited information due to architectural distortion and other 
post-treatment changes [121, 122] (Fig. 6).

MRI findings after androgen‑deprivation 
therapy (ADT) and local recurrence

ADC values

Radiologists may play a critical role in response assess-
ment after neoadjuvant ADT prior to prostatectomy or 

Fig. 5   Axial T2-weighted image 
(a), DCE (b), DWI (c) and ADC 
(d). 64-year-old man with rising 
PSA biochemical recurrence 
(3.59 ng/ml) after external beam 
radiotherapy to a Gleason 3 + 3 
prostate cancer 14 years ago. 
Diffuse low T2 signal through-
out the entire prostate and loss 
of zonal differentiation repre-
sent post-treatment changes, 
limiting detection of recurrent 
tumor. However, 1.6-cm focal 
lesion (arrow) in the left mid 
gland peripheral zone is dem-
onstrated on early DCE images 
and diffusion-weighted images 
which was confirmed on biopsy 
as Gleason 4 + 4 cancer
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radiation treatment [123]. In addition to changes in serum 
PSA levels, MRI is able to provide additional informa-
tion regarding treatment response during ADT includ-
ing changes in terms of prostate size and tumor volume. 
Moreover, investigators have also noted a correlation 
between ADC value in the tumor and treatment response 
[124–126]. Kim et al. [124] described that the mean ADC 
value of tumors (1060 × 10−6 mm2/s) was significantly 
increased after treatment when confronted with the pre-
treatment values (780 × 10−6 mm2/s), and that increasing 
trend was negatively correlated with decreasing PSA. Fur-
ther studies are needed if this will help predict pathologi-
cal downstaging or even pathological complete response.

DCE

DCE has also shown potential for assessing treatment 
response to ADT. Padhani et al. [24] observed a reduction in 
tumor permeability and washout patterns and found that this 
coincided with a PSA decline in 91% of the patients on ADT. 
In addition, this can be semi-quantitatively assessed, for 
example, enhancement slopes with a slow progressive rise 
in enhancement were seen in most post-treatment cases in 
contrast to early enhancement followed by plateau or wash-
out on pre-treatment imaging [127]. Quantitative parameters 
such as tumor blood volume have also been shown to capture 
treatment response [128].

Radiomics

Although morphological and functional imaging can be 
used to assess response to ADT, diffuse signal changes and 
decreased conspicuity between the treated tumor and back-
ground prostate may limit evaluation. Radiomics has been 
suggested as a supporting tool to discriminate the tumor 
from normal tissue, especially in radiotherapy planning after 
a neoadjuvant ADT therapy. First-order texture features 
using ADC were significantly different between tumor and 
normal tissue after ADT [129]. Daniel et al. [125] reported 
that ADC and T2WI textural features performed better in 
discriminating healthy from tumor tissue when compared 
to the simple histogram parameters in patients treated with 
ADT.

Prostate imaging for recurrence reporting 
(PI‑RR)

Recently, a structured reporting scheme called Prostate 
Imaging for Recurrence Reporting (PI-RR) was proposed 
for the purpose of standardizing acquisition, interpretation, 
and reporting of MRI for evaluating local recurrence of pros-
tate cancer [98]. PI-RR uses a 5-point scoring system to 
determine the probability of relapse on MRI where scores 
of 1 and 5 are given to lesions with a very low and very 

Fig. 6   Axial T2-weighted (a), DWI (b) and DCE-MRI (c) before, 
DWI (d) 3 months after, and DWI (e) and DCE-MRI (f) 2 years after 
focal therapy, respectively. 63-year-old patient with PSA 5.8  ng/ml 
and a left mid gland peripheral zone lesion at presentation for which 
biopsy showed Gleason 3 + 4 prostate cancer. Three months after irre-
versible electroporation (IRE), there was no abnormal signal on DWI 

at the site of the treated tumor (arrowhead). Two years after IRE with 
PSA rose to 10.76  ng/ml, and MRI demonstrated a lesion (broken 
arrow) adjacent to the ablation site demonstrating early enhancement 
and restricted diffusion suspicious for recurrence that was confirmed 
by biopsy
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high likelihood of recurrence). This system relies on ana-
tomical and functional imaging findings based on the exiting 
large body of evidence that has accumulated until today and 
approaches differently for each different type of treatment 
the patient had received. Anatomical parameters include the 
size, location, and shape of the lesion, while functional cri-
teria correspond to findings on DWI and DCE [98].

