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Abstract
Objective  Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared 
to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 
8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T.
Methods  The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR 
efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for 
neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation 
model was performed on phantom for the coil array.
Results  The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in 
neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-
error of 6.7% was found between measured and simulated transmit field maps on phantom.
Conclusion  The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, 
in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 
8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.

Keywords  Neonate dipole coil array · Parallel-transmit · SAR reduction · Neonatal brain and heart · Ultra-high field · 7 T

Introduction

Magnetic resonance imaging (MRI) of the developing 
brain is an active research topic [1] and has demonstrated 
the potential to detect, for example, early brain injuries in 
neonates that lead to adverse neurodevelopmental outcomes 
[2–5]. Besides, cardiac MR imaging methods can help to 

assess cardiovascular abnormalities in newborns [6, 7]. The 
studies are usually performed at 3 T [8, 9]. However, in the 
past years, there has been an increasing interest in 7 T MR 
as higher signal-to-noise ratio, contrast-to-noise ratio, and 
spatial resolution can be achieved [10–13]. These advantages 
associated with moving to a higher field strength could ben-
efit neonatal imaging, as previously shown from 1.5 to 3 T 
[9]. Neonatal MR imaging is usually performed on 3 T MR 
scanners using the in-built body volume coil for transmit RF 
signal. At 7 T, integrating a body coil to the MR scanner is 
an ongoing research topic [14, 15] and is challenging as RF 
inhomogeneity is a limiting factor [10, 16]. Nevertheless, 
while an integrated RF coil could be well suited for whole-
body adult imaging, the small size of the neonatal body may 
be spatially covered with local RF coils, as currently done 
for distinct adult body parts [17–20]. As an example, the 
birdcage coil [21] has been extensively used for adult brain 
MR studies [22–24] and may be used for neonatal brain MR 
imaging.
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At the same time, RF safety is a critical aspect when 
performing neonatal MRI. RF power deposition in tissue is 
increased at 7 T compared to lower fields as a result of the 
increased frequency of the electromagnetic wave [25, 26]. 
On another side, when moving from adult to baby, although 
power deposition was decreased at 1.5 T and 3 T using the 
large body coil [26] there is no clear evidence that the same 
observation applies at 7 T, when using local transmit coils 
[27, 28]. Specific-absorption-rate (SAR) quantifies the 
power deposition when the subjects are exposed to RF fields 
[29]. A conventional birdcage coil is typically fed through 
two ports driven in circularly polarized mode from a single 
RF power source. Therefore, the SAR levels are straightfor-
ward to derive [27] as the RF field distribution is fixed for 
a given load, but this gives no flexibility to control SAR, 
which may mean the maximum RF power has to be reduced, 
in turn impairing image quality.

The parallel-transmit approach is known to increase the 
flexibility of RF transmission at high fields. Single RF coil 
elements are combined into multi-channel arrays and geo-
metrically distributed around a region-of-interest. Transmit 
arrays were initially proposed to tackle RF inhomogeneity 
at ultra-high field by providing additional degrees of free-
dom for shimming the RF field distribution pattern [30, 31]. 
In addition, the individual RF phases may be optimized to 
simultaneously reduce the SAR levels in the neonatal body 
as previously reported for adult cases [32, 33]. However, it 
is unclear how RF shimming performs in neonatal brain and 
heart. These two organs are located at different depths and 
have different sizes but since they are significantly smaller 
compared to the adult, the RF inhomogeneity typically 
observed at 7 T [16] may be lower and B1

+-field efficiency 
could be increased as the dissipative volume is smaller. 
Therefore, it may be easier to cover homogeneously either 
the baby’s brain or heart without modification of the coil 
array design.

Radio-frequency coil arrays using dipoles as transmit 
elements have been previously reported and extensively 
used for adult brain or body MR applications at 7 T [19, 
34–37] and were compared to loop coils [38], but were so 
far not investigated for neonatal applications. Following the 
established literature, the centre-shortened dipole could be 
particularly suited as it is straightforward to implement and 
demonstrated good RF performances compared to other 
dipole design approaches, as fractionated dipole arrays, on 
the adult brain [34]. However, to our knowledge, the dipole 
arrays reported so far were designed such that the elements 
are placed either directly on the subject for cardiac or pros-
tate imaging [36, 39], or close to the subject for brain imag-
ing [34, 40]: proximity maximizes the power flux towards 
the conductive tissues and provides high B1

+-field efficiency 
[38]. Fitting the entire neonate together with adapted bed 
support necessarily requires the RF elements to be placed 

at a relatively large distance from the body. There is no clear 
evidence on how the dipoles will perform in such situation, 
notably in terms of RF performance.

Therefore, this study aimed to introduce a whole-body 
8-channel dipole array for neonatal brain and heart MR 
applications. The B1

+-field efficiency and SAR levels are 
evaluated to estimate the combined effects of subject size 
(adult vs baby), and target size/location (brain vs heart) on 
the RF performance of the coil array in comparison with a 
single transmit birdcage coil at 7 T.

Methods

RF coil array design

The 8-channel dipole array (8Tx-dipole array) for neonatal 
brain and cardiac MR applications consisted of eight centre-
shortened dipole antennas (width = 15 mm) with each dipole 
etched from 35 µm copper on a 1.6 mm-thick FR-4 substrate 
(Eurocircuits LTD, United Kingdom). Dipoles were placed 
at 45° from each other on a cylinder with a large diameter 
of 301 mm (Fig. 1a) as it accounted not only for the whole-
body size of neonates but also for the minimal required 
space to install a dedicated bed (Fig. 2). A dipole length 
of 230 mm, significantly larger than the neonatal heart and 
brain dimensions (50 to 90 mm in head-foot direction), was 
chosen to ensure the full longitudinal spatial coverage of 
the two organs and to get sufficient B1

+-field efficiency as 
the depth profile of the transmit field intrinsically scales 
with dipole’s length [38]. Long dipoles ( ≥ 150 mm) also 
tend to produce lower SAR maxima as the current is more 
evenly distributed compared to small dipoles [38], which 
was a critical design criterion for neonatal applications. The 
centre position along the longitudinal axis for each pair of 
left–right symmetrical dipoles was moved up or down to 
account for the human brain geometry. The maximal shift 
distance was 25 mm, between dipoles 3–4 and 7–8 (Fig. 1b). 
The tuning/matching circuit consisted of two hand-wounded 
copper-wire series inductors, two series and one parallel 
capacitor (American Technical Ceramics, USA) placed on 
a printed-circuit board (same FR-4 substrate as the dipoles) 
elevated by 15 mm with respect to the dipole legs’ level, and 
symmetrically positioned with respect to them [34]. Dipoles 
were tuned and matched using a 4-channel vector network 
analyser (Keysight Technologies E5080A-ENA, USA).

A phantom was designed according to realistic neonate 
dimensions and filled with a saline solution at a concentra-
tion of 5.8 g/L (Fig. 8a) to closely match the average con-
ductivity of the simulated neonate model (Table 1). The total 
volume was approximately 4.8L and the dielectric proper-
ties (ɛr = 79, σ = 0.95 S/m) were measured using a dielectric 
assessment kit (DAK 12, SPEAG, Switzerland).
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A coil holder structure was drawn (Solidworks, Dassault 
Systèmes, France), 3D-printed in polycarbonate (Deed3D 
Technology Co., China), and painted with a lacquer (TOY 
Brand, the China Paint MFG. Co.) meeting the international 
standards (as ISO8124-3 and EU2005/84/EC) in terms of 
lack of toxicity. The MR transparency of the polycarbon-
ate used was assessed, in the MR scanner, using standard 
imaging sequences as turbo-spin-echo (1.6 mm-iso, TR/
TE = 2000/159 ms, FOV = 490 × 490 mm2) and MP2RAGE 
[24] (0.75 mm-iso, TR/TE = 4300/2.27 ms, FOV = 240 × 240 
mm2). The coil holder was designed to be separated into 
two halves to facilitate the positioning of neonates for the 
MRI scans (Fig. 2a, b). The setup, including the neonate’s 
bed, is shown in Fig. 2c, d for the neonatal brain and cardiac 
configurations, respectively. The minimal distance between 
the neonate’s bed and the coil holder structure was about 
2 mm. The same printing and painting approach as for the 
coil holder was used for the neonate’s bed.

Electromagnetic field simulations

The electromagnetic field simulations were performed using 
a finite-difference time-domain (FDTD) simulation software 
(Sim4life 6.2, ZMT, Switzerland). The neonate model [28] 

was developed in-house and included 13 tissues which were 
segmented from in-vivo MR images to reflect the natural 
position of a baby undergoing an MR examination. Dielec-
tric properties of all tissues were defined according to the 
adjusted values for the neonate model (Table 1) [28]. The 
coil holder was imported to place accurately the dipoles but 
not itself simulated, since it does not disturb the RF signal. 
The centre-shortened dipoles were modelled, including the 
FR-4 substrate (ɛr = 4, zero electrical conductivity), and con-
ductive parts were defined as lossy metal (σ = 5.8e7 S/m). 
The magnet RF screen was added to the simulation model 
and defined as perfect electric conductor (PEC). Three simu-
lation setups were carried out, neonatal brain and heart at 
the centre of the coil array, and brain-centred with the Duke 
adult human model (Fig. 1b) [41].