Metastatic prostate cancer

Currently, Tc-99 m bone scintigraphy (BS) and computer-
ized tomography (CT) are most widely used to assess bone 
metastases despite their well-recognized limited sensitiv-
ity, because of their wide availability and recognized asso-
ciations with prognosis [130]. These modalities commonly 
show “flare phenomena” during treatment where the meta-
static lesions demonstrate increased radionuclide uptake 
on BS which can be falsely misinterpreted as progression 
[131, 132]. MRI along with PET/CT on the other hand, has 
the potential to identify changes in the bone marrow before 
osteoblastic response [91]. PET/CT, especially when used 
with certain radioisotopes such as PSMA-targeted ones, has 
been extensively shown to be superior to conventional imag-
ing techniques for detecting metastatic disease [133–135]. 
MRI in the form of whole-body imaging, although less 
extensively investigated has shown promising results in 
addition to its unique advantage of avoiding radiation expo-
sure [136, 137]. Furthermore, performing whole-body MRI 
together with mpMRI of the pelvis allows a “one-stop-shop” 
approach for primary staging in high-risk patients and in the 
setting of biochemical recurrence, offering an assessment of 
both local and distant metastases [136].

Whole‑body MRI

Whole-body MRI has shown good performance in detecting 
bone metastases [138]. Studies have found that whole-body 
MRI performs better than bone scintigraphy and is similar 
to 18F-choline PET/CT [137, 139, 140]. A study showed an 
AUC of 0.971 using a combination of T1WI + T2WI + short 
tau inversion recovery + DWI vs AUC 0.943 just using 
T1WI + T2WI + DWI for detecting bone metastases when 
compared to 18F-choline PET/CT [137]. A meta-analysis 
performed by Shen et al. [141] found that whole-body MRI 
had a higher sensitivity and AUC than choline PET/CT in 
detecting bone metastasis on a per-patient analysis (95% 
and 0.987 versus 87% and 0.954, respectively), with similar 
specificity (96% for whole-body MRI versus 97% for choline 
PET/CT). Although similar overall per-patient sensitivity of 
detecting patients with bone metastases have been suggested 
using routine mpMRI of the prostate and whole-body MRI, 
the latter has the advantages of superior per-lesion detection 

rate and therefore the potential for selecting patients with 
oligometastatic disease (Fig. 7) which could be amenable 
for metastasis-directed therapy such as stereotactic body 
radiation therapy [131, 132]. In addition, quantification of 
metastatic burden can be done with whole-body MRI may 
also be a prognostic factor, using quantitative automated 
software, which can be used to assess treatment response and 
obtain prognostic information. For example, Perez-Lopez 
et al. [142] demonstrated a correlation between the volume 
of bone metastasis quantified on whole-body DWI in meta-
static castrate resistance prostate cancer, overall survival, 
and other already established prognostic biomarkers (e.g., 
PSA and hemoglobin).

Assessment of therapy response of bone metastases has 
been reported to be done using changes in ADC values (e.g., 
increase when responding to ADT) [143]. Texture analysis 
may provide additional information such as the correlation 
between changes of first-order (e.g., kurtosis, energy, and 
entropy) and second-order metrics (e.g., contrast and homo-
geneity and changes in PSA across time [144]. Additional 
studies are needed to verify these findings.

MRI has not shown satisfactory performance regard-
ing discrimination of lymph node metastasis as it relies on 
morphologic criteria such as size and shape, not being able 
to detect microscopic metastases within the lymph nodes, 
and false-positive interpretation of enlarged reactive lymph 
nodes similar to CT [145]. The pooled sensitivity and speci-
ficity of MRI for detecting pelvic nodal metastasis were 53% 
and 95%, respectively, in a recent meta-analysis [146, 147]. 
Although DWI is a great sequence to detect lymph nodes, its 
role in differentiating benign from malignant lymph nodes 
is controversial [148–150]. Usage of ultra-small super para-
magnetic iron oxide (USPIO) has shown in several studies to 
improve sensitivity, rendering it superior to CT, potentially 
allowing detection of metastases even in normal-sized lymph 
nodes, and also to play a complementary role to PSMA 
PET/CT (which currently allows for the best detection rate) 
[151–153]. Nevertheless, several obstacles such as iron over-
load and availability need to be addressed before the wide-
spread adoption of this promising technique.