The baby and Duke models were gridded at 2 mm-iso-
tropic resolution for resulting total grid sizes of 38 Mcells 
and 62 Mcells, respectively. The tuning/matching circuit lay-
out included all the lumped elements used in the built array 
at their exact position for a proper correspondence between 
simulations and measurements. All RF ports (8 sources and 
40 lumped elements) were driven individually by a Gaussian 
excitation centred at 297.2 MHz with a 200 MHz bandwidth 
for 300 periods with auto-termination when the convergence 
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Fig. 1   RF coil dimensions and simulated models for a and b the 
8Tx-dipole array and c and d the 16-legs birdcage coil. The coils are 
shown in neonatal brain, neonatal cardiac, and adult brain configura-
tions (b and d). For the birdcage coil, the two ports were placed at 
the top of the coil and driven in quadrature. For the 8Tx-dipole array, 

the feed cables for dipoles were directly soldered to their centre junc-
tion and passed out of the coil outer housing (not shown) through a 
small hole at the head end of the structure. Cables were not included 
in either model for the simulations
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reaches to -50 dB. Computations were carried out on dedi-
cated GPUs (2 × GTX Titan X, Nvidia Corp., USA). Con-
vergence was usually achieved within 60 periods in ∼ 85 min 
per port. A co-simulation approach (Optenni Ltd, Finland) 
was used to adjust the lumped elements of the dipoles to 
tune and match at 297.2 MHz and 50 Ohms. The values 
were optimized with respect to the built array (50–70 nH for 
inductors, 1–22 pF for capacitors), and the final simulated 
values were similar to the constructed array. The process was 
done separately for neonatal and adult configurations, but the 
lumped-element values optimized for neonatal brain were 
applied in the neonatal cardiac position to mimic the real-
case situation where no adjustment would be done between 
neonatal brain and cardiac imaging. For simulations with 
the neonate phantom, the same lumped-element values were 
used. Inter-element couplings and reflection coefficients 
were computed with the scattering matrices with the baby 
model. The simulated CAD model of the 8Tx-dipole array 
with phantom is available to download as supplementary 
data of this manuscript. In addition, to further evaluate the 
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Fig. 2   a Photo of the in-house built 8Tx-dipole array when the coil 
array is separated in two halves. b 3D render of the neonatal setup 
showing the splitting with the baby model in-place. c and d 3D render 
of the neonatal setup with the baby model in-place, in c the brain-iso-

centre and d the heart-isocentre configurations. The coil holder struc-
ture was made transparent to better visualize the neonatal bed fitting 
(in dark colour for better contrast)

Table 1   Adjusted dielectric properties (mass density, conductivity, 
and relative permittivity) used for the neonate model as published by 
Malik et al. [28]

Tissues/properties Mass density 
[kg/m3]

Conductivity 
[S/m]

Relative 
permittiv-
ity ɛr

Brain 1046 1.62 83.2
Heart 1081 1.35 90.3
Muscle 1090 1.30 80.9
Lungs (inflated) 394 0.53 32.2
Bone 1908 0.32 29.6
Thyroid Gland 1050 1.28 81.2
Fat 911 0.11 15.3
Eyes 1005 1.52 69.0
Gut 1030 0.77 58.2
Skin 1109 1.38 94.4
Blood (Aorta, Inferior 

vena cava)
1050 1.32 65.7

Liver 1079 0.80 61.1
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efficiency of the 8Tx-dipole array for neonatal MR applica-
tions in the given design configuration, an 8Tx-loop coil 
array was modelled and simulated with identical design cri-
teria (Supporting Information).

Evaluation of the simulated data

Simulated individual complex B1
+-field maps and electric 

E-fields were interpolated at 1 mm-isotropic, normalized to 
1 W total input power at the coil input, and exported to Mat-
lab (R2021a, the MathWorks, Natick, MA). Q-matrices were 
derived from simulated E-field and tissue densities for 
10 g-tissue mass-average regions and were used to evaluate 
SAR levels [42]. The worst-case SAR10g (SAR10g,wc) is 
defined by the RF weights combination producing the high-
est possible SAR10g. A Q-matrix largest eigenvalue analysis 
was performed with the maximum eigenvalue 

(
SAR

eigen

10g,max

)
 

being the SAR10g,wc when the total RF power is freely dis-
tributed across the channels [43]. In this case, the SAR10g,wc 
value may be achieved when all the power goes into a single 
channel. The eigenvalue map describing the highest possible 
SAR10g for each voxel and the eigenvector corresponding to 
the SAReigen

10g,max

 were computed to provide an insight into the 
dipoles producing the strongest contribution to the worst-
case SAR levels. However, in parallel-transmit the maximum 
power per channel is limited, meaning that all the power 
cannot go into a single channel, while it is allowed with the 
eigenvalue approach. Therefore, the SAR10g,wc was addition-
ally assessed for 1 W total power equally distributed so that 
each channel is driven at full amplitude, and corresponding 
maximum intensity projection (MIP) maps were computed 
for the 8Tx-dipole array in the neonatal brain and cardiac 
positions. RF phases of individual channels were then opti-
mized to maximize B1

+-field in neonatal brain and heart 
regions while minimizing the overall SAR10g,max value, using 
a particle-swarm algorithm [31, 44]. To accelerate the cal-
culations, a set of Virtual Observation Points (VOP) was 
generated from the Q-matrices, following Eichfelder and 
Gebhardt [45], using manufacturer-provided compression 
software (Siemens Healthcare, Erlangen, Germany) with an 
overestimation coefficient of 10%. Equation 1 defines the 
SAR-optimized cost-function whose objective is to maxi-
mize the B1

+-field over the region-of-interest while keeping 
a low SAR10g,max value, and where N corresponds to the total 
number of pixels in the region-of-interest.
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√√√
√ 1

N

∗

N∑

n=1

||Rn
− G

n

||
2

In Eq. 1, the unitless quantity Rn, defined by Eq. 2, was 
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nitude-of-sum (MOS) and the sum-of-magnitude (SOM) 
SAR efficiencies (Eq. 3). The shimmed SAR10g,max value was 
calculated using the VOPs for the MOS SAR efficiency 
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represents an optimal solution as the spatial phase variations 
of the complex B1

+-field for individual channels are elimi-
nated. High values for the 

(
B
+

1,MOS

)

n

 combined with low 
SAR10g,max value bring the ratio closer to 1, which means 
closer to the optimal solution characterized by 
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 . 
The unitless quantity Gn represents the per-pixel value of a 
2D-Gaussian pattern that has a unit value at the centre of the 
ROI, and the standard deviation values in the two directions 
defined such as out-centred Gn values are close but not equal 
to unit value of 1. Gn helps to prevent the algorithm to con-
verge to specific shimmed solutions where high B1

+-field is 
observed at the edges of the region-of-interest in a ring 
shape with a null at the centre. The SAR-optimized cost 
function (Eq.  1) computes the root-mean-square error 
between Rn and Gn.

The B1
+-field and SAR efficiency 
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values were averaged over the whole-brain and whole-heart 
of the neonatal model and SAR10g,max value was calculated 
over all tissues. For the adult head, the B1

+-field was aver-
aged over 5 brain tissues, white and grey matter, corpus cal-
losum, cerebellum, and midbrain (σadult = 0.86 S/m; 
ɛr,adult = 53.5), which averaged conductivity and permittivity 
were different from the neonatal brain (σneonate = 1.62 S/m; 
ɛr,neonate = 83.2, Table 1). Note that the SAR10g maps, and 
consequently the SAR10g,max value was obtained using the 
full 10 g-averaged Q-matrices, before VOP compression, 
and applying the RF phases found using the SAR-optimized 
cost function (Eq. 1). The B1

+-field and SAR10g quantities 
were normalized to 1 W total input power.

The whole-body and head-average SAR values, defined as 
the ratio between the total absorbed power in the concerned 
tissue region (whole-body or head) and its total mass (Eq. 4), 
were also computed, for 1 W total input power, since a sig-
nificant portion of the neonate is exposed to RF fields [46]. 
The total absorbed power in tissue was calculated with Eq. 5 
where M is the total number of voxels, Em and Jm are the 
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per-voxel shimmed electric and current field values (with the 
bar denoting the complex conjugate), and Vm is the voxel’s 
volume.

The head regions were manually defined, including head, 
neck, and shoulders for a total mass of 1.2 kg for the neo-
nate model and the region was cropped right below the chin 
(mass ≈ 5 kg) for the adult model. The whole-body neonate 
mass was ∼ 3.7 kg.

As a comparison, all the aforementioned simulated quan-
tities were computed for a 16-leg high-pass shielded birdcage 
coil, driven in circularly polarized (CP) mode, and whose 
dimensions (diameter = 305 mm, total length = 210 mm, 
rung/endring width = 20/10 mm, shield diameter = 372 mm) 
correspond to a commercially available adult head coil 
(Nova Medical Inc., MA, USA). The coil diameter was not 
modified although it would not fit the designed neonatal bed 
structure (Fig. 2c, d). The birdcage coil was tuned/matched 
for neonatal brain position, and lumped element values were 
kept the same for the neonatal cardiac position, as it was 
done for the dipole array. Matching to adult brain load was 
done independently. The three simulations performed with 
the 8Tx-dipole array—neonatal brain or heart at the centre 
of the coil, and adult brain-centred—were also carried out 
with the single-channel birdcage coil. Note that the bird-
cage coil design is shorter compared to the dipole array. To 
assess the validity of the simulated data, MR acquisitions 
were performed using the built phantom, and a 7 T MR scan-
ner (MAGNETOM Terra, Siemens Healthcare, Erlangen, 
Germany) with 8 × 2 kW RF amplifiers in prototype research 
configuration. Individual B1

+-field maps (magnitude/phase) 
were acquired per channel using a pre-saturation turbo-flash 
sequence [47], normalized to 1 kW total output power at 
RF amplifier and compared to the simulated B1