MET‑RADS‑P

The METastasis Reporting and Data System for Prostate 
Cancer (MET-RADS-P) were recently created to improve 
standardization and reduce variations in the acquisi-
tion, interpretation, and reporting of whole-body MRI in 
advanced prostate cancer [154]. On MET-RADS-P, DWI 
evaluation is based on subjective comparison of the signal 
intensity on high b-value DWI to adjacent muscle signal 
intensity. In contrast, ADC is quantitatively assessed based 
on their values (10−3mm2/s). According to the MET-RADS-
P, measurements of bone lesions should be undertaken on 
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high-quality T1WI. They advocate the record of up to five 
discrete bone lesions with at least one lesion in the appen-
dicular skeleton if present, up to five discrete lymph nodes, 
and up to five soft tissue lesions (15 lesions maximum), all 
of them should measure at least 1.5 cm. On follow-up scans, 
changes in the metastases should be assessed and recorded 
at a regional level. Then, the status of the primary disease, 

nodes, viscera, and bone disease should be registered sepa-
rately using the overall response assessment template form.

PET/MRI

Integrated or simultaneous PET/MRI is an emerging 
technology that combines PET images with concurrent or 

Fig. 7   Fused axial T2WI/PSMA-PET (a), axial T2WI (b), and 
axial DCE-MRI (c) of the prostate, fused axial T2WI/PSMA-PET (d) 
and axial T2WI (e) of the pelvic lymph nodes, and fused axial T2WI/
PSMA-PET (f), axial fat-suppressed T2WI (g), and axial  DWI (h) 
of the thorax. 79-year-old man with PSA of 8.0 ng/ml had Gleason 
4 + 3 prostate cancer on biopsy. (a–c) Right apical peripheral zone 

T2 hypointense lesion is PSMA-avid (SUV 23.0) with early enhance-
ment. (d–e) Right external (1.3 × 0.8 cm; SUV 86.6) and internal iliac 
lymph nodes (0.7 × 0.6 cm, rounded in shape; SUV 12.8) are suspi-
cious for metastases. (f–h) Lateral left 3rd rib lesion demonstrates 
PSMA avidity (SUV 7.2) and restricted diffusion which was con-
firmed as metastasis on biopsy
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consecutive whole-body MRI. The novelty of this tech-
nology in evaluating patients with prostate cancer stands 
in the combination of the benefits of MRI for local and 
distant disease as described above and the functional infor-
mation provided by PET using tracers such as 11C-choline, 
18F-fluciclovine, or PSMA-targeted radioligands (Fig. 7) 
[97]. Studies have shown that using integrated PET/MRI 
as opposed to PET/CT alone using these radioligands, may 
provide better localization and anatomic characterization 
especially for locally recurrent tumors in the prostate 
bed, which may be difficult to assess especially in urinary 
excreted PSMA agents [155]. Galgano et al. [156] demon-
strated that 18F-fluciclovine PET/MRI detected suspected 
metastatic lymph nodes in 50% of patients that were not 
enlarged (short axis < 1.0 cm). Souvetzoglou et al. [157] 
found that 11C-choline PET/MRI had similar performance 
than PET/CT in detecting choline-positive bone metasta-
ses; however, PET/MRI showed better anatomical localiza-
tion of lesions. However, the optimal target population and 
the true incremental value in performing the PET/MRI in 
an integrated/simultaneous manner instead of a prostate 
MRI + PET/CT has not been established and will need to 
be investigated in future studies.

Conclusion

There has been increased utilization of MRI in various 
aspects of prostate cancer management over the recent 
years. While MRI has already been integrated as a key 
imaging modality in many clinical settings, emerging 
MRI techniques are promising for increasing precision 
and allowing for expanding the role of MRI.
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