+-field maps 
on the same phantom. The individual B1

+ phase maps were 
computed relative to a shimmed mode. Simulated individual 
B1

+-field maps were normalized to the corresponding aver-
aged measured B1

+-field value. The B1
+-field distribution 

in circularly-polarized mode and for one RF shimmed case 
were measured with the actual-flip-angle method [48] and 
compared to the corresponding simulated B1

+-field maps 
using the same RF phases. Both the CP and RF shimmed 
B1

+-field maps were obtained with the total power equally 
distributed across each channel, and simulated maps were 
normalized to the central maximum B1

+-field value of the 
measured maps. Difference maps were calculated, and the 
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normalized root mean square error (NRMSE) was deter-
mined for magnitude B1

+-field maps. The NRMSE was 
calculated as the root-mean-square error between simulated 
and measured B1

+-field maps divided by the peak measured 
B1

+-field value. To avoid isolated high B1
+-field values that 

could result from measurement error, the peak was chosen 
as the 99th percentile value.

Results

Figure 3 shows the scattering parameters for the 8Tx-dipole 
array and the birdcage coil for neonate brain and cardiac 
and adult brain imaging configurations. The reflection 
coefficients were lower than -18 dB for all the channels of 
the 8Tx-dipole array in the neonatal brain imaging posi-
tion (Fig. 3a). When shifting to the cardiac centred position 
without recalibrating the coil for tuning and matching, the 
reflection coefficients were still better than − 10 dB while 
the average coupling value between closest neighbours 
was reduced by 20% (− 7.8 dB vs − 6.5 dB). The average 
nearest-neighbour coupling value of − 7 dB for the adult 
brain setup was higher compared to the neonatal cardiac 
configuration (− 7.8 dB) but lower compared to the neonatal 
brain configuration (− 6.5 dB). The coupling values for the 
birdcage coil were always near to or lower than − 10 dB 
and reflection coefficients were only slightly changed when 
shifting to the neonatal cardiac position, without re-tuning 
and matching (S11 >  − 14 dB).

Complete spatial coverage of the neonatal brain and heart 
was demonstrated in SAR efficiency ( B+

1
∕

√
SAR10g,max

 ) 
maps for the 8Tx-dipole array and RF phases obtained using 
the SAR-optimized cost function (Fig. 4a,c and Eq. 1). The 
maximum intensity levels were localized at the organs’ posi-
tions, and the SAR efficiency distribution was longitudinally 
extended beyond the regions-of-interest. The averaged SAR 
efficiency values of 0.64 μT

√
kg∕W (brain) and 0.73 

μT

√
kg∕W (heart) were higher in comparison with the CP 

mode as we applied B1
+ and SAR optimisation in the region 

of interest (Table 2). In comparison with SAR-optimized 
maps for the dipole array, SAR efficiency was visibly lower 
for the birdcage coil in both neonatal brain and cardiac con-
figurations. Moreover, although the brain and heart were 
spatially covered as the coil was longitudinally centred for 
those regions, the overall longitudinal coverage was lower 
for the birdcage coil (Fig. 4b, d) than for the 8Tx-dipole 
array (Fig. 4a, c) since their length in head-foot direction is 
different by design. The SAR10g,max value after SAR-optimi-
zation was 85% and 62% lower with the 8Tx dipole array 
compared to the birdcage coil, in brain and cardiac configu-
rations, respectively (Table 2). Figure 4e, f depicts the SAR 
efficiency maps as simulated on the adult head with the 
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dipole array and the birdcage coil. As the volume-of-interest 
increased from 0.3L (neonatal brain volume) to 1.3L (total 
volume of the 5 adult brain tissues), the averaged SAR effi-
ciency was decreased by 6% for the 8Tx-dipole array but 
increased by 22% for the birdcage coil (Table 2). The 8Tx-
loop coil array achieved, in neonatal configurations, an aver-
aged SAR efficiency value of 0.49 μT

√
kg∕W (brain) and 

0.60 μT
√
kg∕W (heart) (Supporting Information Figure 

S1d).
A flattening of the SAR10g distribution in neonatal brain 

and cardiac configurations was observed for SAR-optimized 
RF phases (Fig. 5b, d) with respect to the CP mode (Fig. 5a, 
c). While in CP mode the high SAR10g levels were spatially 
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brain and the heart. The distance between the two organs is indicated 
for reference
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concentrated at the edges of the model, they were visually 
more distributed after SAR optimization. This observa-
tion is consistent with the decrease of the SAR10g,max value 

(Table 2), although it was at the lung/muscle tissue interface 
(cardiac-centred) and skin (brain-centred) tissue for both 
the CP mode and SAR-optimized RF phases. In the adult 

Table 2   Quantitative results of the maps shown in Fig. 4 for the neonatal brain and cardiac and the adult brain configurations

The eight columns display the transmit mode, coil model, mean B1
+ over the region-of-interest, the mean SAR efficiency computed as 

B
+

1,mean

∕

√
SAR10g,max

 , SAR10g,max value, the whole-body/head average SAR and the total absorbed power in tissue. All the quantities were nor-
malized to 1 W input power. CP mode is indicated as a comparison for the 8Tx-dipole array. For the adult brain, the B1

+ values were averaged 
over 5 brain tissues, white and grey matter, corpus callosum, cerebellum and midbrain

Transmit mode Coil model Mean B1
+ over 

ROIs 
�
μT∕

√
W

� SAR efficiency �
μT

√
kg∕W

� SAR10g,max 
[
W∕kg∕W

]
Whole-body 
average SAR [
W∕kg∕W

]

Head-
Average SAR [
W∕kg∕W

]

Absorbed 
power 
[%]

Neonatal
Brain

SAR optimized 8Tx Dipole 
Array

0.32 ± 0.06 0.64 ± 0.12 0.25 0.07 0.13 24

CP mode 8Tx Dipole 
Array

0.34 ± 0.06 0.59 ± 0.10 0.33 0.08 0.15 29

Birdcage Coil 0.60 ± 0.13 0.46 ± 0.10 1.68 0.22 0.53 82
Neonatal 

Cardiac
SAR optimized 8Tx Dipole 

Array
0.61 ± 0.11 0.73 ± 0.13 0.69 0.18 0.16 66

CP mode 8Tx Dipole 
Array

0.60 ± 0.09 0.62 ± 0.09 0.94 0.17 0.14 61

Birdcage Coil 0.67 ± 0.14 0.50 ± 0.10 1.82 0.25 0.24 91
Adult
Brain

SAR optimized 8Tx Dipole 
Array

0.26 ± 0.08 0.60 ± 0.18 0.19 – 0.08 38

CP mode 8Tx Dipole 
Array

0.26 ± 0.07 0.54 ± 0.15 0.23 – 0.07 37

Birdcage Coil 0.39 ± 0.11 0.56 ± 0.16 0.49 – 0.15 75
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two distinct RF shimming weights. In (a, c), RF phases are defined 
for CP mode ( Δϕ = 45◦ between each dipole). In (b, d) RF phases 
were optimized for SAR10g,max reduction and are identical to Fig. 4a, c
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head, the SAR10g,max value was not significantly improved 
(Table 2).

The whole-body and head averaged SAR values, were 
lower for the 8Tx-dipole array compared to the birdcage 
coil, although the differences were less pronounced in neo-
natal cardiac configuration (Table 2).

A worst-case local SAR (SAR10g,wc) analysis was per-
formed for the 8Tx-dipole array to determine the RF weights 
producing the maximum power deposition levels in neonatal 
brain and cardiac setups. The highest SAR10g intensity was 
found in muscle, at the neck level, as shown in the SAR10g,wc 
map given for the neonatal brain configuration (Fig. 6a). 
The peak SAR10g location moved towards the body’s centre 
at the lungs (throat is defined as inflated lungs) and mus-
cle tissue interface in the cardiac position (Fig. 6c). The 
SAR10g,wc peak value was increased from 0.65 W/kg/W in 
brain-centred to 1.61 W/kg/W in heart-centred positions but 
was significantly higher compared to the levels achieved in 
regular scenarios, for example for neonatal brain imaging, as 
demonstrated with the SAR-optimized RF shims (Table 2). 
The SAR levels achieved in the worst-case scenario for the 
8Tx-dipole array were lower by 61% in the brain and 11% in 
cardiac neonatal setups in comparison with the birdcage coil. 
With the birdcage coil, the maximum SAR10g was observed 
in skin and muscle at the neck level in the neonatal brain 
configuration (Fig. 6b) and at the lung/muscle tissue inter-
face in the neonatal cardiac setup (Fig. 6d).

Dipoles 1 and 8 demonstrated the major contribution to 
the SAReigen

10g,max

 value in the neonatal brain configuration 
(Fig. 7a) while that were dipoles 3, 4 and 5 in the neonatal 
cardiac configuration (Fig. 7c). Dipole 6 only marginally 
contributed to the SAReigen

10g,max

 in both neonatal configurations 
(Fig. 7a–c). The position of the SAReigen

10g,max

 value was con-
sistent with the SAR10g,wc position (Fig. 7b–d). In the adult 
brain, the SAReigen

10g,max

 value was found when the dipole 8 gets 
almost all the available power.

Figure 8b shows the simulated and measured B1
+-field 

maps for CP mode and one RF-shimmed configuration. The 
normalized root-mean square error (NRMSE) between simu-
lated and measured B1

+-field maps was about 6.3% in CP 
mode and 5.9% in RF shimmed case (Fig. 8c). Figure 8d, 
f shows the individual measured and simulated B1

+-field 
maps, for both magnitude and phase. The NRMSE values 
for individual B1

+-field magnitude maps ranged from 5.3% 
for channel 2–7.3% for channels 3 and 8 (Fig. 8e). The aver-
aged phase differences between simulated and measured 
individual phase maps ranged from 3.7 degrees for chan-
nel 2 to 23.5 degrees for channel 8 (Fig. 8g). The contour 
lines (Fig. 8e and g, black line) demonstrate that the large 
differences in magnitude or phase happen outside the high 
B1

+-field areas for individual channels.
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Discussions

In this study, an 8Tx-dipole array was designed and con-
structed towards neonatal brain and cardiac MR applications 
and evaluated through electromagnetic field simulations. 
The effects of subject size (baby vs adult) and target size 
(brain vs heart) on B1

+-field efficiency and SAR levels were 
investigated in simulation, for the proposed dipole array, in 
contrast with a standard birdcage coil.

The dipole array demonstrated robustness against load-
variation when the baby model was moved from the brain- to 
heart-centred positions with only small variation in reflec-
tion coefficients which remained better than -10 dB for all 
position tested. This suggests that the coil array could be 
used to image the brain or heart during a single MR session 
with minimal impact on the baby’s comfort. The birdcage 
coil demonstrated comparable results.

The SAR efficiency maps ( B+

1
∕

√
SAR10g,max

 ) demon-
strated substantially improved performance for the 8Tx-
dipole array in comparison with the birdcage coil and the 
8Tx-loop coil array (Supporting Information Figure S1). 
This improvement is important for MR examinations as the 
SAR levels are a limiting factor at 7 T, and RF safety is a 
major concern for neonatal applications. In the adult brain, 

similar SAR efficiency levels were achieved compared to the 
neonatal brain configuration with the 8Tx-dipole array. 
Thus, although the body size difference from adult to baby’s 
head may contribute to improve the RF performance of the 
coil, the differences in dielectric properties strongly mitigate 
the potential improvements. This effect was more pro-
nounced with the birdcage coil, with a 18% decreased SAR 
efficiency in neonatal brain configuration compared to the 
adult brain. This observation is consistent with the work 
presented by Malik et al. [49].

It is important to note that the neonatal results for the 8Tx-
dipole array were achieved by optimizing the RF phases, 
which decreased the peak SAR10g value with no drop of the 
averaged B1

+-field value over the region-of-interest. How-
ever, when using the SAR-optimization cost function (Eq. 1), 
a certain bias is introduced during the computation. Indeed, 
the (SAR10g,max)VOPs value overestimates the SAR10g,max 
value obtained with the full Q-matrices by a variable coeffi-
cient, notably for low values [45]. Therefore, some solutions 
that may provide a low SAR10g,max value are discarded by 
the algorithm. Nevertheless, the obtained results enhance the 
potential of parallel-transmit methods to improve RF safety 
of subjects, particularly neonates. Although a fixed CP mode 
produces an efficient B1

+-field, the power deposition levels 
cannot be minimized. With independent optimization of the 

Fig. 7   Eigen vector amplitudes 
corresponding to the maximum 
eigenvalue given per chan-
nel in a neonatal brain, and c 
neonatal cardiac configurations, 
normalized to 1 W input power 
for the 8Tx-dipole array. b and 
d Maximum intensity projection 
eigen-value maps shown for the 
two configurations
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RF weights, lower SAR10g,max values could be achieved. In 
CP mode, the SAR10g,max position was outside of the neona-
tal brain with the 8Tx-dipole array. Therefore, the algorithm 
can alleviate the SAR levels located outside of the brain 
without compromising the B1

+-field efficiency inside the 
brain. However, B1

+-field levels are likely to be decreased 
in the other regions.

The lower power deposition levels obtained with the 
8Tx-dipole array compared to the birdcage coil were also 

observed in terms of whole-body and head-average SAR val-
ues for neonate. The increased number of transmit elements 
and subsequently the higher coupling levels, may be respon-
sible for these differences. In addition, unlike the birdcage 
coil, the 8Tx-dipole array was not shielded, which may have 
led increased radiation losses. For the 8Tx-dipole array, the 
absorbed power in the tissue was 71% (brain-centred) and 
27% (cardiac-centred) lower compared to the birdcage coil 
for the SAR-optimized situations.
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Fig. 8   a CAD model of the neonatal phantom with general dimen-
sions (in mm) and placement inside the 8Tx-dipole array. b and d 
Experimentally measured and simulated B1

+-field maps, normalized 
to 1 kW total input power, shown in b for the CP mode and one RF 
shim configuration ([155 200 328 0 0 7 83 132] degrees), and in d) 
for individual transmit elements. f Experimentally measured and sim-
ulated individual phase maps corresponding to the transmit elements 
shown in d. The phase maps were computed relative to the shimmed 
mode. The slice position for all the results shown is indicated in a. 

c, e, g Difference maps calculated for the combined maps (c) and 
individual B1

+-field maps (e, g). In e a contour line was drawn (in 
white) to visually represents the extent of the measured individual 
B1

+-field distribution patterns (shown in d). In e and g a contour line 
was drawn (in black) to visually represents the extent of the measured 
individual B1

+-field distribution patterns (shown in d and f). Note 
that the colour bar for the magnitude differences (c and e) have been 
rescaled to show residuals more clearly
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The IEC guidelines provide the safe operation limits for 
RF coils used in MRI [46], in which the ratio between the 
maximum authorized SAR10g value (10 W/kg) and the head-
average (3.2 W/kg) or whole-body average (2 W/kg) SAR is 
3.1 and 5, respectively. If the ratio of the predicted SAR10g 
to either the head-average or whole-body average SAR is 
smaller than the ratio of the respective limits, this indicates 
that the relevant average SAR value will be the limiting fac-
tor. In neonatal cardiac configuration, the SAR10g,max is the 
limiting quantity, except for the SAR optimized case, while 
in the brain configuration, it is either whole-body or head-
average SAR for the 8Tx dipole array. For the birdcage coil, 
the SAR10g,max is always the limiting quantity. These two 
quantities should be further investigated for safe neonate 
imaging at 7 T. The SAR-optimized cost function efficiently 
decreased the peak SAR10g,max value, but has only little effect 
on the overall power deposited.

The worst-case SAR10g analysis demonstrated that the 
maximum SAR10g value was significantly increased from the 
neonatal brain-centred to cardiac-centred setups. However, 
in the MR system, the RF safety limits are usually normal-
ized to the absorbed power in the tissue. Doing so, the rela-
tive difference is about 2.3%. This observation supports the 
feasibility of neonatal brain and cardiac imaging without 
modifying the RF safety power limits, would the worst-case 
SAR values be used. The same observation applies for the 
birdcage coil. The scanner RF power limits could be dynam-
ically adjusted regarding the applied RF phases in the case 
of the 8Tx-dipole array, instead of worst-case scenario. In 
this way, more flexibility would be granted in terms of MR 
protocols and scan time. To allow this, a combined VOP set 
could be prepared accounting for both the neonatal brain 
and cardiac cases. Although RF phase optimization demon-
strated the ability to reduce the local SAR10g, other parallel-
transmit approaches as pulse optimization could be used to 
decrease SAR10g levels with the 8Tx-dipole array [50–53].

A good agreement between the simulated and measured 
B1

+-field magnitude and phase maps (Fig. 8) was shown 
both qualitatively and quantitatively and represents an 
important step for validation of the simulated SAR model. 
The worst-case SAR limits should be used in case there is 
a mismatch between simulated and measured data for the 
individual phase maps to avoid power effectively deposited 
in tissues being different from the simulated one when RF 
shimming is used. However, significant additional valida-
tion data are still required while approaching to use phase-
specific limits, such as thermometry measurements [54].

For shimmed RF phases, the SAR10g,max location is 
mainly driven by interferences between all the individual RF 
fields, but the dipoles presenting the higher contribution to 
the SAReigen

10g,max

 may correspond to the most SAR-sensitive 
elements. The dipole design at these positions could be 

further investigated to decrease the individual SAR10g levels. 
It is interesting to note that while for the adult head, a single 
dipole is responsible for the highest SAR10g level, for the 
neonate body the trend is more unclear. Therefore, although 
dipole design can be improved, replacing only one or two 
dipoles may not be beneficial.

Considering the results obtained, it appears that the 
smaller subject size (baby vs adult) resulted in enhanced 
B1

+-field, although the distance to dipole elements was 
large. With respect to the target size and location (brain vs 
heart), the results demonstrate that SAR efficiency levels are 
slightly better in cardiac configuration compared to brain.

Nevertheless, although the 8Tx-dipole array performed 
well for neonatal brain and cardiac applications in terms 
of SAR efficiency, the large distance and the small number 
of dipoles may significantly limit the receive performance, 
notably for signal-to-noise (SNR) ratio and acceleration 
capabilities. At 3 T, building dedicated receive arrays for 
neonatal brain demonstrated significant SNR improvements 
compared to adult coils [55–57]. Further developments will, 
therefore, include the design and construction of a multi-
channel receive array insert optimized for spatial coverage 
from the neonatal brain to the heart at 7 T.

Conclusion

An 8Tx-dipole array body coil format for neonatal brain 
and cardiac MR was successfully demonstrated with both 
brain and heart covered in electromagnetic field simula-
tions. Building a dedicated coil allows adjusting the design 
with respect to the very specific needs for neonate imaging 
in terms of positioning and comfort. The parallel-transmit 
approach for neonate imaging outperformed the single-trans-
mit approach with the capability to tackle the SAR10g,max 
value while keeping the benefit of increased B1

+-field effi-
ciency. We conclude that the 8Tx-dipole array promises safe 
operating procedures for MR imaging of neonatal brain and 
heart at 7 T.
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